About
259
Publications
54,168
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,248
Citations
Introduction
Skills and Expertise
Publications
Publications (259)
Gas isotope thermometry using the isotopes of molecular nitrogen and argon has been used extensively to reconstruct past surface temperature change from Greenland ice cores. The gas isotope ratios δ15N and δ40Ar in the ice core are each set by the amount of gravitational and thermal fractionation in the firn. The gravitational component of fraction...
Fossil fuels contain small amounts of helium, which are co-released into the atmosphere together with carbon dioxide. However, a clear build-up of helium in the atmosphere has not previously been detected. Using a high-precision mass spectrometry technique to determine the atmospheric ratio of helium-4 to nitrogen, we show that helium-4 concentrati...
Gas isotope thermometry using the isotopes of molecular nitrogen and argon has been used extensively to reconstruct past surface temperature change from Greenland ice cores. The gas isotope ratios δ15N and δ40Ar in the ice core are each set by the amount of gravitational and thermal fractionation in the firn. The gravitational component of fraction...
Cosmic rays entering the Earth’s atmosphere produce showers of secondary particles such as neutrons and muons. The interaction of these neutrons and muons with oxygen-16 (16O) in minerals such as ice and quartz can produce carbon-14 (14C). Analyses of in situ produced cosmogenic 14C in quartz are commonly used to investigate the Earth’s landscape e...
The history of atmospheric oxygen (PO2) and the processes that act to regulate it remain enigmatic because of difficulties in quantitative reconstructions using indirect proxies. Here, we extend the ice-core record of PO2 using 1.5-million-year-old (Ma) discontinuous ice samples drilled from Allan Hills Blue Ice Area, East Antarctica. No statistica...
The variations of δO2/N2 and δAr/N2 in the Dome Fuji ice core were measured from 112 m (bubbly ice) to 2001 m (clathrate hydrate ice). Our method, combined with the low storage temperature of the samples (−50 ∘C), successfully excludes post-coring gas-loss fractionation signals from our data. From the bubbly ice to the middle of the bubble–clathrat...
Submission to 15th International Conference on Accelerator Mass Spectrometry
15-19 November 2021.
Deglaciations are characterized by relatively fast and near-synchronous changes in ice sheet volume, ocean temperature, and atmospheric greenhouse gas concentrations, but glacial inception occurs more gradually. Understanding the evolution of ice sheet, ocean, and atmosphere conditions from interglacial to glacial maximum provides insight into the...
The atmospheric history of molecular hydrogen (H 2 ) from 1852 to 2003 was reconstructed from measurements of firn air collected at Megadunes, Antarctica. The reconstruction shows that H 2 levels in the southern hemisphere were roughly constant near 330 parts per billion (ppb; nmol H 2 mol ⁻¹ air) during the mid to late 1800s. Over the twentieth ce...
Rapid Access Ice Drill is a new drilling technology capable of quickly accessing the glacial bed of Antarctic ice sheets, retrieving ice core and rock core samples, and providing boreholes for downhole logging of physical properties. Scientific goals include searching for old ice near the glacial bed and sampling subglacial bedrock. During field tr...
Understanding the age and movement of groundwater is important for predicting the vulnerability of wells to contamination, constraining flow models that inform sustainable groundwater management, and interpreting geochemical signals that reflect past climate. Due to both the ubiquity of groundwater with order ten-thousand-year residence times and i...
The variations of δO2/N2 and δAr/N2 in the Dome Fuji ice core were measured from 112 m (bubbly ice) to 2001 m (clathrate hydrate ice) at high precision. Our method, combined with the low storage temperature of the samples (−50 °C), successfully excludes post-coring gas-loss fractionation signals from our data. From the bubbly ice to the middle of t...
Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Anta...
Abrupt climate changes during the last deglaciation have been well preserved in proxy records across the globe. However, one long-standing puzzle is the apparent absence of the onset of the Heinrich Stadial 1 (HS1) cold event around 18 ka in Greenland ice core oxygen isotope 18 O records, inconsistent with other proxies. Here, combining proxy rec...
The magnitude of global cooling during the Last Glacial Maximum (LGM, the coldest multimillennial interval of the last glacial period) is an important constraint for evaluating estimates of Earth’s climate sensitivity. Reliable LGM temperatures come from high-latitude ice cores, but substantial disagreement exists between proxy records in the low l...
The atmospheric He/N2 ratio is expected to increase due to the emission of He associated with fossil fuels and is expected to also vary in both space and time due to gravitational separation in the stratosphere. These signals may be useful indicators of fossil fuel exploitation and variability in stratospheric circulation, but direct measurements o...
Fossil fuels contain small amounts of helium which are incidentally co-released to the atmosphere together with CO 2 . However, a clear buildup of He in the atmosphere has not previously been detected. Using results from our novel mass spectrometry technique that constrains relative changes in the atmospheric helium-to-nitrogen ratio ( ⁴ He/N 2 ) a...
Deglaciations are characterized by relatively fast and near-synchronous changes in ice sheet volume, ocean temperature, and atmospheric greenhouse gas concentrations, but glacial inceptions occur more gradually. Understanding the evolution of ice sheet, ocean, and atmospheric conditions from interglacial to glacial maximum provides important insigh...
Air in polar ice cores provides unique information on past climatic and atmospheric changes. We developed a new method combining wet extraction, gas chromatography and mass spectrometry for high-precision, simultaneous measurements of eight air components (CH4, N2O and CO2 concentrations; δ15N, δ18O, δO2∕N2 and δAr∕N2; and total air content) from a...
A new ice core drilled at the South Pole provides a 54 000-year paleoenvironmental record including the composition of the past atmosphere. This paper describes the SP19 chronology for the South Pole atmospheric gas record and complements a previous paper (Winski et al., 2019) describing the SP19 ice chronology. The gas chronology is based on a dis...
Ice core measurements of the concentration and stable isotopic composition of atmospheric nitrous oxide (N2O) 74,000–59,000 years ago constrain marine and terrestrial emissions. The data include two major Dansgaard‐Oeschger (D‐O) events and the N2O decrease during global cooling at the Marine Isotope Stage (MIS) 5a‐4 transition. The N2O increase as...
Accurate simulation of atmospheric circulation, particularly in the lower stratosphere, is challenging due to unresolved wave–mean flow interactions and limited high-resolution observations for validation. Gravity-induced pressure gradients lead to a small but measurable separation of heavy and light gases by molecular diffusion in the stratosphere...
The atmospheric He/N2 ratio is expected to be increasing due to the emission of He associated with fossil fuels and is expected to also vary in both space and time due to gravitational separation in the stratosphere. These signals may be useful indicators of fossil-fuel exploitation and variability in stratospheric circulation, but direct measureme...
The Younger Dryas (YD), arguably the most widely studied millennial-scale extreme climate event, was characterized by diverse hydroclimate shifts globally and severe cooling at high northern latitudes that abruptly punctuated the warming trend from the last glacial to the present interglacial. To date, a precise understanding of its trigger, propag...
In 2013 an ice core was recovered from Roosevelt Island, an ice dome between two submarine troughs carved by paleo-ice-streams in the Ross Sea, Antarctica. The ice core is part of the Roosevelt Island Climate Evolution (RICE) project and provides new information about the past configuration of the West Antarctic Ice Sheet (WAIS) and its retreat dur...
Air in polar ice cores provides various information on past climatic and atmospheric changes. We developed a new method combining wet extraction, gas chromatography and mass spectrometry, for high-precision, simultaneous measurements of eight air components (CH4, N2O and CO2 concentrations, δ15N, δ18O, δO2/N2, δAr/N2 and total air content) from an...
A new ice core drilled at the South Pole provides a 54 000-year paleoenvironmental record including the composition of the past atmosphere. This paper describes the SP19 chronology for the South Pole atmospheric gas record and complements a previous paper (Winski et al., 2019) describing the SP19 ice chronology. The gas chronology is based on a dis...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Abstract. Accurate simulation of atmospheric circulation, particularly in the lower stratosphere, is challenging due to unresolved wave-mean flow interactions and limited high-resolution observations for validation. Gravity-induced pressure gradients lead to a small but measurable separation of heavy and light gases by molecular diffusion in the st...
Permafrost and methane hydrates are large, climate-sensitive old carbon reservoirs that have the potential to emit large quantities of methane, a potent greenhouse gas, as the Earth continues to warm. We present ice core isotopic measurements of methane (Δ ¹⁴ C, δ ¹³ C, and δD) from the last deglaciation, which is a partial analog for modern warmin...
Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era¹. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (¹⁴CH4) can be used to distinguish b...
The Last Interglacial (129–116 thousand years ago (ka)) represents one of the warmest climate intervals of the past 800,000 years and the most recent time when sea level was metres higher than today. However, the timing and magnitude of the peak warmth varies between reconstructions, and the relative importance of individual sources that contribute...
Constraining the magnitude of past hydrological change may improve understanding and predictions of future shifts in water availability. Here we demonstrate that water-table depth, a sensitive indicator of hydroclimate, can be quantitatively reconstructed using Kr and Xe isotopes in groundwater. We present the first-ever measurements of these disso...
The South Pole Ice Core (SPICEcore) was drilled in 2014–2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth–age relationship. Here, we present the SPICEcore (SP19) timescale for the age of the ice of SPICEcor...
Over the past eight hundred thousand years, glacial–interglacial cycles oscillated with a period of one hundred thousand years (‘100k world’¹). Ice core and ocean sediment data have shown that atmospheric carbon dioxide, Antarctic temperature, deep ocean temperature, and global ice volume correlated strongly with each other in the 100k world2,3,4,5...
Past studies of noble gas concentrations in the deep ocean have revealed widespread, several percent undersaturation of Ar, Kr, and Xe. However, the physical explanation for these disequilibria remains unclear. To gain insight into undersaturation set by deep‐water formation, we measured heavy noble gas isotope and elemental ratios from the deep No...
We reconstruct atmospheric abundances of the potent greenhouse gas c-C4F8 (perfluorocyclobutane, perfluorocarbon PFC-318) from measurements of in situ, archived, firn, and aircraft air samples with precisions of ∼1 %–2 % reported on the SIO-14 gravimetric calibration scale. Combined with inverse methods, we found near-zero atmospheric abundances fr...
New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5–4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice-phase tracers to preexis...
The energy imbalance at the top of the atmosphere determines the temporal evolution of the global climate, and vice versa changes in the climate system can alter the planetary energy fluxes. This interplay is fundamental to our understanding of Earth’s heat budget and the climate system. However, even today, the direct measurement of global radiati...
Plain Language Summary
Oceans have taken up most of the additional heat trapped by greenhouse gases, mitigating the current rate of surface warming. In order to understand changes in ocean heat uptake over time, we use atmospheric noble gases measured in ice cores to estimate past ocean temperature change. This method works because the amount of no...
38 The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a 39 detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the 40 Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-41 age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcor...
We reconstruct atmospheric abundances of the potent greenhouse gas c-C4F8 (perfluorocyclobutane, perfluorocarbon PFC-318) from measurements of in situ, archived, firn, and aircraft air samples with precisions of ~ 1–2 % reported on the SIO-14 gravimetric calibration scale. Combined with inverse methods, we found near zero atmospheric abundances fro...
Changes in atmospheric CO2 on millennial-to-centennial timescales are key components of past climate variability during the last glacial and deglacial periods (70–10 ka), yet the sources and mechanisms responsible for the CO2 fluctuations remain largely obscure. Here we report the ¹³C/¹²C ratio of atmospheric CO2 during a key interval of the last g...
In 2013, an ice core was recovered from Roosevelt Island in the Ross Sea, Antarctica, as part of the Roosevelt Island Climate Evolution (RICE) project. Roosevelt Island is located between two submarine troughs carved by paleo-ice-streams. The RICE ice core provides new important information about the past configuration of the West Antarctic Ice She...
Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometr...
Ice core records from Antarctica show mostly synchronous temperature variations during the last deglacial transition, an indication that the climate of the entire continent reacted as one unit to the global changes. However, a record from the Taylor Dome ice core in the Ross Sea sector of East Antarctica has been suggested to show a rapid warming,...
The cover image, by Bernhard Bereiter et al., is based on the Research Article New Methods for Measuring Atmospheric Heavy Noble Gas Isotope and Elemental Ratios in Ice Core Samples, DOI: 10.1002/rcm.8099.
A new ice core retrieved from the Taylor Glacier blue ice area contains ice and air spanning the Marine Isotope Stage (MIS) 5/4 transition (74 to 65 ka), a period of global cooling and glacial inception. Dating the ice and air bubbles in the new ice core reveals an ice age-gas age difference (Δage) approaching 10 ka during MIS 4, implying very low...
Rationale:
The global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores can be used to reconstruct past mean ocean temperatures (MOTs). Here we...
High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with clim...