

Thermal effect of topical menthol on short duration cycling performance in the heat

Jemma E Preece, Hannah S Dobbie, Sam SX Wu, Emma K Zadow, James W Fell

Sports Performance Optimisation Research Team, University of Tasmania, Launceston, Tasmania, Australia

INTRODUCTION

- Menthol is an ingredient in a range of products that claim to improve athletic performance as well as enhance rehabilitation from injury (Gillis, et al. 2010),
- Improvements in Thermal Sensation (TS) is one effect of menthol that has the potential to enhance performance (Barwood, et al. 2014),
- Application of menthol to the skin stimulates cool sensations, mediated by specialised sensory neurons (Barwood, et al. 2014),

Transient Receptor Potential Melastatin 8 (TRPM8).

PREVIOUS STUDIES

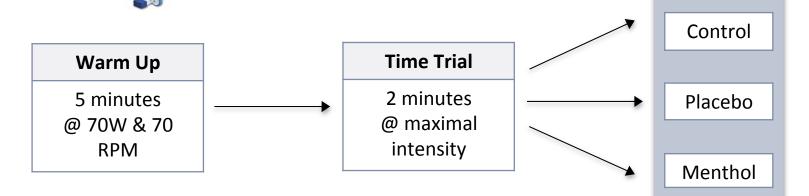
Authors	Method	Results		
Barwood, Corbett, Thomas & Twentyman (2014)	16.1km *TT 33.5°C, 33% RH	TS ♥, RPE ♥ Performance: No significant difference		
Gillis, House & Tipton (2010)	45 mins TT at 45% peak power 30°C, 70% *RH	TS ♥, RPE: No significant difference		
Gillis, Barwood, Tipton (2016)	115 min TT 31°C, 70% RH	TS ♥, RPE: Measured but not reported on		

Whether a lower TS can have an effect on performance during short duration high-intensity cycling in the heat has not yet been investigated.

*RH=Relative Humidity *TT=Time Trial

PURPOSE

To investigate the effects of topical menthol application on two minute maximal cycling performance in the heat.



METHODS

15 recreationally active participants (5 males, 10 females) Age: 25.1±8.8 y, height: 1.72±0.8 m, mass 67.9±8.8 kg

> Temperature: 31.18±0.04°C, Relative humidity: 50.58±0.32%

DATA COLLECTION

Pre Test Data

- RPE: 6-20 (Borg 1960)
- TS_{body}
- TS_{legs}
- Tympanic temperature
- Resting HR

30s Interval Data

- Power
- HR
- Cadence
- RPE
- TS_{body}
- TS_{legs}

Post Test Data

- Total distance
- Mean power
- Mean cadence
- RPE
- Tympanic temperature
- TS_{body}
 - TS_{legs}

STATISTICAL ANALYSIS

One way repeated measure analysis of variance (ANOVA)

- Mean power
- Mean cadence
- Distance covered

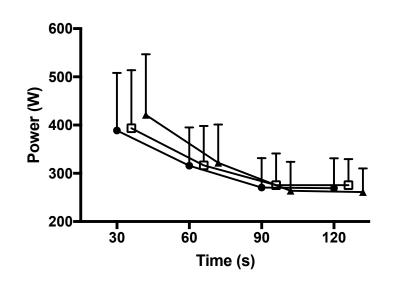
Two way repeated measures ANOVA (condition x time)

- Power
- HR
- Cadence
- RPE
- TS_{body}
- Ts_{legs}

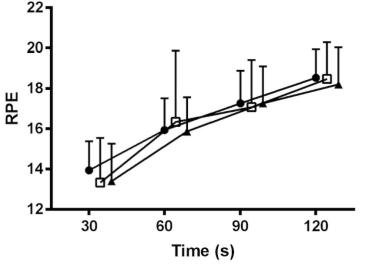
*Alpha level was accepted at p≤0.05

Graphpad Prism version 7

Results


Table 2: Mean and SD of pre and post test tympanic temperature and TT distance.

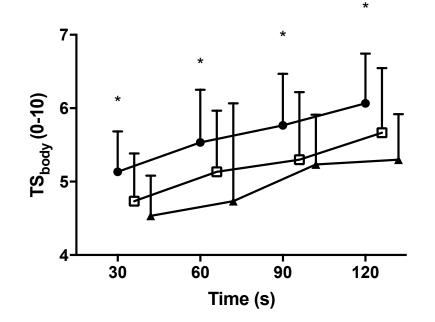
	Control	Placebo	Menthol
Pre-Trial Tympanic Temp.	38.2±0.2	38.4±0.3	38.4±0.3
Post-Trial Tympanic Temp.	38.4±0.2	38.6±0.3	38.6±0.2
TT Distance	1.4±0.1	1.4±0.1	1.4±0.1

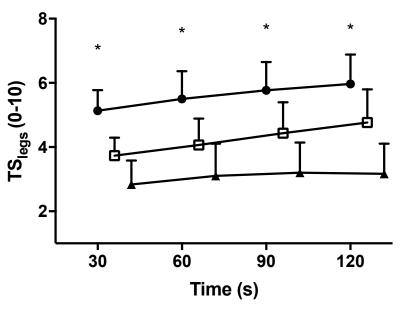


RESULTS CONTINUED

- Control
- -B- Placebo
- Menthol

Figure 1: Mean(±SD) of power output for control, placebo and menthol conditions.




Figure 2: Mean (± SD) for RPE in control, placebo and menthol conditions.

RESULTS CONTINUED

Figure 3: Mean (±SD) measures of body TS at 30s intervals in control, placebo and menthol conditions *indicates main effect for condition.

Figure 4: Mean (± SD) measures of leg TS at 30s intervals in control, placebo and menthol conditions *indicates main effect for condition.

DISCUSSION

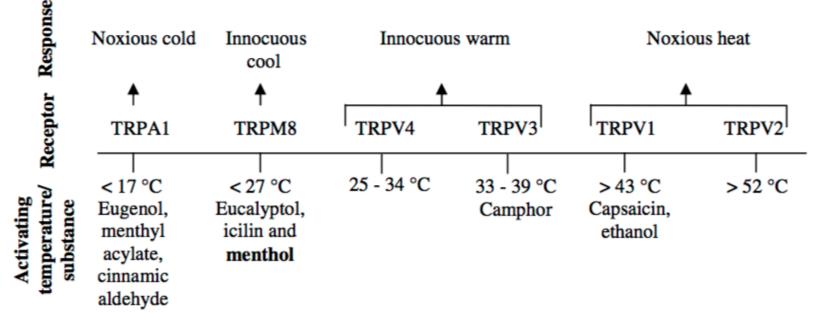


Figure 1. Thermoreceptor activation by various temperatures and substances.

CONCLUSION

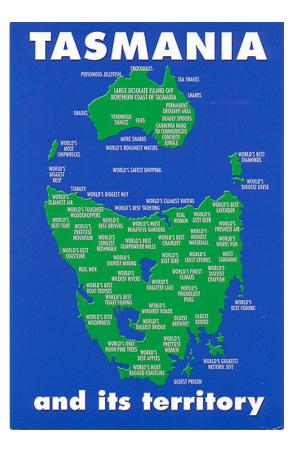
• Despite significant reductions in TS after application of topical menthol, no improvements in TT performance was evident,

• Further studies could investigate the effects of menthol on middle distance cycling time trials,

• Future directions may include the use of trained cyclists.

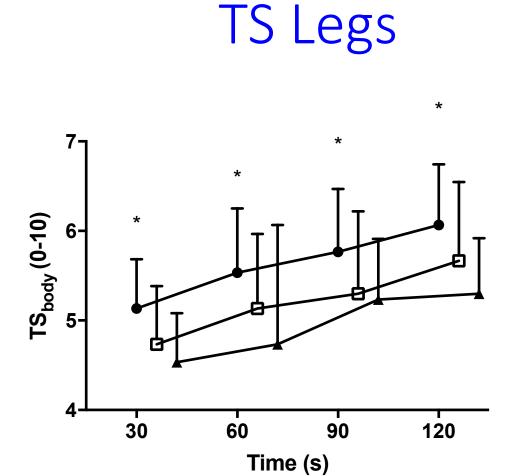
PRACTICAL IMPLICATIONS

• People wishing to feel cooler when exercising in the heat can apply menthol or aloe vera gel prior to commencing exercise,


• Athletes looking to enhance short duration performance in the heat will not benefit from application of topical menthol.

THANK YOU 🙂

Comments and questions welcome.



References

- 1. Barwood M., Corbett J., Thomas K. Twentyman P. 2014, Relieving thermal discomfort: Effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat, *Scandinavian Journal of Medicine and Science in Sports*,
- 2. Borg G.A. 1982, Psychophysical bases of perceived exertion. *Medicine and Science in Sports and Exercise,*
- 3. Gillis DJ. 2011, Influence of menthol on human temperature regulation and perception,
- 4. Gillis DJ, Barwood MJ, Tipton MJ. 2016, The effect of L-menthol on thermoregulation and sensation during exercise in warm and humid conditions, *European Journal of Applied Physiology*,
- 5. Gillis DJ, House JR, Tipton MJ. 2010, The influence of menthol on thermoregulation and perception during exercise in warm, humid conditions, *European Journal of Applied Physiology*.

Results (RPE & HR)

	30		60		90		120					
	Control	Placebo	Menthol									
Cadence	97.3	99.8	98.2	96.9	92.9	90.1	87.9	90.4	85.8	91.4	92.7	85.8
	±10.9	±8.6	±9.1	±23.6	±8.3	±7.8	±6.8	±8.8	±6.9	±8.2	±10.5	±10.3
Heart	158.6	158.8	159.3	167.1	165.6	167.9	173.5	171.1	173.2	176.6	175.9	176.8
Rate	±14.2	±12.8	±15.3	±10.7	±12.3	±11.6	±7.8	±12.7	±10.4	±7.5	±9.3	±10.1

Receptors

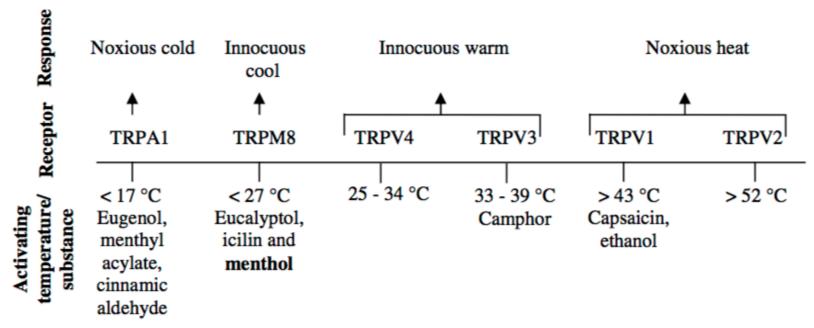


Figure 1. Thermoreceptor activation by various temperatures and substances.

Placebo

Lower TS_{legs} in the placebo condition can also be attributed to the activation of TRPM8 receptors as placebo gel was applied at an ambient temperature (~21°C), within the 8-28°C activation range of TRPM8 receptors.

