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Abstract

The corpus luteum (CL) is a transient endocrine gland. Functional and structural demise of the CL allows a new estrous cycle. On the

other hand, survival of CL and its secretion of progesterone are required for the establishment of pregnancy. Survival or apoptosis of the

luteal cells is precisely controlled by interactions between survival and apoptosis pathways. Regulation of these cell signaling components

during natural luteolysis and establishment of pregnancy is largely unknown in ruminants. The objective of the present study was to

determine the regulation of survival and apoptosis signaling protein machinery in the CL on days 12, 14, and 16 of the estrous cycle and

pregnancy in sheep. Results indicate that: i) expressions of p-ERK1/2, p-AKT, b-catenin, NFkB -p65, -p50, -p52, p-Src, p-b -arrestin,

p-GSK3b, X-linked inhibitor of apoptosis protein (XIAP), and p-CREB proteins are suppressed during natural luteolysis; in contrast, their

expressions are sustained or increased during establishment of pregnancy; ii) expressions of cleaved caspase-3, apoptosis inducing factor

(AIF), c-Fos, c-Jun, and EGR-1 proteins are increased during natural luteolysis; in contrast, their expressions are decreased during

establishment of pregnancy; and iii) expressions of Bcl-2, Bcl-XL, Bad, and Bax proteins are not modulated during natural luteolysis while

expressions of Bcl2 and Bcl-XL proteins are increased during establishment of pregnancy in sheep. These proteomic changes are evident

in both large and small luteal cells. These results together indicate that regression of the CL during natural luteolysis or survival of the CL

during establishment of pregnancy is precisely controlled by distinct programmed suppression or activation of intraluteal cell survival and

apoptosis pathways in sheep/ruminants.
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Introduction

In ruminants, prostaglandin F2a (PGF2a) is the luteolytic
hormone (McCracken et al. 1999). During the process of
luteolysis, PGF2a is synthesized and released from the
endometrial luminal epithelial cells in a pulsatile pattern
which causes luteolysis. In sheep, continuous exposure
of endometrium to progesterone (P4) for 8–10 days
down-regulates expression of nuclear P4 receptor in
luminal epithelial cells between days 11 and 13, thereby
allowing a rapid increase in expression of nuclear E2

receptor a (ESR-1) after day 13, followed by an increase
in expression of membrane oxytocin receptor (OXTR)
after day 14 of the estrous cycle (McCracken et al. 1999,
Spencer et al. 2004). Pulsatile releases of oxytocin from
the posterior pituitary and corpus luteum (CL) after days
13–14 of the estrous cycle act via OXTR to induce
release of luteolytic pulses of PGF2a from luminal
epithelial cells between days 14 and 16 of the estrous
cycle (McCracken et al. 1999). Endometrial PGF2a is
transported into each adjacent uterine vein which joins
the adjacent ovarian vein to form the utero-ovarian vein.
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Luteolytic PGF2a pulses are transported from the utero-
ovarian vein into the ovarian artery locally through a
complex vascular structure called the utero-ovarian
plexus (UOP) (Lee et al. 2010). A minimum of five 1-h
long pulses of PGF2a over a period of 48 h is required to
cause complete luteolysis consistently in sheep
(McCracken et al. 2012).

At the time of establishment of pregnancy, interferon
tau secreted by the trophoblast of the conceptus inhibits
endometrial pulsatile release of PGF2a and prevents
luteolysis (Spencer et al. 2004). Experiments involving
anastomosis of uterine vein or ovarian artery from
pregnant to nonpregnant uterine horn indicate that
both luteolytic and luteoprotective mediators need to
be transported from the utero-ovarian vein to the ovarian
artery via the UOP in sheep and cattle (Mapletoft &
Ginther 1975, Mapletoft et al. 1975, 1976a,b, Ginther
1981). Embryo/conceptus transfer and hysterectomy
experiments indicate that the luteolytic and luteopro-
tective mechanisms are locally mediated between the
uterus and the CL of the ipsilateral ovary and do not act
systemically in sheep (Moor & Rowson 1966a, Moor
DOI: 10.1530/REP-15-0302
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et al. 1969, 1970). Early studies indicate that during the
establishment of pregnancy in sheep, a factor(s) from the
conceptus or gravid uterus reaches the ovary locally
through the UOP and protects the CL from luteolysis
(Moor & Rowson 1966a,b, Moor et al. 1969, Mapletoft &
Ginther 1975, Mapletoft et al. 1975, 1976a, Silvia &
Niswender 1986).

In ruminants, the CL of early pregnancy is more
resistant to the luteolytic action of PGF2a (Inskeep et al.
1975, Pratt et al. 1977, Nancarrow et al. 1982, Silvia &
Niswender 1984, 1986) on days 12–16, and the
resistance is even greater when multiple embryos are
present (Nancarrow et al. 1982). Injection of PGF2a into
an ovarian artery or follicles of early pregnant sheep
causes luteolysis in 28% or 17% of animals compared
with 78% or 83% in nonpregnant sheep respectively
(Inskeep et al. 1975, Pratt et al. 1977). Exogenous
estradiol at doses causing premature luteolysis in cyclic
sheep is less effective in pregnant sheep (Kittok & Britt
1977). Infusions of IFNT directly into the uterine vein
maintained a functional CL in 80% of sheep for up to
32 days through yet unidentified mechanisms (Oliveira
et al. 2008, Bott et al. 2010). Intraovarian administration
of PGE2 dose dependently counteracts the luteolytic
actions of PGF2a (Henderson et al. 1977). Intrauterine or
intraovarian infusions of PGE2 in nonpregnant ewes
extend the inter-estrus interval and reduce luteal
sensitivity to both endogenously secreted and exogen-
ously administered PGF2a (Henderson et al. 1977, Pratt
et al. 1977, 1979, Magness et al. 1981, Reynolds et al.
1981, Weems et al. 2006). Our resent study (Lee et al.
2012) shows that during establishment of pregnancy, a
large proportion of PGE2 is transported from the uterus
to the ovary through the UOP. Luteal PG biosynthesis
is selectively directed towards PGF2a at the time of
luteolysis; by contrast, towards PGE2 during establish-
ment of pregnancy.

Our current understanding is that regression of CL
occurs in two phases: i) functional luteolysis and
ii) structural luteolysis. Functional luteolysis is defined
as decrease in P4 secretion whereas structural luteolysis
is defined as loss of luteal cells and volume (McCracken
et al. 1999). It is well accepted that functional luteolysis
precedes structural luteolysis. A recent study indicates
that inhibition of luteal PG production by indomethacin
at mid cycle decreases P4 levels and induces functional
luteolysis, however; it does not decrease size and weight
of the CL or induce structural luteolysis in sheep
(Niswender et al. 2007). It suggests that existence of
distinct or separate mechanism that governs the
functional vs structural luteolysis in sheep. P4 secreted
by the CL is required for establishment of pregnancy.
Secretion of P4 depends on the survival and healthy
status of luteal cells which is precisely controlled by
interactions between cell survival and apoptosis
pathways. ERK1/2, AKT, b-Catenin and NFkB pathways
are the important intracellular pathways determine
Reproduction (2016) 151 187–202
survival of cells (Datta et al. 1997, Bonni et al. 1999,
Kumar et al. 2004, Grigoryan et al. 2008). By contrast,
interactions between pro-apoptotic and anti-apoptotic
signaling pathways and activation of caspases-3 depen-
dent or independent intrinsic apoptosis pathways
determine the death of cells (Adams & Cory 1998,
Jiang & Wang 2004). Previous studies have shown that
administration PGF2a regulates genes or protein associ-
ated with cell survival and apoptosis in cows (Davis &
Rueda 2002, Hou et al. 2008, Arvisais et al. 2010, Atli
et al. 2012), sheep (Romero et al. 2013), pigs (Diaz et al.
2013), rodents (Carambula et al. 2002, Slot et al. 2006),
and primates (Peluffo et al. 2005, Yadav et al. 2005)
during induced luteolysis in vivo and in vitro
models. Although there is a large body of information
available on induced luteolysis in various species,
temporal regulations of cell survival and apoptosis
signaling protein machinery in the CL during natural
luteolysis and establishment of pregnancy in ruminants
are largely unknown. The objective of the present study
was to determine the effects of early pregnancy on
regulation of survival and apoptosis signaling protein
machinery in the CL on days 12, 14, and 16 in sheep,
using as a ruminant model.
Materials and methods

Materials

Prestained protein markers, Bio–Rad assay reagents and
standards (Bio–RAD Laboratories); protran BA83 Nitrocellulose
membrane (Whatman, Inc., Sanford, ME, USA); pierce ECL
(Pierce, Rockford, IL, USA); protease inhibitor (Roche Applied
Biosciences); Vectastain Elite ABC kit (Vector Laboratories,
Inc., Burlingame, CA, USA); Progesterone RIA kits (Diagnostic
Systems Laboratories, Webster, TX, USA); Blue X-ray film
(Phoenix Research Products, Hayward, CA, USA) were
purchased. Details of antibodies used in this study are given
in Table 1. The other chemicals used were molecular biological
grade from Fisher (Pittsburgh, PA, USA) or Sigma–Aldrich.
Animal husbandry

All experiments were in accordance with the Guide for Care
and Use of Agricultural Animals and approved by Texas A&M
University’s Laboratory Animal Care and Use Committee.
Mature crossbred Suffolk ewes (Ovis aries) were observed
daily for estrus in the presence of vasectomized rams. Ewes that
had exhibited at least two estrous cycles of normal duration
(17–18 days) were used in this study. At estrus (day 0), the ewes
were bred to either an intact or a vasectomized ram. The ewes
(nZ4 per day) were necropsied on days 12, 14, or 16 of the
estrous cycle or pregnancy as described previously (Banu et al.
2008a, Simmons et al. 2010). The uterus was flushed with
20 ml physiological saline and pregnancy was confirmed on
each day by the presence of a normal conceptus in the uterine
lumen flushing as described previously (Simmons et al. 2010).
The ovaries were collected and the CL isolated. Longitudinal
www.reproduction-online.org
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cross sections were cut in the middle of each CL and fixed
in fresh 4% buffered paraformaldehyde, and processed
for immunohistochemistry using standard procedures.
The remaining CL tissue was cut into small pieces, snap-frozen
in liquid nitrogen, and stored at K80 8C for further analysis.
Protein extraction

Total protein was isolated from CL tissues as we described
previously (Arosh et al. 2003, Banu et al. 2008b). Briefly,
tissues were homogenized in TED buffer (50 mM Tris, pH 8.0,
10 mM EDTA, 1 mM diethyldithiocarbamic acid-DEDTC, and
0.1% Tween-20) and centrifuged at 30 000 g for 1 h at 4 8C.
The homogenized tissue pellets were sonicated in TED
sonication buffer (20 mM Tris, pH 8.0, 0.5 mM EDTA, 0.1
mM DEDTC, 1 mM phenylmethylsulfonyl fluoride, and
protease inhibitor cocktail tablets, complete EDTA-free
1 tablet/50 ml and PhosStop 1 tablet/10 ml, and 1.0%
Tween-20) using a Microson ultrasonic cell disruptor
(Microsonix Incorporated, Farmingdale, NY, USA) and
centrifuged at 15 000 g for 15 min at 4 8C and the supernatants
(total protein) were stored at K80 8C until analyzed. Total
protein concentrations were determined using the Bradford
method (Bradford 1976) and a Bio–Rad Protein Assay kit.
Western blot

Total protein samples (75 mg) were resolved using 7.5%, 10%,
or 12.5% SDS–PAGE and western blot was performed as we
described previously (Arosh et al. 2003, Banu et al. 2008b). The
blots were incubated with primary antibody for overnight at
4 8C (Table 1). Then, the blots were washed and incubated with
goat anti-rabbit or anti-mouse IgG conjugated with HRP
secondary antibody for 1 h at room temperature. Chemi-
luminescent substrate was applied according to the manufac-
turer’s instructions (Pierce Biotechnology). The blots were
exposed to Blue X-Ray film and densitometry of autoradio-
grams was performed using an Alpha Imager (Alpha Innotech
Corporation, San Leandro, CA, USA).
Immunohistochemistry

Paraffin sections (5 mm) were used for immunohistochemical
localization of the proteins using a Vectastain Elite ABC kit
(Vector Laboratories, Inc.) according to the manufacturer’s
protocols, and as we described previously (Arosh et al. 2003,
Banu et al. 2009, 2010a). Endogenous peroxidase activity was
removed by fixing sections in 0.3% hydrogen peroxide in
methanol. Tissue sections were blocked in 10% goat serum for
1 h at room temperature, and then incubated with primary
antibody for overnight at 4 8C (Table 1). The tissue sections
were further incubated with the secondary antibody (goat anti-
rabbit IgG biotinilated) for 45 min at room temperature. For the
negative control, serum or IgG from respective species with
reference to the primary antibody at the respective dilution
was used.

Digital images were captured using a Zeiss Axioplan 2
Research Microscope (Carl Zeiss, Thornwood, NY, USA) with
an Axiocam HR digital color camera. The intensity of staining
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for each protein was quantified using Image-Pro Plus 6.3 image
processing and analysis software according to the manufac-
turer’s instructions (Media Cybernetics, Inc., Bethesda, MD,
USA). The detailed methods for quantification are given in the
instruction guide: ‘The Image-Pro Plus (Media Cybernetics,
Inc.): the proven solution for image analysis’. In brief: a
minimum of three images of at !400 magnification were
captured randomly without hot-spot bias in each tissue section
per animal. Integrated optical intensity (IOD) of immunostain-
ing was quantified under RGB mode as we published recently
(Lee et al. 2012). Numerical data were expressed as least
square meanGS.E.M. This technique is more quantitative than
conventional blind scoring systems and the validity of the
quantification was reported previously by our group (Arosh
et al. 2003, Banu et al. 2010b, Lee et al. 2012).
Progesterone assay

Jugular venous blood samples were collected in tubes treated
with EDTA 10.8 mg at the time of necropsy and plasma was
separated immediately. Concentrations of progesterone in
plasma were determined using DSL-3900 ACTIVE Pro-
gesterone Coated-Tube RIA kit according to the manufacturer’s
instructions (Diagnostic Systems Laboratories). The RIA used
rabbit anti-progesterone immunoglobulin-coated tubes and
iodinated progesterone. The primary antiserum cross-reacts
6.0, 2.5, 1.2, 0.8, 0.48, and 0.1% with 5a-pregnane-3,20-
dione, 11-deoxycorticosterone, 17a-hydroxyprogesterone,
5b-pregnane-3,20-dione, 11-deoxycortisol, and 20b-dihydro-
progesterone respectively. The progesterone standard curve
(0–10.57 ng/ml) was provided in the assay kit. The sensitivity
or minimum detection limit of this assay is w0.12 ng/ml.
The intra-assay variation was 8.8%.
Statistical analyses

Statistical analyses were performed using general linear models
of Statistical Analysis System (SAS, Cary, NC, USA). Data were
checked for normality or homogeneity of variance before
analyzing the data statistically. Day (12, 14, or 16) and status
(estrous cycle vs pregnancy) interactions on expression of
various proteins were tested using repeated measures for
multivariate analysis of variance. Comparison of means was
tested by Wilks’ Lambda or Orthogonal contrast tests. Effects of
day 16 of the estrous cycle or pregnancy on cell-specific
expression of various proteins in luteal cells were analyzed
using one-way ANOVA. Comparison of means was performed
by Tukey HSD test. Numerical data are presented as least
squares means with standard errors. Statistical significance was
considered as P!0.05. The statistical model accounted for
sources of variation including treatments, replicates, and ewes
as appropriate.
Results

Functional and structural luteolysis

We determined the concentration of P4 in plasma and
luteal tissue weight/volume (Fig. 1). The plasma
www.reproduction-online.org
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concentration of P4 was w4.1 ng/ml on day 12 and
decreased (P!0.05) to w1.1 ng/ml on day 16 of the
estrous cycle (CY) whereas the P4 concentration was
maintained (P!0.05) at 4.3–4.9 ng/ml between days 12
and 16 of pregnancy (PX). The mean weight of the CL
decreased from day 14 (w600–625 mg) to 16 of the CY
(w200–225 mg). In contrast, it was maintained at
600–700 mg (P!0.05) on days 12, 14, and 16 of PX.
These results together indicted that the CL entered into
functional as well as structural luteolytic processes on
day 16 of the CY; by contrast, the CL was rescued from
both functional and structural luteolysis at the time of
establishment of pregnancy.
Regulation of cell survival signaling protein machinery
in the CL at luteolysis and establishment of pregnancy

We determined temporal regulation of important cell
survival signaling proteins in the CL on days 12, 14, and
16 of the CY and PX (Fig. 2).

Expression of p-EGFR protein was unchanged on days
12–16 of the CY and PX. Expression of p-ERK1/2 protein
was decreased (P!0.05) on days 14–16 compared
with day 12 of the CY. In contrast, it was abundantly
expressed without significant modulation on days 12–16
of PX. CY–PX interaction indicated that expression of
p-ERK1/2 protein was sustained (P!0.05) on days 14–16
of PX compared with that of the CY.

Expression of p-AKT473 protein was decreased
(P!0.05) on day 16 compared with days 12–14 of the
CY. In contrast, it was abundantly expressed without
significant modulation on days 12–16 of PX. CY–PX
interaction indicated that expression of p-AKT473
www.reproduction-online.org
protein was sustained (P!0.05) on day 16 of PX
compared with that of the CY.

b-catenin protein was constantly expressed at low
level on days 12–16 of the CY. In contrast, it was
constantly expressed at high level on days 12–16 in PX.
CY–PX interaction indicated that expression of b-catenin
protein was increased (P!0.05) on days 12–16 of PX
compared with that of the CY.

p-GSK3b protein was expressed at very low levels on
days 12–16 of the CY. In contrast, it was abundantly
expressed on days 12–14 of PX. Notably, its expression
was decreased (P!0.05) on day 16 compared with days
12–14 of PX. CY–PX interaction indicated that expression
p-GSK3b protein was increased (P!0.05) on days 12–16
of PX compared with that of the CY.

Expression of NFkB-p50 protein was very low on days
12–16 of the CY. In contrast, it was abundantly expressed
on days 12–14 of PX. Notably, its expression was
decreased (P!0.05) on day 16 compared with days
12–14 of PX. CY–PX interaction indicated that expression
NFkB-p50 protein was increased (P!0.05) on days
12–16 of PX compared with that of the CY.

Expression of NFkB-p52 protein was temporally
decreased (P!0.05) on days 14–16 compared with
day 12 of the CY. In contrast, it was abundantly
expressed without significant modulation on days
12–16 of PX. CY–PX interaction indicated that expression
of NFkB-p52 protein was sustained (P!0.05) on days
14–16 of PX compared with that of the CY.

Expression of NFkB-p65 protein was decreased
(P!0.05) on days 14–16 compared with day 12 of the
CY. In contrast, it was abundantly expressed without
significant modulation on days 12–16 of PX. CY–PX
interaction indicated that expression of NFkB-p65
protein was increased (P!0.05) on days 14–16 of PX
compared with that of the CY.

Expression of Ras protein was decreased (P!0.05) on
day 16 compared with days 12–14 of the CY. In contrast,
it was abundantly expressed without modulation on days
12–16 of PX. CY–PX interaction indicated that expression
of Ras protein was sustained (P!0.05) on days 16 of the
PX compared with that of the CY.

Expression of p-cRaf protein was decreased (P!0.05)
temporally on days 14–16 compared with day 12 of the
CY. In contrast, it was abundantly expressed without
significant modulation on days 12–16 of PX. CY–PX
interaction indicated that expression of p-cRaf protein
was increased (P!0.05) on days 14–16 of PX compared
with that of the CY.

Expression of p-Src416 protein was temporally
decreased (P!0.05) on days 14–16 compared with day
12 of the CY. In contrast, it was highly expressed without
modulation on days 12–16 of PX. CY–PX interaction
indicated that expression of p-Src416 protein was
increased (P!0.05) on days 14–16 of PX compared
with that of the CY.
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Expression of b-arrestin protein was temporally
decreased (P!0.05) on days 14–16 compared with day
12 of the CY. b-arrestin protein was abundantly
expressed without significant modulation on days
12–16 of PX. CY–PX interaction indicated that expression
of b-arrestin protein was sustained (P!0.05) on days
14–16 of PX compared with that of the CY.

Spatial expressions of p-ERK1/2, p-AKT473, b-catenin,
NFkB-p50, NFkB-p52, and NFkB-p65, and p-Src416
proteins in LLC and SLC were increased (P!0.05) on day
16 of PX compared with that of CY (Fig. 3).
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Regulation of intrinsic apoptotic pathway proteins in
the CL at luteolysis and establishment of pregnancy

We determined temporal regulation of important
intrinsic apoptotic pathway proteins in the CL on days
12, 14, and 16 of the CY and PX (Fig. 4).

Bcl-XL protein was expressed at very low level on days
12–16 of the CY. In contrast, it was abundantly expressed
without significant modulation on days 12–16 of PX.
CY–PX interaction indicated that Bcl-XL protein was
increased (P!0.05) on days 12–16 of PX compared with
that of the CY.
www.reproduction-online.org
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Bcl-2 protein wasexpressed at avery low level on day 12
and further decreased (P!0.05) on days 14–16 of the CY.
In contrast, itwasabundantlyexpressedwithout significant
modulation on days 12–16 of PX. CY–PX interaction
www.reproduction-online.org
indicated that Bcl-2 protein was increased (P!0.05) on
days 12–16 of PX compared with that of the CY.

Expression of Bad protein was not significantly
modulated on days 12–16 of the CY. Bad protein was
Reproduction (2016) 151 187–202
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expressed on day 12 and its expression was decreased
(P!0.05) on days 14–16 of PX. CY–PX interaction
indicated that Bad protein was decreased (P!0.05) on
days 14–16 of PX compared with that of the CY.

Bax protein was minimally expressed at constant
level on days 12–16 of the CY; while, it was expressed at
very low level or not detectable on days 12–16 of PX.
CY–PX interaction indicated that Bax protein was
(P!0.05) decreased on days 12–16 of PX compared
with that of the CY.

Caspase-3 protein was detected at 35, 19, and 17 kDa.
The cleaved protein detected at 17 kDa was an active
form. Caspase-3 protein was cleaved at 17 kDa
(P!0.05) on day 16 compared with that of days 12–14
of the CY. In contrast, caspase-3 protein was not cleaved
at 17 kDa on days 12–16 of PX. CY–PX interaction
indicated that caspase-3 protein was not cleaved at
17 kDa (P!0.05) on day 16 of PX compared with that
of the CY.

Expression of X-linked inhibitor of apoptosis protein
(XIAP) protein was temporally decreased (P!0.05) from
days 12–16 and suppressed on day 16 of the CY. In
contrast, it was (P!0.05) expressed at steady state levels
on days 12–16 of PX. CY–PX interaction indicated that
XIAP protein was highly expressed on days 14–16 of PX
compared with that of the CY.

Expression of apoptosis inducing factor (AIF) protein
was increased (P!0.05) on day 16 compared with
12–14 of the CY. In contrast, it was not regulated on days
14–16 of PX. CY–PX interaction indicated that AIF
protein was decreased on day 16 of PX compared with
that of the CY. Expression of survivin protein was not
modulated in the CL on days 12–16 of the CY or PX.

Spatial expression of Bcl2, Bcl-XL, and XIAP proteins
were increased (P!0.05) and expression of cl-capspe-3
and AIF proteins were decreased (P!0.05) in LLC
and SLC on day 16 of PX compared with that of the
CY (Fig. 5).
Regulation of important transcriptional factor proteins
in the CL at luteolysis and establishment of pregnancy

We determined temporal regulation of important
transcription factor proteins involved in cell survival
and apoptosis pathways in the CL on days 12, 14, and 16
of the CY and PX (Fig. 6).

c-Fos protein was (P!0.05) expressed on days 14–16
compared with day 12 of the CY. Expression of c-Fos
protein was decreased (P!0.05) on days 14–16
compared with day 12 of PX. CY–PX interaction
indicated that expression of c-Fos protein was decreased
on days 14–16 of PX compared with that of the CY.

Expression of c-Jun protein was temporally increased
(P!0.05) on days 12–16 and highly expressed on day 16
of the CY. c-Jun protein was constantly expressed on day
12–16 of PX. CY–PX interaction indicated that expression
www.reproduction-online.org
of c-Jun protein was decreased on days 14–16 of PX
compared with that of the CY.

Expression of EGR-1 protein was increased (P!0.05)
on day 16 compared with that of 12–14 of the CY; while,
it was barely detectable on days 12–16 of PX. CY–PX
interaction indicated that EGR-1 protein was highly
expressed on day 16 of PX compared with that of the CY.

Expression of p-CREB protein was temporally
decreased (P!0.05) from days 12–16 and highly
suppressed on day 16 of the CY. By contrast, p-CREB
protein was temporally increased (P!0.05) from days
12–16 and highly induced on day 16 of PX. CY–PX
interaction indicated that p-CREB protein was
highly expressed on day 14–16 of PX compared with
that of the CY.

Spatial expression of c-Jun and EGR-1 proteins were
decreased (P!0.05) and expression of p-CREB protein
was increased (P!0.05) in LLC and SLC on day 16 of PX
compared with that of the CY (Fig. 7).
Discussion

The CL is a transient endocrine gland. Functional and
structural demise of the CL allows a new estrous cycle.
On the other hand, maintenance of the CL and its
secretion of P4 are required for establishment of
pregnancy. Secretion of P4 depends on the survival of
luteal cells which is precisely controlled by interactions
between cell survival and apoptosis pathways
(McCracken et al. 1999).

In the mammalian cells, ERK1/2, AKT, NFkB, and
b-catenin signaling are well characterized as prosurvival
pathways. It is well known that activation of EGFR in turn
triggers Ras-Raf-ERK1/2 and PI3K-AKT signaling
modules (Zandi et al. 2007). Heterodimer complex of
p50/p65 or p52/p65 is the most common active form
of NFkB signaling in the majority of cells. In the absence
of NFkB stimuli, p50, p52, and p65 proteins are
sequestered in the cytoplasm with their inhibitory
protein IkBa and form p50/p65/IkB or p52/p65/IkB
inactive protein complex. In response to cytokines
TNFa, IL1-b or other stimuli, IkBa protein is phosphory-
lated and targeted for protein degradation. It allows
formation of active p50/p65 or p52/p65 heterodimer and
translocation of these protein complexes into the
nucleus (Kumar et al. 2004). b-catenin protein is the
active component of Wnt signaling. In the absence of
Wnt or other Wnt-related signaling, b-catenin protein is
sequestered in the cytosol by scaffold protein complex
consists of glycogen synthase kinase 3b (GSK3b, axin,
and adenomatosis polyposis coli, and targeted for
protein degradation). In response to stimuli, b-catenin
is released from this destruction complex and trans-
locates into nucleus (Grigoryan et al. 2008). Importantly,
recent studies indicate that GPCR signaling intracellu-
larly transactivates: i) EGFR through a c-Src/b-arrestin 1
complex which in turn activates ERK1/2 and PI3K-AKT
Reproduction (2016) 151 187–202
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pathways (Pai et al. 2002, Regan 2003, Jabbour & Sales
2004, Cha & DuBois 2007); ii) b-catenin signaling
pathways through axin protein and/or AKT-mediated
phosphorylation/inactivation of GSK3b protein
www.reproduction-online.org
(Castellone et al. 2005, Buchanan et al. 2006); and
NFkB pathways (Cha & DuBois 2007) through phos-
phorylation of IkBa protein. In the present study, we
determined the regulation of proteins associated with
these important intracellular survival pathways in the CL
at the time of natural luteolysis and establishment of
pregnancy in sheep.

Results indicate that ERK1/2, AKT, b-catenin, NFkB,
Src, b-arrestin, and GSK3 b signaling proteins are
temporally suppressed in the CL from days 14–16 of
the estrous cycle. It is important to note that ERK1/2,
b-catenin, NFkB, Src, and b-arrestin signaling pathways
are suppressed on day 14 whereas AKT pathway is
suppressed on day 16 of the estrous cycle. By contrast at
time of establishment of pregnancy, expression/activa-
tion of ERK1/2, AKT, b-catenin, NFkB, Src, b-arrestin,
and GSK3b proteins are sustained or increased on days
14–16 to maintain the function and structure of the CL.
Immunohistochemistry data demonstrate that most of
these proteomic changes are obvious in both LLC and
SLC on day 16 of the estrous cycle or pregnancy. These
results together indicate that programmed suppression of
ERK1/2, AKT, b-catenin, NFkB pathways in LLC and SLC
is required for natural luteolysis. In contrast, pro-
grammed activation of these pathways is required to
maintain the survival of the CL during establishment of
pregnancy in sheep. One of the interesting findings is
that NFkB-p50, NFkB-p52, and NFkB-p65 proteins are
highly expressed on days 12–16 of PX compared with
that of the CY. It is well known that NFkB is an important
downstream mediator of inflammatory cytokines such as
TNFa, IL-1b, and IL-6, and these cytokines play essential
roles in induced luteolysis (Davis & Rueda 2002). On the
other hand, roles for these proinflammatory cytokines
are well established in survival of tumor cells (Kumar
et al. 2004). Dual role for NFkB signaling in luteolysis as
well as luteal maintenance in ruminants warrants further
studies.

The interactions between antiapoptotic proteins (Bcl-2
and Bcl-XL) and proapoptotic proteins (Bad and Bax)
determine the survival or apoptosis of cells (Adams &
Cory 1998). ERK1/2, AKT, b-catenin, and NFkB
pathways interact with proapoptotic and antiapoptotic
proteins (Datta et al. 1997, Bonni et al. 1999, Kumar
et al. 2004, Grigoryan et al. 2008). In the absence of
apoptotic stimuli, Bax and Bad proteins are phosphory-
lated at serine 112 and 136 by ERK1/2 and AKT
pathways and sequestered in the cytosol with 14-3-3
proteins (Zha et al. 1996). In response to apoptotic
stimuli, Bad and Bax proteins dissociate from 14-3-3
proteins, translocate from the cytosol to the mito-
chondria, dimerize with Bcl-XL and/or Bcl-2 proteins,
and thereby facilitate the release of cytochrome C from
the mitochondria to the cytosol (Zha et al. 1996, Adams
& Cory 1998, Jiang & Wang 2004). Activation of
caspase-3 is the important terminal event which
executes apoptosis of cells (Jiang & Wang 2004).
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Activation of caspase-3 is regulated by multiple
mechanisms which include cytochrome C, survivin,
and XIAP pathways (Berthelet & Dubrez 2013). In
addition, apoptosis can be induced by AIF (Hangen
et al. 2010) independent of caspase-3 pathway. In the
present study, we determined the regulation of proteins
involved in caspase-3 dependent as well as independent
apoptotic pathways in the CL during natural luteolysis
and establishment of pregnancy in sheep.

Results indicate that expressions of antiapoptotic
proteins Bcl-XL and Bcl-2 are increased; while,
expressions of proapoptotic proteins Bad and Bax are
decreased on days 14–16 pregnancy compared with that
of the estrous cycle. These results suggest that expression
of proapoptotic proteins need to be suppressed; whereas,
expression of antiapoptotic proteins need to be sustained
to rescue the CL from luteolysis at the time of establish-
ment of pregnancy. Caspase-3 protein is cleaved or
activated on day 16 of the estrous cycle; in contrast, its
activation is inhibited on day 16 of pregnancy. It suggests
an important role for caspase-3 in natural luteolysis in
sheep. Expression of XIAP protein is decreased on day 16
of the estrous cycle; whereas, its expression is sustained
on day 16 of pregnancy. It suggests that decreased
expression of XIAP protein may reverse its inhibitory
effect and activates caspase-3 protein independent of
cytochrome C pathway in luteal cells during natural
Reproduction (2016) 151 187–202
luteolysis in sheep. Expression of AIF protein is
temporally increased on days 14–16 of the estrous
cycle; while, its expression is temporally decreased on
days 14–16 of pregnancy. It suggests that AIF may induce
apoptosis of luteal cells independent of caspase-3 during
natural luteolysis in sheep. Immunohistochemistry data
demonstrate that most of these proteomic changes are
evident in both LLC and SLC on day 16 of the estrous
cycle or pregnancy. Previous studies clearly indicate
a role for caspase-3 in luteal cell apoptosis in various
species (Carambula et al. 2002, Davis & Rueda 2002,
Peluffo et al. 2005, Yadav et al. 2005, Slot et al. 2006).
Together, present results along with previous findings
suggest that activation of caspase-3 dependent as well as
independent apoptosis pathways are required for natural
luteolysis; whereas, these pathways need to be inhibited
or suppressed to maintain the survival of the CL during
establishment of pregnancy in sheep.

Studies using various animal models have shown that
transcription factors c-Jun (Diaz et al. 2013), EGR-1 (Hou
et al. 2008) and CREB (Zeleznik & Somers 1999,
Niswender 2002, Xu et al. 2005) play roles in luteal
functions. Studies using various cell lines have shown
that EGR-1 can induce growth proliferation, mutagen-
esis, proapoptosis or tissue remodeling depends on the
cell context (Liu et al. 1998). AP-1 family transcription
factors (c-fos, c-Jun) regulate a wide range of
www.reproduction-online.org
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pathophysiological responses such as cell death, inflam-
mation, and proliferation (Shaulian & Karin 2002). The
Jun family proteins homodimerize with other Jun
proteins or heterodimerize with Fos proteins and form
active transcription complexes (Shaulian & Karin 2002).
The classical adenylyl cyclase/cAMP/PKA is the primary
hormonal signaling module control synthesis of P4 by the
CL (Zeleznik & Somers 1999, Niswender 2002, Xu et al.
2005). CREB is one of the final transcription factors
mediates cAMP-mediated signaling cascades in variety
of cell types (Zeleznik & Somers 1999, Niswender 2002,
Xu et al. 2005). In the present study, given the strategic
www.reproduction-online.org
roles for AP-1, EGR-1, and CREB transcription factors in
the CL function, we determined their regulation in the CL
at the time of natural luteolysis and establishment of
pregnancy in sheep.

Results indicate that expressions of c-Fos, c-Jun, and
EGR-1 proteins are increased during luteolysis; in
contrast, expressions of these proteins are suppressed
during of establishment of pregnancy. Interestingly,
p-CREB protein is decreased during luteolysis; in
contrast, its expression is increased during establishment
of pregnancy. Immunohistochemistry data demonstrate
that most of these proteomic changes are evident in both
Reproduction (2016) 151 187–202
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LLC and SLC on day 16 of the estrous cycle or pregnancy.
EGR-1 and c-Fos have been shown as important key
players of luteolytic acquisition in pig and cows (Chen
et al. 2001, Hou et al. 2008, Atli et al. 2012, Diaz et al.
2013). PGF2a–FP interaction increases intracellular
Ca2C which activates multiple cell signaling pathways
and mediates the acquisition of luteolytic sensitivity to
PGF2a in the bovine luteal cells (Goravanahally et al.
2009, Wright et al. 2014). Interactions among PGF2a,
Ca2C, PKC, ERK1/2, c-Fos, and c-JUN have been shown
in luteal cells in cows (Chen et al. 2001, Yadav et al.
2005). Our present results along with previous findings
together indicate c-Fos, c-Jun, EGR-1, and CREB are
important transcription factors which determine the
apoptosis of luteal cells during natural luteolysis or
survival of luteal cells during establishment of preg-
nancy. At present, down-stream signaling of these
transcription factors is poorly understood.

The new findings of the present study is that c-Fos,
c-Jun, EGR-1, CREB, caspase-3, and XIAP proteins are
differentially expressed in luteal cells during natural
luteolysis and establishment of pregnancy in sheep.
These proteins work together as key players of acqui-
sition of luteal cell apoptosis during natural luteolysis or
acquisition of luteal cell survival during establishment
of pregnancy in sheep. The other important finding is
that b-catenin, NFkB-p65, Bcl-2, and BCl-XL proteins
are highly expressed on days 12–14 of PX compared with
that of CY. These results suggest that these early
proteomic changes might drive the survival pathways
and protect the CL from luteolysis during establishment
of pregnancy. It is possible that IFNT produced by the
conceptus or PGE2 produced by the conceptus and/or
endometrium may activate these signaling pathways
in the luteal cells as early on day 12 of pregnancy.
Unraveling upstream and downstream signaling
pathways associated with regulation of these proteins is
expected to provide additional new molecular infor-
mation on luteal function in sheep or other ruminants.

In conclusion, results of the present study together
(Fig. 8) indicate that: i) during natural luteolysis,
apoptosis of luteal cells may be orchestrated by
suppression of multiple intracellular cell survival
pathways ERK1/2, AKT, b-catenin, NFkB, and activation
of intrinsic apoptosis pathways through dependent and
independent mechanisms of caspase-3; ii) during
establishment of pregnancy, survival of luteal cells may
be precisely controlled by sustained ERK1/2, AKT,
b-catenin, NFkB pathways and suppressed intrinsic
apoptotic pathways; and iii) regression of the CL during
natural luteolysis vs maintenance of CL during establish-
ment of pregnancy is governed by multiple intraluteal
cell signaling mechanisms in sheep. Functional studies
are required to identify the factors or mediators
transported from the gravid uterus to the CL to initiate
these intraluteal signaling at the time of establishment of
pregnancy in sheep/ruminants.
Reproduction (2016) 151 187–202
Summary

In sheep, multiple luteal cell survival pathways are
suppressed and intrinsic apoptosis pathways are induced
during natural luteolysis; whereas, these luteal cell
survival pathways are sustained or increased and
intrinsic apoptosis pathways are suppressed during the
establishment of pregnancy.
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