Jeff Donahue

Jeff Donahue
University of California, Berkeley | UCB · Computer Science Division

About

28
Publications
44,994
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
94,372
Citations

Publications

Publications (28)
Conference Paper
Over the past three years Pinterest has experimented with several visual search and recommendation systems, from enhancing existing products such as Related Pins (2014), to powering new products such as Similar Looks (2015), Flashlight (2016), and Lens (2017). This paper presents an overview of our visual discovery engine powering these services, a...
Article
Full-text available
Over the past three years Pinterest has experimented with several visual search and recommendation services, including Related Pins (2014), Similar Looks (2015), Flashlight (2016) and Lens (2017). This paper presents an overview of our visual discovery engine powering these services, and shares the rationales behind our technical and product decisi...
Conference Paper
Full-text available
Clearly explaining a rationale for a classification decision to an end-user can be as important as the decision itself. Existing approaches for deep visual recognition are generally opaque and do not output any justification text; contemporary vision-language models can describe image content but fail to take into account class-discriminative image...
Article
The ability of the Generative Adversarial Networks (GANs) framework to learn generative models mapping from simple latent distributions to arbitrarily complex data distributions has been demonstrated empirically, with compelling results showing generators learn to "linearize semantics" in the latent space of such models. Intuitively, such latent sp...
Article
We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders -- a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to...
Preprint
Clearly explaining a rationale for a classification decision to an end-user can be as important as the decision itself. Existing approaches for deep visual recognition are generally opaque and do not output any justification text; contemporary vision-language models can describe image content but fail to take into account class-discriminative image...
Article
Object detection performance, as measured on the canonical PASCAL VOC Challenge datasets, plateaued in the final years of the competition. The best-performing methods were complex ensemble systems that typically combined multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm th...
Article
Full-text available
Convolutional Neural Networks spread through computer vision like a wildfire, impacting almost all visual tasks imaginable. Despite this, few researchers dare to train their models from scratch. Most work builds on one of a handful of ImageNet pre-trained models, and fine-tunes or adapts these for specific tasks. This is in large part due to the di...
Article
We demonstrate that, with the availability of distributed computation platforms such as Amazon Web Services and open-source tools, it is possible for a small engineering team to build, launch and maintain a cost-effective, large-scale visual search system with widely available tools. We also demonstrate, through a comprehensive set of live experime...
Article
Real-world videos often have complex dynamics; methods for generating open-domain video descriptions should be senstive to temporal structure and allow both input (sequence of frames) and output (sequence of words) of variable length. To approach this problem we propose a novel end-to-end sequence-to-sequence model to generate captions for videos....
Article
Full-text available
Solving the visual symbol grounding problem has long been a goal of artificial intelligence. The field appears to be advancing closer to this goal with recent breakthroughs in deep learning for natural language grounding in static images. In this paper, we propose to translate videos directly to sentences using a unified deep neural network with bo...
Conference Paper
Can a large convolutional neural network trained for whole-image classification on ImageNet be coaxed into detecting objects in PASCAL? We show that the answer is yes, and that the resulting system is simple, scalable, and boosts mean average precision, relative to the venerable deformable part model, by more than 40% (achieving a final mAP of 48%...
Article
Full-text available
Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-t...
Article
Full-text available
-1We address the problem of visual domain adaptation for transferring object models from one dataset or visual domain to another. We introduce a unified flexible model for both supervised and semi-supervised learning that allows us to learn transformations between domains. Additionally, we present two instantiations of the model, one for general fe...
Article
Full-text available
A major challenge in scaling object detection is the difficulty of obtaining labeled images for large numbers of categories. Recently, deep convolutional neural networks (CNN) have emerged as clear winners on object classification benchmarks, in part due to training with 1.2M+ labeled classification images. Unfortunately, only a small fraction of t...
Conference Paper
Semantic part localization can facilitate fine-grained categorization by explicitly isolating subtle appearance differences associated with specific object parts. Methods for pose-normalized representations have been proposed, but generally presume bounding box annotations at test time due to the difficulty of object detection. We propose a model f...
Article
Full-text available
Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models ef...
Article
Dataset bias remains a significant barrier towards solving real world computer vision tasks. Though deep convolutional networks have proven to be a competitive approach for image classification, a question remains: have these models have solved the dataset bias problem? In general, training or fine-tuning a state-of-the-art deep model on a new doma...
Article
Can a large convolutional neural network trained for whole-image classification on ImageNet be coaxed into detecting objects in PASCAL? We show that the answer is yes, and that the resulting system is simple, scalable, and boosts mean average precision, relative to the venerable deformable part model, by more than 40% (achieving a final mAP of 48%...
Article
We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be re-purposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks and there may be insufficient labeled or unlabeled...
Conference Paper
We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be re-purposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks and there may be insufficient labeled or unlabeled...
Article
Full-text available
Images seen during test time are often not from the same distribution as images used for learning. This problem, known as domain shift, occurs when training classifiers from object-centric internet image databases and trying to apply them directly to scene understanding tasks. The consequence is often severe performance degradation and is one of th...
Conference Paper
Most successful object classification and detection methods rely on classifiers trained on large labeled datasets. However, for domains where labels are limited, simply borrowing labeled data from existing datasets can hurt performance, a phenomenon known as "dataset bias." We propose a general framework for adapting classifiers from "borrowed" dat...
Article
Full-text available
We present an algorithm that learns representations which explicitly compensate for domain mismatch and which can be efficiently realized as linear classifiers. Specifically, we form a linear transformation that maps features from the target (test) domain to the source (training) domain as part of training the classifier. We optimize both the trans...
Conference Paper
Traditional supervised visual learning simply asks annotators “what” label an image should have. We propose an approach for image classification problems requiring subjective judgment that also asks “why”, and uses that information to enrich the learned model. We develop two forms of visual annotator rationales: in the first, the annotator highligh...

Network

Cited By