Jennifer L Baltzer

Jennifer L Baltzer
Wilfrid Laurier University | WLU · Department of Biology

PhD

About

101
Publications
50,622
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,847
Citations
Introduction
Skills and Expertise

Publications

Publications (101)
Article
Amplified climate warming in high latitudes is expected to affect growing season timing of the vast boreal biome. It is unclear whether the presence of permafrost (perennially frozen ground) might have an influence on changes in growing season timing. This study examined how different environmental variables explained, either directly or indirectly...
Article
Much of the Arctic is experiencing rapid change in the productivity and recruitment of tall, deciduous shrubs. It is well established that shrub expansion can alter tundra ecosystem composition and function; however, less is known about the degree to which variability in the physical structure of shrub patches might mediate these changes. There is...
Article
Full-text available
In boreal North America, much of the landscape is covered by fire-adapted forests dominated by serotinous conifers. For these forests, reductions in fire return interval could limit reproductive success, owing to insufficient time for stands to reach reproductive maturity i.e., to initiate cone production. Improved understanding of the drivers of r...
Article
Full-text available
Resilience of plant communities to disturbance is supported by multiple mechanisms, including ecological legacies affecting propagule availability, species’ environmental tolerances, and biotic interactions. Understanding the relative importance of these mechanisms for plant community resilience supports predictions of where and how resilience will...
Article
Full-text available
Significance Black spruce is the dominant tree species in boreal North America and has shaped forest flammability, carbon storage, and other landscape processes over the last several thousand years. However, climate warming and increases in wildfire activity may be undermining its ability to maintain dominance, shifting forests toward alternative f...
Article
Allometric equations for calculation of tree aboveground biomass (AGB) form the basis for estimates of forest carbon storage and exchange with the atmosphere. While standard models exist to calculate forest biomass across the tropics, we lack a standardized tool for computing AGB across boreal and temperate regions that comprise the global extratro...
Article
Full-text available
Tree rings provide an invaluable long‐term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree‐ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologica...
Article
Full-text available
Boreal peatlands are critical ecosystems globally because they house 30%–40% of terrestrial carbon (C), much of which is stored in permafrost soil vulnerable to climate warming‐induced thaw. Permafrost thaw leads to thickening of the active (seasonally thawed) layer and alters nutrient and light availability. These physical changes may influence co...
Article
Full-text available
Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to t...
Article
Full-text available
Developing spatially explicit permafrost datasets and climate assessments at scales relevant to northern communities is increasingly important as land users and decision makers incorporate changing permafrost conditions in community and adaptation planning. This need is particularly strong within the discontinuous permafrost zone of the Northwest T...
Article
Full-text available
Plant diversity varies immensely over large-scale gradients in temperature, precipitation, and seasonality at global and regional scales. This relationship may be driven in part by climatic variation in the relative importance of abiotic and biotic interactions to the diversity and composition of plant communities. In particular, biotic interaction...
Article
Full-text available
Increased fire activity due to climate change may impact the successional dynamics of boreal forests, with important consequences for caribou habitat. Early successional forests have been shown to support lower quantities of caribou forage lichens, but geographic variation in, and controls on, the rates of lichen recovery has been largely unexplore...
Article
Full-text available
The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding...
Article
Full-text available
Time series of vegetation indices derived from satellite imagery are useful in measuring vegetation response to climate warming in remote northern regions. These indices show that productivity is generally declining in the boreal forest, but it is unclear which components of boreal vegetation are driving these trends. We aimed to compare trends in...
Article
Climate warming is driving tundra shrub expansion with implications for ecosystem function and regional climate. Understanding associations between shrub ecophysiological function, distribution, and environment is necessary for predicting consequences of expansion. We evaluated the role of topographic gradients on upland shrub productivity to under...
Article
Full-text available
1. Boreal peatlands are frequently underlain by permafrost, which is thawing rapidly. A common ecological response to thaw is the conversion of raised forested plateaus to treeless wetlands, but unexplained spatial variation in responses, combined with a lack of stand‐level data, make it difficult to predict future trajectories of boreal forest com...
Article
Full-text available
ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimens...
Article
Full-text available
Carbon (C) emissions from wildfires are a key terrestrial–atmosphere interaction that influences global atmospheric composition and climate. Positive feedbacks between climate warming and boreal wildfires are predicted based on top-down controls of fire weather and climate, but C emissions from boreal fires may also depend on bottom-up controls of...
Preprint
Full-text available
The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society, yet limited by lack of understanding...
Article
Northwestern Canada’s boreal forest has experienced rapid warming, drying, and changes to permafrost, yet the growth responses and mechanisms driving productivity have been understudied at broad scales. Forest responses are largely driven by black spruce – the region’s most widespread and dominant tree. We collected tree-ring samples from four blac...
Preprint
Full-text available
Mutualisms are remarkably common in the plant kingdom. The mycorrhizal association which involves plant roots and soil fungi is particularly common, and found among members of the majority of plant families. This association is a resource-resource mutualism, where plants trade carbon-based compounds for nutrients, such as phosphorus and nitrogen, m...
Article
The acceleration of permafrost thaw due to warming, wetting, and disturbance is altering circumpolar landscapes. The effect of thaw is largely determined by ground ice content in near‐surface permafrost, making the characterization and prediction of ground ice content critical. Here we evaluate the spatial and stratigraphic variation of near‐surfac...
Article
Full-text available
The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genus Sphagnum—the main peat-former and ecosystem engineer in northern peatlands—remains unclear. We measured length growth and net primary production (NPP) of two abundant Sphagnum species across 99 Holarctic peatlands. We tested...
Article
Full-text available
Increases in fire frequency, extent, and severity are expected to strongly impact the structure and function of boreal forest ecosystems. An important function of the boreal forest is its ability to sequester and store carbon (C). Increasing disturbance from wildfires, emitting large amounts of C to the atmosphere, may create a positive feedback to...
Article
Full-text available
Climate change is altering disturbance regimes outside historical norms, which can impact biodiversity by selecting for plants with particular traits. The relative impact of disturbance characteristics on plant traits and community structure may be mediated by environmental gradients. We aimed to understand how wildfire impacted understory plant co...
Article
Full-text available
Fungi play key roles in carbon (C) dynamics of ecosystems: saprotrophs decompose organic material and return C in the nutrient cycle, and mycorrhizal species support plants that accumulate C through photosynthesis. The identities and functions of extremophile fungi present after fire can influence C dynamics, particularly because plant-fungal relat...
Article
Full-text available
Shrub expansion has occurred across much of the arctic tundra over the past century. Increasing dominance of woody vegetation is expected to have global influences on climate patterns and lead to local changes in hydrological function and nutrient cycling. Changing abiotic conditions associated with shrubs will likely alter the relative fitness of...
Article
Full-text available
The vast boreal biome plays an important role in the global carbon cycle but is experiencing particularly rapid climate warming, threatening the integrity of valued ecosystems and their component species. We developed a framework and taxonomy to identify climate‐change refugia potential in the North American boreal region, summarizing current knowl...
Article
The boreal biome accounts for approximately one third of the terrestrial carbon (C) sink. However, estimates of its individual C pools remain uncertain. Here, focusing on the southern boreal forest, we quantified the magnitude and temporal dynamics of C allocation to aboveground tree growth at a mature black spruce (Picea mariana)-dominated forest...
Article
Full-text available
Changes in the frequency and extent of wildfires are expected to lead to substantial and irreversible alterations to permafrost landscapes under a warming climate. Here we review recent publications (2010–2019) that advance our understanding of the effects of wildfire on surface and ground temperatures, on active layer thickness and, where permafro...
Article
Full-text available
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research sp...
Conference Paper
Climate change is altering disturbance regimes globally, including their frequency and severity, with strong evidence of shifts in the ecological communities recovering following disturbance. In boreal forests, intensification of wildfire regimes is driving altering regeneration outcomes in some regions, for instance from black spruce (Picea marian...
Article
Full-text available
Boreal forest fires emit large amounts of carbon into the atmosphere primarily through the combustion of soil organic matter1–3. During each fire, a portion of this soil beneath the burned layer can escape combustion, leading to a net accumulation of carbon in forests over multiple fire events⁴. Climate warming and drying has led to more severe and...
Article
Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling post‐fire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Underst...
Article
Full-text available
Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised...
Article
Full-text available
Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-t...
Article
Trees play a key role in the global hydrological cycle and measurements performed with the thermal dissipation method (TDM) have been crucial in providing whole‐tree water‐use estimates. Yet, different data processing to calculate whole‐tree water use encapsulates uncertainties that have not been systematically assessed. We quantified uncertainties...
Article
Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 t...
Article
Water stress has been identified as a key mechanism of the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree hydrodynamics and their interspecific differences is still lacking. Here we examine the hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea...
Article
Climate warming and drying is associated with increased wildfire disturbance and the emergence of mega‐fires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimat...
Article
Full-text available
Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on elements from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, the dead Sphagnum tissue accumulated in peat constitutes a potential long-term archive th...
Article
Evapotranspiration (ET) is a key component of the water cycle, whereby accurate partitioning of ET into evaporation and transpiration provides important information about the intrinsically coupled carbon, water, and energy fluxes. Currently, global estimates of partitioned evaporative and transpiration fluxes remain highly uncertain, especially for...
Article
Increased fire frequency, extent and severity are expected to strongly affect the structure and function of boreal forest ecosystems. In this study, we examined 213 plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories, Canada, after an unprecedentedly large area burned in 2014...
Article
Full-text available
Under changing climate conditions, understanding local adaptation of plants is crucial to predicting the resilience of ecosystems. We selected black spruce (Picea mariana), the most dominant tree species in the North American boreal forest, in order to evaluate local adaptation vs. plasticity across regions experiencing some of the most extreme cli...
Conference Paper
The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Glo...
Article
Full-text available
Identifying the spatial scale at which particular mechanisms influence plant community assembly is crucial to understanding the mechanisms structuring communities. It has long been recognized that many elements of community structure are sensitive to area; however the majority of studies examining patterns of community structure use a single relati...
Article
Full-text available
Northern ecosystem processes play out across scales that are rare elsewhere on contemporary earth: large ranging predator–prey systems are still operational, invasive species are rare, and large-scale natural disturbances occur extensively. Disturbances in the far north affect huge areas of land and are difficult to control or manage. Historically,...
Article
The objective of this paper is to assess the accuracy of C-band synthetic aperture radar (SAR) datasets in mapping peatland types over a region of Canada's subarctic boreal zone. This paper assessed contributions of quad-polarization linear backscatter intensities (σ°HH, σ°HV, σ°VV), image textures, and two polarimetric scattering decompositions: 1...
Article
Full-text available
Plants appear to produce an excess of leaves, stems and roots beyond what would provide the most efficient harvest of available resources. One way to understand this overproduction of tissues is that excess tissue production provides a competitive advantage. Game theoretic models predict overproduction of all tissues compared with non-game theoreti...
Article
Full-text available
High-latitude warming has led to radical changes in abiotic conditions influencing forest growth. In the North American boreal forest, widespread declines in forest productivity (particularly in western regions) and changing climate-growth relationships have been documented. Previous studies have proposed that this decline can be attributed to drou...
Article
Question: Why do mosses produce stem-like structures that allow them to grow above their neighbours? Does answering this question help us understand patterns in moss production under environmental change? Hypothesis: Light competition leads to an evolutionary struggle for height that enhances the ability of mosses to acquire light relative to their...
Article
Full-text available
Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among speci...
Article
Full-text available
Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among speci...
Article
Full-text available
Understanding how plants are constructed; i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals; is essential for modeling plant growth, estimating carbon stocks, and mapping energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting sp...
Article
Full-text available
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characteriz...
Article
The tendency for species richness to decrease toward the poles is one of the best-characterized patterns in biogeography. The mechanisms behind this pattern have received much attention, yet very few studies have investigated very high-latitude communities. Here, using data from 134 permanent sample plots from 60 degrees to 68 degrees N, we show th...