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1. Abstract 
Measuring the surface displacements of specimens having multiple, growing cracks is difficult with most 
implementations of the digital image correlation (DIC) method. This difficulty arises from the need to exclude the 
cracked area from the analysis, a process that oftentimes requires significant and time-consuming user input to 
achieve successful results. This work presents a set of modifications to the Newton-Raphson based DIC process 
that allows the method to automatically analyze specimens with multiple growing cracks. The modifications 
combine a relatively simple crack identification process that takes advantage of the consistency of quasi-regular 
speckle patterns with a method to reestablish the analysis in areas segregated by the crack growth. The use of a 
regular dot pattern does, however, introduce a greater chance for registration error in the correlation process. A 
method to minimize possible registration problems is also presented. Finally, the effectiveness of the method is 
demonstrated using images of concrete specimens with a complex and growing crack pattern. 
 
2. Introduction 
Performing digital image correlation on specimens with multiple growing discontinuities has traditionally been a 
labor intensive process because the user was required to specify the location of the discontinuities on the initial 
image to ensure that the correlation process would not fail while trying to cross a discontinuity. Without an 
automated method, the tedious process of excluding the crack often produced less then ideal results as the 
correlation process would either fail as it crossed a discontinuity the user failed to exclude or require the user 
would exclude an area significantly greater than needed around the crack. In addition, to exclude a growing crack 
path, the user would have to adjust the analysis area for individual images, or groups of images, as the 
discontinuity or settle for the exclusion of the entire crack path from the entire set of images. Réthoré [1] 
addresses this problem through the use of a DIC method based on a finite element like grid that refines its spatial 
resolution in the presence of discontinuities. 
 
While it is possible for the user to make these modifications for 
a single or small number of cracks, the process becomes quit 
burdensome, or nearly impossible in the presence of a large 
number of cracks that grow in no pre-determined direction. 
Additional complications arise if the cracking produces 
segregated areas on the surface. In this case, additional 
analyses must be run with a new starting (seed) point within 
each segregated area. An example of this type of behavior is 
shown in Figure 1, an image of the cracks in a slab of 
reinforced concrete under a distributed pressure load. 
 
To perform the analysis on this type of problem without the 
need for additional user input, a method was developed to 
automatically modify the analysis to exclude the growing 
cracks. The development of the system required the addition 
of two additional capabilities to the standard image correlation 
method. First, the modified method must be able to detect the 
discontinuities on the surface of the object and second, it must 
be able to establish a new starting point for the correlation in 
areas that get segregated from the general correlation. The 
first function capitalizes on the consistency of the correlation 

Figure 1. Concrete slab with cracking
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value of quasi-regular pattern of dots on the surface. The second problem, growing discontinuities that segregate 
smaller subsections from the larger analysis, was addressed with a method to establish an initial guess for the 
smaller sub-region employing a combination of spatial initial guesses, derived from an adjoining subset, and 
temporal guesses, derived from the results of the previous image to reestablish the analysis. In addition, the use 
of a regular pattern requires the introduction of a system to significantly reduce or eliminate the possibility of 
registration errors.   
 
3. Development and implementation 
To achieve the desired goal of DIC analysis of specimens with growing crack patterns, three methods must be 
implemented; a crack identification method, a method to prevent pattern registration errors, and a method to 
reestablish the analysis in areas segregated by crack growth. The development and implementation of the 
methods is presented in the following sections. 
 
3.1. Identifying cracks 
The first difficulty in analyzing a system that has a randomly appearing and growing crack pattern is identifying the 
location of the cracks and determining when the influence of a crack is significant enough that the local area must 
be omitted from the analysis. The key to the accomplishing this task, was the use of a quasi-regular pattern of 
dots as a speckle pattern. The increased consistency in the correlation function that results when a dot pattern is 
used as the speckle pattern presents a significant advantage in the identification of cracks in the image. 
 
While one benefit of the image correlation method is its ability to use non-structured, random patterns on the 
surface of the object [2-4], there is no reason the same correlation process cannot be applied to a regular pattern 
on the surface. One reason random patterns are often preferred is that it is easier to produce a random pattern, 
through various painting techniques, on the surface of small specimens then to produce a regular pattern. 
However, as the observed surface increases in size it becomes increasingly difficult to produce a good natural 
random pattern but significantly easier to produce a quasi-regular pattern of dots on the surface. It is important to 
note that the dot pattern is used in the same manner as the random pattern in typical DIC analysis. Even though 
the pattern is composed of dots, the analysis uses square subsets from the initial image, irrespective of dot 
placement, for the analysis. Because of this, the size and relative position of the dots need not be highly 
controlled and hence the references to a quasi-regular pattern. While the early impetus for using the dot patterns 
was the ease of application, it was observed that the nature of the pattern also resulted in a more uniform 
correlation coefficient, particularly in two-dimensional analysis. As an example consider the two patterns shown in 
Figure 2. Both the random pattern and the quasi-regular 
pattern were subjected to a displacement in the x and y 
direction of approximately 8 pixels. The patterns were then 
analyzed with a DIC program that utilizes a cross-
correlation error function. The error function provides a 
measure of the quality of the pattern matching, returning a 
value between 0 and 1. While both patterns produce 
accurate displacement values, the correlation function of 
the regular pattern is more consistent. The average, 
standard deviations, max and min values of the correlation 
function for the two patterns are shown in Table 1. As seen 
from the table, the correlation values for the dot pattern 
have less scatter, allowing variations in the correlation 
function due to growing cracks to be easily identified. 
 

Pattern Type Average Standard 
Deviation 

Minimum Maximum 

Dot 1.94 x 10-4 1.89 x 10-5 1.53 x 10-4 2.59 x 10-4 
Speckle 7.26 x 10-4 9.67 x 10-5 4.75 x 10-5 9.94 x 10-4 

Table 1: Correlation function values from dot and random speckle patterns 
 
The foundation of image correlation is the mapping a subset from an initial image to a location in a later, loaded 
image through pattern matching. This is accomplished by spatially mapping the subset between images and 
comparing the gray levels of the original points in the subset to the gray levels at their mapped locations[5,6]. 
While this mapping may include rigid body motion, strains and/or perspective distortions, the subset is mapped as 

Figure 2. Regular and random speckle patterns 



a continuous surface. Because the surface pattern of a subset containing a crack deforms in a non-continuous 
manner, the changes in the pattern cannot be accurately modeled by the spatial mapping portion of the image 
correlation process, resulting in significantly higher correlation coefficients. This effect, combined with the greater 
uniformity of the correlation values from regular dot patterns, provides a method of detecting the presence of 
discontinuities in the subset. Unfortunately, the use of a regular dot pattern also increases the possibility of 
registration errors during the correlation process, a possibility that is heightened near discontinuities. A method of 
minimizing this effect is presented in the next section. 
 
After adopting the use of quasi-regular dot patterns, the problem of crack identification becomes the solution of 
two problems; a) establishing suitable cutoff values for the correlation and b) dynamically altering the values to 
account for global changes in the pattern and the surrounding conditions. Two cutoff values for the correlation 
function are established, a warning factor and a failure factor. The two cutoff values are determined from a 
combination of user-set values for the warning and failure factor and the characteristics of the pattern as 
determined from the analysis of the first two images. The process assumes that the specimen will not exhibit any 
crack growth in the first two images and the user has seleced a valid analysis area for correlation. After the first 
analysis is completed the average and standard deviation of the correlation function is calculated. The warning 
and failure cutoff factors are then calculated. The warning factor is calculated from the average and standard 
deviation of the correlation function and a user supplied factor fw, as shown in Equation 1. The failure factor is 
calculated from the average and maximum correlation value and a user supplied factor ff, as shown in Equation 2. 
These base factors remain the same for the entire analysis. The cutoff values for a particular image are 
determined by multiplying the base warning and failure factors by the average correlation value from the previous 
image. The average correlation value for an image is calculated using all the correlation values below the warning 
threshold. In this way changes that effect the pattern as a whole, such as lighting changes, are incorporated into 
the cutoff factors for the next image. When applied to the three-dimensional DIC method used for this work [6], it 
was also observed that the presence of cracks was more consistently detected when comparing two images from 
the same camera, due to the lack of perspective distortions. For this reason the three-dimensional analysis was 
split into two passes, a first pass that correlates between the initial and deformed images from the same camera 
and a second pass that correlates the two deformed images to measure the three-dimensional displacements. 
During the analysis, data from subsets with correlation values above the failure cutoff value are discarded and 
data from subsets with values above the warning threshold are retained, but the results of these subsets are not 
used to develop initial guesses for adjacent subsets. While the resulting crack identification method is relatively 
simple, the use of regular patterns and dynamic calculation of cutoff values proved to be an effective method to 
locate cracks in the analysis. 
 

3.2. Reducing registration errors 
As stated earlier, one downside to using a regular pattern of dots as the speckle pattern for DIC is the possibility 
of registration errors. The presence of cracks or discontinuities in the specimen greatly aggravates the problem. 
DIC is fundamentally based on the matching of a pattern from the first image or set of images to corresponding 
locations in later images or sets of images. This is typically achieved by minimizing an error function based on the 
comparison of gray levels from the initial image and the projected locations in the subsequent image. The error 
function is minimized using a non-linear optimization method to determine the parameters that best describe the 
mapping from one image to another. The optimization method typically employed in DIC is the Newton Raphson 
method or one of its variants[5, 6]. These methods attempt to optimize the system by driving the first partials  of 
the correlation error function to zero by solving Equation 3 to obtain correction factors (δ) for each of the 
parameters from the gradient ( onCoorFuncti∇ ) and Hessian of the correlation error function (H CoorFunction)  
for each iteration. 

 
The correction factors are applied to the parameters and the process continues in an iterative fashion until a 
minimum error value is achieved. The difficulty in using a regular pattern arises when the process over-corrects 
and dictates a significant shift in the location of the interrogated area. To overcome this problem many DIC 
formulations, including the one used in this work, employ the Levenberg-Marquardt variation of the Newton-
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Raphson method (also called the 
Marquardt method)[7]. A schematic of 
the Marquart method is shown in Figure 
3. This optimization method allows the 
optimization to smoothly transition from 
a Newton-Raphson type method to a 
steepest decent method. The shift is 
accomplished by varying the diagonal 
factor D. If D is close to zero, the 
process is nearly a strict Newton-
Raphson method. As D increases the 
weight of the diagonal elements 
increase and the optimization smoothly 
transforms to a steepest descent 
method with steps that get smaller as D 
increases. The diagonal factor is 
changed based on the results of the 
previous iteration. If previous iteration 
produces a result with a decreased error 
function the diagonal factor is reduced 
by a factor of 10, the corrections are 
applied to the mapping parameters and 
the Hessian is recalculated using the 
new mapping parameters. If the error 
increased the diagonal factor is 
increased, the diagonal of the old 
Hessian is multiplied by the new 
diagonal factor the equation solved to 
produce another set of prospective 
corrections, and the new error value is 
evaluated using these corrections. This 
method works extremely well on random 
patterns, where almost any significant 
over-correction will produce an error 
higher than the current error. However, 
when using a regular pattern of dots it is 
possible that the over correction will 
move the interrogated area over by the 
period of the pattern. Not only does this 
move the solution space into the zone of 
an incorrect local minimum, but because 
the correct location may have a crack in 
the pattern, the shifted pattern may also 
produce a lower error than the value for 
the appropriate location on the image. 
This lower error would fail to trigger the 
needed increase in the diagonal factor, 
and the method would locate an 
incorrect local minimum. To correct for this possibility a check has been introduced into the process. A user 
selected factor, called the sanity factor (fs), describes the maximum allowable distance the center of the subset 
may move without misregistration. This parameter is typically set to a value somewhat less then ½ the diamter, in 
pixels, of the dots in the pattern. The value describes the maximum distance the center of the subset may move 
on the image from the subset’s starting, initial guess, position. To achieve the desired effect, the sanity factor 
must be applied at two different points in the analysis. The most obvious point to apply the sanity factor is at the 
end of the optimization. If the final location of the subset in the second image is further from the initial guess by 
more than the sanity factor the optimization is considered a failure. However, if this is the only place the sanity 
check is applied, valid subsets that experience an overcorrection during the optimization may be excluded. An 

Figure 3. Diagram of the Levenberg-Marquardt optimization method 
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overcorrection, which would typically result in an increased error function and trigger a correction by the 
Marquardt method if applied to a random pattern, may result in a lower error value and defeat the inherent self 
regulation of the Marquardt method if the overcorrection results in a false registration. It should be noted that the 
check at the end would have detected the registration error, but the valid data from the subset would be lost. To 
overcome this limitation, the sanity check is also applied to the subset after the points have been mapped to the 
second image, prior to calculating the interpolated grayscale values and error. These points in the optimization 
process are indicated by an asterisk in Figure 3. If the movement of the subset exceeds the sanity factor the 
current error value is set to a value greater than 1. Because the cross-correlation error value is restricted to 
values from 0 to 1 the optimization will reject the correction factors, increase the diagonal factor and proceed with 
the correlation. 
 
The combination of regular patterns with more consistent correlation values, the use of warning and failure cutoff 
values for crack detection and the inclusion of a sanity factor to insure proper registration, allow the analysis to 
effectively locate significant cracks on the surface without relying on prior user identification. 
 
3.3. Reestablishing the analysis in segregated areas 
One result of identifying and removing subsets that are part of a crack line is that sub-areas may be segregated 
from the analysis due to a crack line forming a boundary around an area or by clipping off a corner of the analysis. 
Automated analysis is only possible if there is a mechanism to re-establish the analysis in segregated areas. To 
reestablish the analysis a valid initial guess within the segregated area must be obtained. Two terms will be 
introduced for the purpose of this discussion. The first term, spatial initial guess, refers to an initial guess that was 
derived from information obtained from the successful correlation of an adjacent subset on the current image. The 
second term, temporal initial guess, refers to an initial guess derived from the same subset from the previous 
image set. Typically DIC analysis uses spatial guesses for all but the first seed point where temporal initial 
guesses are used. To ensure the temporal guess will be satisfactory, the seed point is chosen at an area of low 
displacement, typically near a fixed grip. The analysis then spreads out from the seed point using spatial guesses 
for all other points. This is done using some variation of a flood fill algorithm [8] that processes subsets that are 
neighbors of successful subsets until all contiguous subsets are correlated. Spatial initial guesses, being 
constrained to the physical movement of the surface, tend to be more robust than temporal initial guesses, 
particularly in areas of high strain. Provided the first temporal initial guess is successful, propagating the initial 
guesses in a spatial fashion is the most reliable. Unfortunately, when an area is segregated there is no path for 
the initial guess to propagate.  
 
The spatial flood-fill algorithm was modified to produce a new starting point for the analysis in the segregated 
region. As is typical for a flood fill algorithm, after a successful correlation, the results from one subset are used to 
generate initial guesses for any neighboring subsets that have not been analyzed. This continues in a recursive 
fashion until all contiguous points have been analyzed. To obtain a starting point for areas that may have been 
segregated the algorithm then searches for any subsets that are in the analysis area but have not been 
attempted. The program then uses a temporal initial guess to try to establish a new starting location. If the 
correlation of the previously untied subset succeeds using the temporal guess, the point is used as a new seed 
point for the flood-fill algorithm. Successful correltion results if the subset has not moved off the image, has not 
been rejected by the sanity check, and results in a correlation factor lower than the current rejection threshold for 
the image. This sequence; flood-fill, search for a valid temporal guess, flood-fill, continues until no untried subsets 
remain. In this manner, spatial initial guesses are used to propagate the analysis while temporal initial guesses 
are used to seed segregated areas. 
 
Combining the use of regular patterns, cutoff values derived from the correlation error statistics, sanity checks to 
reduce registration errors and a hybrid spatial/temporal initial guess scheme to handle areas that get segregated 
from the main analysis, correlation of specimens with randomly growing discontinuities may be analyzed. 
 
4. Experimental Application 
The techniques described in the previous sections were applied to the analysis of a slab of reinforced concrete 
subjected to a uniformly distributed pressure load. The 2.1 m x 2.1 m slabs were constrained in the out-of-plane 
direction by the steel structure around the periphery, as shown in Figure 4. When subjected to a uniform pressure 
load on the bottom surface of the slab, the slab bulges in the center and tension in the top surface causes crack 
patterns to form. Because the crack pattern in the surface of the concrete grows with the applied load is 



widespread, non-deterministic, and significant enough 
to interfere with traditional digital image correlation 
methods, this specimen is an ideal candidate for the 
techniques presented in this work. 
 
The experimental setup for the concrete testing is 
shown in Figure 5. The specimen was observed by 
two stereoscopic camera systems, a global system 
that imaged the entire surface and a local system that 
imaged one quarter of the slab to achieve greater 
spatial resolution. The results and images presented in 
this section come from the local camera system. In 
preparation for the testing, the specimen was painted 
with a quasi-regular pattern of dots. The dots were 
applied with a stamp made from a steel plate and 
covered with a pattern of small felt disks, similar to 
those used to cushion the bottom of furniture legs. The 
dots in the local image area were approximately 10 
mm in diameter which corresponded to a dot diameter 
of approximately 8 pixels in the images. The specimens 
were loaded by a pair of bladders that were located 
underneath the concrete slab and pressurized with water. As 
the specimen was loaded images were taken every 30 
seconds, resulting in a sequence of 400 images for the test. 
Figure 1 shows the crack pattern at the maximum load. 
 
4.1. Analysis results 
The following section discusses the results obtained from the 
analysis of the concrete slab images with and without the 
crack detection, sanity and spatial/temporal guess systems. 
The initial image from the concrete slab sequence is shown 
in Figure 6. The area used for the analysis is indicated by 
the dashed lines and the location of the seed point is 
indicated by the white X. For all analyses the subset size 
was 25x25 pixels. 
 
The analysis of the panel was first run with the crack 
detection, sanity factor, and spatial/temporal initial guess 
systems disabled. Therefore, no rejection limits were placed 
on either the correlation value or the displacement of the 
subset. The correlation failed shortly after crossing over one of 
the cracks and the analysis degraded to the extent that less 
than 60% of the points were even attempted. More importantly, 
the results, suffering from poor initial guesses and registration 
errors, were not reasonable with displacement values up to 1 
m in magnitude. 
 
To continue with the analysis user factors were determined for 
each of the there crack detection systems. The sanity factor 
was determined by selecting a value equal to ½ the average 
diameter of the dots in the pattern. It is assumed that the initial 
guess from the previous subset should be within this radius. 
Running the analysis on images without cracks demonstrated 
that the sanity factor was not rejecting subsets in uncracked 
areas. The failure factor was determined by adjusting the 
factor until subsets in uncracked areas were not being rejected 
but the system did reject subsets that ran over significant 
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cracks in the analysis. Finally the warning factor was adjusted so that most subsets adjacent to the crack, that 
most likely overlap the crack at the edges of the subset would be indicated by the warning factor, once again 
without indicating false positives in non-cracked regions. 
 
The second analysis was then run with crack detection parameters of fw = 4 for the warning factor, ff = 5 for the 
failure factor and fs = 4 pixels for the sanity factor. Figure 7 shows the subsets that successfully correlated with the 
crack detection system active. With the rejection of the crack from the analysis the correlation no longer had the 
tendency to get lost due to the influence of the crack on the surface pattern. However, the area of successful 
correlation was reduced to the segregated area that contained the seed point for the analysis. To acquire 
additional data using only the crack detection methods, the analysis would need to be run multiple times with 
seed points located in each segregated area. It should be noted that a small bridge, where the effect of the crack 
was diminished due to a bifurcation, allowed the analysis to spread into the second area. 

 
Combining the crack detection method and 
spatial/temporal guesses for segregated areas 
resulted in the analysis of the entire surface of 
the specimen, except for those areas directly 
affected by the growing cracks. Figure 7 shows 
the points where the analysis was successful. 
The ten areas, segregated by the growing cracks 
are clearly visible. Figure 8 presents plots of the 
three surface displacements from the analysis. 
The magnitude of the discontinuities between 
each of the segregated areas is visible, 
particularly in the plots of the in-plane 
displacements. The propagation of the crack 
pattern due to increasing load is illustrated in the 
plots for images 112, 124, 148, 176, 300 and 400 
in Figure 9. 
 
The effect of the crack detection system on the 
analysis can be shown by comparing the results 
from the first horizontal line of data from image 
400 using different aspects of the crack detection 
system. Figure 10 shows the combined results 
for the horizontal, in-plane displacement, U 
analyzed; a) with no sanity checks, no crack 
detection and no method to reestablish the 

analysis, b) with sanity and crack detection systems employed but no method to reestablish the analysis and c) 
with sanity checks, crack detection and a method to reestablish the analysis. As shown in the graph, all three 
analyses produced the same results from the location of the seed point, x = 906 mm, to the edge of the search 
area and back to the location x = 400 mm. Crack locations, indicated as gaps in the data, are present at x = 225 
mm, x = 400 mm and x = 600mm. While the non-constrained correlation (a) was able to bridge the gap at x = 600 
mm, it was unable to bridge the gap at 400 mm. Because the analysis continued by assuming initial guesses 
derived from the results of previous subsets, the correlation process was effectively lost and could no longer 
provide valid data. Because analysis (b) had no means of reestablishing itself, it was forced to stop when it 
reached the crack located at x = 400 mm. The combination of all three methods (c) allowed the analysis to avoid 
the crack locations and to continue across segregated cracked areas. 
 
While the experimental data presented above is from a single concrete panel test, the test program consisted of a 
total of 15 tests, each with two camera systems. The initial user parameters were determined using the data from 
the global DIC system for the first panel test and the parameters were applied, without modification, to the local  
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and global analysis for all subsequent tests. The crack detection system was robust enough so that the same 
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parameters could be applied to all 29 
sets of images (one test did not have 
the standard local system) containing 
a total of approximately 8000 image 
pairs. The factors that will most 
significantly affect the value of the 
parameters are the imaged pattern 
size and period and the contrast of 
the cracked areas. Because the 
pattern was scaled to appear roughly 
the same in both the global and local 
systems and both systems saw the 
same contrast changes from cracking 
it was not unexpected that the same 
user parameters could be applied to 
all the other data sets.  
 
5. Conclusions 
The problem of analyzing specimens 
with growing cracks or discontinuities 
is problematic and user-intensive with 
traditional implementations of digital 
image correlation. Combining a 
simple, but effective crack 
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identification process and a spatial/temporal initial guess method to reestablish the analysis in areas that get 
segregated by the growing cracks allows the analysis of specimens with randomly growing cracks with little or no 
additional user interaction. The crack identification process utilizes the greater consistency in the correlation 
function offered by quasi-regular surface pattern, the sensitivity of the two-dimensional DIC process to the change 
in patterns due to the presence of the crack and a threshold value that is established from the statistical analysis 
of the correlation error and dynamically updated for each image’s correlation. In addition, the incorporation of a 
sanity factor into the optimization process greatly reduces the chance of registration errors, while rejecting the 
fewest number of subsets possible. A combined spatial/temporal initial guess system is effective in restarting the 
analysis in areas that get segregated due to crack growth. 
 
The effectiveness of the combined processes is demonstrated on the analysis of a pressure loaded concrete slab. 
Even though the slab experienced widespread crack growth, separating the area into ten distinct areas, the 
process was able to complete the entire analysis without additional user interference. The inclusion of these 
systems into DIC programs will allow the analysis of a wider range of problems, where the inclusion of growing 
cracks makes traditional implementations too burdensome on the user. 
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