
User Interface Master Detail Pattern on Android

Thanh-Diane Nguyen, Jean Vanderdonckt
Louvain Interaction Lab., Louvain School of Management (LSM), Université catholique de Louvain, Place des Doyens, 1

 B-1348 Louvain-la-Neuve (Belgium) – {thanh-diane.nguyen, jean.vanderdonckt}@uclouvain.be

ABSTRACT

The purpose of this work is to understand some existing

user interface (UI) patterns and to adapt them to the

constraints of mobile devices running on the Android

system. We focus mainly on the Master/Detail pattern and

on the surrounding patterns. The contributions are multiple:

our background study consists of a brief summary of the

principles of some existing user interface patterns. Based on

it, we provide an adapted version of each pattern targeted to

mobile phones through a framework called MandroiD. We

will also present a basic case study application that takes

advantage of the framework. This application is developed

with Android guidelines in mind. Indeed, one of our goals

is to provide the reader with some knowledge about

Android applications development. Limitations of general

mobile devices (e.g., the small screen) require of "reducing"

homogeneous elements. MandroiD overcome theses

constraints. A statistical analysis is conducted on the

developed mini-application. Evaluation of it shows a

general satisfaction concerning the ergonomy of the

application by various users.

Author Keywords

User interface; patterns; mobile development; Android.

ACM Classification Keywords

D.2.2 [Software Engineering]: Design Tools and

Techniques – Modules and interfaces; user interfaces. D.2.m

[Software Engineering]: Miscellaneous – Rapid

Prototyping; reusable software. H.5.2 [Information

interfaces and presentation]: User Interfaces

– Graphical

user interfaces (GUI); style guides; user-centered design.

H.5.3 [Information interfaces and presentation]: Group

and Organization Interfaces

– Evaluation/methodology.

General Terms

Algorithms; Design; Languages.

INTRODUCTION

As we can observe in our everyday life, mobile devices

evolved with the introduction of high level development

capabilities. Modern computing and interfaces design

activities have to take into account the constraints of mobile

devices [1,2,11], which often have a small-sized screen and

no physical controller, such as a keyboard and/or mouse.

The problem of today’s literature is that most of the

interface descriptive and generative patterns [9] were

designed for desktop environments [8,10,15] and therefore

lack of support for mobile-related operations related to

generative patterns. For example, the size of the screen is

not a concern (nothing is said about small-sized screens

with low resolutions). Ubiquitous computing is not

supported by those patterns [11,14]. Design patterns can be

used to capture essential problems of different “sizes”.

Moreover, the using of pattern for documenting design

knowledge “divides a large problem area into a structured

set of manageable problems” [3]. The purpose of this work

is to provide adapted versions, with an evaluation, of some

existing design patterns based on Object Oriented Method

that can be very useful to developers and end users.

We decided to focus on Android-based mobile systems

instead of iPhone devices (iOS-based). We motivate our

choice by the fact that Android development is accessible

and free, with a great support from the community.

Furthermore, Android could not require any add-learning of

specific language: Android applications are written in Java,

which is a widespread programming language known by all

developers. iPhone application is relied on Objective-C

which can be less learned in academic classes by its

material requirement. Nevertheless, the guidelines

introduced in this document are valid for both systems.
Structure

This paper is organized as follows. The first part focuses on

a background study of some patterns introduced in [13]. We

have chosen three main patterns: the Master/Detail, the

Order and the Filter patterns. This choice is motivated by

the fact that there are very common patterns that are,

according to our experience, generally poorly supported in

mobile computing. Furthermore, some of them (e.g. the

Master/Detail pattern) involve a recursive design whose

conception is a very interesting challenge. In the second

part, we propose a framework that could be used by

programmers for implementing UIs with that kind of

patterns.

Afterwards, we will take a basic application as a case study

illustrating the framework. The objective is to prove that it

is usable for real applications, such as a car-configurator

application targeted for customers of car dealers (e.g. Audi,

BMW, etc.). Finally, we present a statistical analysis which

assesses the overall quality of the developed interfaces,

according to some criteria that have been evaluated by

external and non-technical users.

RELATED WORK

In this section, we explore some existing design patterns

that need to be implemented on Android systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
EICS’12, June 25–26, 2012, Copenhagen, Denmark.

Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

299

This background study is based on [12,13], which proposes

a Presentation Model. This approach is “a methodological

guide representing the user interface in an abstract and

design independent way”.

We do not explore all the patterns presented there, but we

focus on a combination of some patterns which are [8, 10]:

the Master/Detail, the Filter and the Order criterion against

a given Population. After this exploration, we discuss some

guidelines for designing user interfaces on mobile devices.

Again, we restricted our study to some of the most

important rules for conceiving high quality interfaces.

The definition of Filter and Order criterion patterns are

obvious. Filter pattern is used for defining custom criteria

that allow selecting some parts of a population. Order

criterion pattern is mainly used for sorting elements of a

population in ascending or descending order. In the tool

built in this work, we stay generic by creating a generic

filter object that could be extended according to any

specific requirement, and by letting developer create any

kind of ordering criteria. These auxiliary patterns are also

similar to the current available collection of pattern-

catalogues in the HCI domain [7, 16].
Population

A population unit is an abstraction defined for representing

set of elements. Typically, populations are implemented as

lists or arrays.
Master/Detail

The Master/Detail pattern is illustrated in Figure 1. It is the

most interesting pattern to present because it combines the

concepts defined previously: the Master part, located on the

left of Figure 1, consists of a Population unit, which can

also be combined with filters and ordering criterion. The

Detail part, on the right, can be any graphical component

required for presenting the details of the selected element of

the list. In the framework presented in the next section, we

still stay generic so that any user-defined component can be

a member of the list: even non-trivial elements are allowed.

Similarly, the detail can be any specific component, even a

nested Master/Detail structure.
Android style guidelines

Developing on Android means creating and using

Activities, which correspond to the “windows” of the

applications on desktop computers. Although this

mechanism is aimed at allowing modular designs, it should

be used with parsimony because activities are stacked in the

system. The end-user can navigate between activities by

pressing the Back button of his device. Consequently,

minimizing the amount of activities started is a main goal of

our framework.

Generally, and similarly to desktop applications, we have to

keep the interactions between the user and the system as

clear as possible in order to not create unnecessary

confusion. This property has to be enforced on Android

system because devices with this operating system, OS,

could have neither physical keyboard nor mouse for

navigating.

John Doe

Bob Ease

Malcolm Franck

Alice Gator

Rob Hips

Alice Gator

58th st.

New-York

+001-....

Figure 1. Master Detail.

Therefore, we try to keep the interactions limited to simple

“click” actions and to predefined components (e.g. instead

of entering the date manually, a widget should be used).

The last guideline is more a recommendation on the

Android philosophy which tends to ensure that only the

essential information are shown, with the least superfluous

data possible. Unlike for desktop environment, there is no

free-space on the left and the right of wide screens for

presenting additional and non-essential data. This

observation has to be taken in consideration while

conceiving graphical user interfaces.

MANDROID: A JAVA FRAMEWORK FOR
IMPLEMENTING THE MASTER/DETAIL PATTERN

The purpose of this paper is not to compare different

environments that generate GUIs for mobile devices, but

rather to see how patterns for desktop (implementation in

OlivaNova [10]) could be transferred to another system for

other platform at what cost. In addition, the usability of

resulting GUIs is work to be examined. Then, one result of

this work is a Java framework called MandroiD. It is

targeted for implementing interfaces through the

Master/Detail pattern. Its name simply represents a

combination of the initials of the pattern name with the

android word. The architecture of the classes composing the

framework is shown in Figure 2.
LayoutProvider

We start by defining an abstraction whose purpose is to

declare a common behavior for displaying complex

graphical object representation. We call this class

LayoutProvider and define a method getLayout() that

should be called by the interface creation procedure.

Thanks to this class, we are able to define any kind of

complex layout objects, and to reuse them in the remainder

of the framework, in composite elements. A View is an

Android object referencing graphical component. An

Activity corresponds to a window of the application, it is

needed because the definition of the getLayout() method

in the subclasses generally build components that all require

this reference when they are created. For instance, a user-

component providing a date-chooser in a white rectangle

block could be implemented as a LayoutProvider.
Population

The next brick of the framework is the Population class.

It is used for representing a list of graphical elements to the

user, and therefore it extends the LayoutProvider class.

A list is composed of zero to many ListElement objects

which are aimed at storing pairs of graphical elements and

actions that are triggered when the element is clicked. The

next brick of the framework is the Population class.

300

Figure 2. The UML Class Diagram of Mandoid.

It is used for representing a list of graphical elements to the

user, and therefore it extends the LayoutProvider class.

A list is composed of zero to many ListElement objects

which are aimed at storing pairs of graphical elements and

actions that are triggered when the element is clicked.
Filters and Orderings

Filters and ordering criteria can be attached to populations

through Filter and Order objects, respectively.They both

provide layouts in order to be presented to the user, for

activation and deactivation They are abstract classes, and

consequently concrete filters have to be defined according

to the needs of the application. Defining a new filter means

implementing the keepInList() method which returns

true if the given element should stay in the list, and false

otherwise. Defining ordering criteria can be done by

extending the Order class and implementing the

compareOrdered() method. Once filters and ordering

critera are attached to populations with the addFilter()

and addOrdering() methods, the framework manages

their display, their activation (through user-input) and

deactivation.
Master/Detail

The most relevant point to present is the MasterDetail

class. This class manages the display of elements according

to the Master/Detail pattern which has been described in the

previous section. A MasterDetail is defined, among

others, by a Population which corresponds to the master

part, and by a LayoutProvider corresponding to the

detail part. The most interesting thing comes from the type

of the detail part, which can be any LayoutProvider

object, including a nested MasterDetail. The framework

can then handle (potentially) infinite recursion. Pairs of

master elements and corresponding details can be added

with the addElement() method which is responsible of

inserting the element in the list, and of creating the event

handler that will update the detail part when the element is

selected by the user.

The expandMasterList() and hideMasterList() are

used internally for replacing the population by an “expand”

control, in order to avoid the graphical structure becoming

too big because of several nested master-details. In this

section, we presented the internal architecture of the

framework. The next section presents a case study

application relying on MandroiD.

A DETAILED CAR REPOSITORY

For this case study, we built a basic application which takes

advantage of our framework, MandroiD, for conceiving its

graphical UI. The purpose of the application is to provide

detailed information describing the configuration of each

model of car of a dealer. The underlying intension is to be

used by potential buyers who are interested in exploring all

the details of their future car. On a strictly graphical point

of view, the first screen of the application is the one asking

the user to choose a dealer. Each screen contents follow

general ergonomic rules [4]:

1. Elements of a window have to be align.

2. Create a screen balanced.

3. Unicity of elements provides better overview.

4. Insert regularity and harmony in the way of a set

ordered elements from a central point.

The relevant patterns for this first step are the Master/Detail

and the Order ones. First, the user is able to sort

alphabetically the brands and, secondly, when a brand is

selected, the detail (i.e. the next step of the car

configuration) appears. If the user wants to sort the models

in descending order, the result is in Figure 4.A.

Figure 3. Dealer selection (3.A) - Model selection (3.B)

elements

+ addElement(:LayoutProvider,:LayoutProvider): void

+ getLayout(): View

+ getLayout(): LinearLayout

+ setHelp(:String): void

+ setName(:String): void

- expandMasterList(): void

- hideMasterList(): void

- setDetail(:LayoutProvider): void

- master: Population

- currentDetail: LayoutProvider

- help: String

- name: String

MasterDetail

+ getLayout(): View

activity: Activity

LayoutProvider

+ addElement(:LayoutProvider,:AbstractAction): void

+ addFilter(:Filter): void

+ addOrdering(:Order): void

+ filter(): void

+ getLayout(): View

- setOrdering(:Order): void

- elements: List<ListElement>

- filters: Collection<Filter>

- orderings: Collection<Order>

Population

+ getProvider(): LayoutProvider

- action: AbstractAction

- provider: LayoutProvider

ListElement

provider

master

currentDetail

+ compare(:Object,:Object): int

+ compare(:ListElement,:ListElement): int

+ compareOrdered(:LayoutProvider,:LayoutProvider): int

order: Direction

Order

+ activate(): void

+ deactivate(): void

+ isActive(): boolean

+ keepInList(:Object): boolean

+ population: Population

+ active: boolean

Filter

filters

orderings

301

Figure 4. Model selection: DESC order (4.A)

-filtering (4.B)

Then, the user has to select a model of car represented by

standard button of Android System. Basically, this step is

implemented the same way as the previous one, using

Master/Detail and ordering, but it also contains the Filter

pattern. The latter is used, in this case, to keep only a

specific branch among the different models (i.e. the

population). For instance, if the user selects the “Q Series”

checkbox (see on Figure 4.B).

Once the model is selected, the resulting detail concerns the

selection of the body style of the car. This step uses a

nested Master/Detail pattern. Therefore, it is not illustrated.

Next, the user can specify the options and the color that s/he

wants as shown on the Figure 5.A. The color and options

buttons (i.e. masters) render the same kind of view (i.e.

detail) when clicked. So, we only focus on the “Options”

one. Typically, the detail of this button is a list of options,

which, once again, use the Master/Detail pattern. When an

option is selected, a screen allowing the user to select it

appears.

To get back to the options list, the “+ Expand” link can be

clicked. This link is present each time the Master/Detail

pattern is used in order to get back to the master. Finally, a

preview of the car is available.

Figure 5. Options selection (5.A)-Option inclusion (5.B)

Figure 6. Preview

On a technical point of view, the filling of the application is

done automatically thanks to our XML parser compatible

with Android. Indeed, all packages available in standard

Java are not part of the Android SDK and we had to

develop a tool to help us parsing textual data in order to

make the application more flexible. In this case, the missing

package was javax.xml.

Thanks to the developed tool, the data is fetched from a

XML-file and then presented on the user interface. This

strategy enables to update the data about cars and even add

new models and/or brands (without having to recompile the

application). The idea behind the algorithm is the

following: each time we meet a node in the XML-file we

check its value and create the corresponding elements with

the attributes specified in the XML-file. Example: a node

with value “model” causes the creation of a Master element.

Every node that follows and whose value is different from

“model” concerns the model previously created (we go

through the XML-file line by line). Then, depending on the

values of the next nodes, masters and details elements are

created and added to previous elements. If the value is

equal to “ordering” or “filter”, the corresponding patterns

are initialized on the population of the appropriate master.

This XML parser helped us to maintain our application

clean and well structured. Those two points are very

important to enforce the quality of the user interface and to

efficiently work in team.

STATISTICAL ANALYSIS

This statistical analysis is based on the Post-Study System

Usability Questionnaire (PSSUQ) [5]. This method

provides a set of questions (see Table 1) that users have to

answer after processing our case scenario [17]. Each

question consists of a 5-point Likert scale [6]. The

questions are grouped in 5 categories:

 Usability of the system (SYSUSE)

 Quality of the information (INFOQUAL)

 Quality of the interaction (INTERQUAL)

 Overall of the system (OVERALL)

 Ergonomy (ERGONOMY)

302

Figure 7. Occupation of testers (7.A)

- Level of studies of testers (7.B)

The scenario is the following:

1. Find the options available on Audi Q7.

2. Look at the beautiful shape of Audi A5 Sportback.

3. What is the price of the Audi TT Roadster’s GPS?

4. What are the colors available of BMW serie 1?

For this analysis, we did not take all the questions of

PSSUQ as-is because they were not applicable for our

application. Each question has to be answered with an

evaluation number from 1 to 7. 1 means: “I totally

disagree” and 7 means: “I totally agree”. PSSUQ is accurate

because the questions it provides are suitable for scenario-

based usability test. To collect the data that serve to this

analysis, we create first a set of action items that users have

to do, and then ask them to answer to question set. The

testers we found are friends or family of us. We found 15

peoples, 53% of them are woman and 47% are man. Figure

7.A and Figure 7.B show the current occupation of testers

as well as their level of education.

As a result, we can see that the set of testers are mainly

student but other categories are represented as well. We can

also put out that our testers have high level of study. Figure

8 shows the results of the answers of the testers.

The first observation is that the average score of every

category is high. The master details pattern is interesting

while programming on mobile device. Nevertheless, the

standard deviation of the fourth first categories is big

because our application needs to be improved with new

features. The standard deviation of ERGONOMY is not

high though, thus suggesting that participants are generally

satisfied concerning the ergonomy of the application.

This is one of the most important observations because it

shows that our implementation of nested master/details

does not result in losing the user in complex hierarchies,

thanks to the “expand” mechanism which keeps the “path”

of his current location clearly visible at any time.

This was challenging because of the limited screen-size of

the devices. The black background behind white texts may

also be discussed, but that is the default configuration for

applications on Android systems. This analysis showed that

it did not confuse any user.

0

1

2

3

4

5

6

SYSUSE

7

INFOQUAL INTERQUAL OVERALL ERGONOMY

Results of statistics

Figure 8. Results of statistics

CONCLUSION

During this work, we explored some existing design

patterns and adapted them to the criteria of the mobile

devices running on Android systems. This paper is aimed at

determining to what extent a java framework could support

automated generation of graphical UIs or mobile devices

based on pattern approach.

The main contribution of this work is a framework called

MandroiD, which supports generative patterns for mobile

devices. It provides specific constructs for building three

commonly used patterns; the most impressive is the

Master/Detail because it introduces recursive structure in

graphical interfaces. The underlying problem was the

limitations of general mobile devices, which have a small

screen on which a minimal set of information is available at

any time. We achieve the goal of minimizing the accessible

information set thanks to an adequate use of “reducing” and

“expanding” controls of the list, so that the user keeps the

focus on the part of the application s/he is using.

We also proved that the framework is usable in practice,

firstly by providing an application taking advantage of it,

and secondly with the interface evaluation part which

shown that although some points could be improved, the

implemented patterns are convenient for being used by

most of the users.

The future work can be to extend the evaluation with a

larger community of developers using the framework. This

evaluation will show their feeling on development practices

with this framework and any suggestion to improve it.

Another future work can be a comparison of different other

implementation approach of Mandroid on other frameworks

or systems with an evaluation of their performances.

ACKNOWLEDGMENTS
The authors would like to thank L. Carlier, Y. Hanson, J.

Janssens, D. Jeusette, and A. Moulai for implementing

Mandroid and for testing it with various users. Our thanks

also go to all the volunteers that filled in the surveys for the

statistical analysis and for their comments and suggestions.

303

REFERENCES
1. Abrahão, S., Iborra, E., and Vanderdonckt, J. “Usability

Evaluation of User Interfaces Generated with a Model-Driven

Architecture Tool.” In E. Law, E. Hvannberg, and G. Cockton

(eds.), Maturing Usability: Quality in Software, Interaction

and Value. Vol. 10, Springer, London, 2008, pp. 3-32.

2. Aquino, N., Vanderdonckt, J., Condori-Fernández, N., Dieste,

Ó., and Pastor, Ó., “Usability Evaluation of Multi-

Device/Platform User Interfaces Generated by Model-Driven

Engineering.” In Proc. ESEM'2010-ACM Press, New York,

2010, Article #30.

3. Erik G. Nilsson. “Design patterns for user interface for mobile

applications.”, Adv. Eng. Softw. 40, 12 (December 2009),

Oslo, Norway, pp. 1318-1328.

4. Galitz, W., “The essential guide to user interface design, an

introduction to GUI design principles and techniques.” Wiley

Computer Publishing, Indianapolis, Inc., 1997

5. Lewis, J. R. “IBM Computer Usability Satisfaction

Questionnaires: Psychometric Evaluation and Instructions for

Use.” IBM, Human Factors Group, Boca Raton, FL, 1993.

6. Likert, R. “A technique for the measurement of attitudes.”

Archives of Psychology 22, 140 (1932), pp. 1–55.

7. Mobile UI Pattern (04/05/2012) http://mobile-patterns.com/

8. Molina, P.J., Meliá, S., and Pastor, O. “Just-UI: A User

Interface Specification Model.” In Proc. of CADUI’2002.

Kluwer Academics, Dordrecht, 2002, pp. 63-74.

9. Molina, P.J., Meliá, S., and Pastor, O. “User Interface

Conceptual Patterns.” In Proc DSV-IS’2002. Springer-Verlag,

Berlin, 2002, pp. 159-172.

10. Molina, P.J. “User interface generation with OlivaNova model

execution system.” In Proc. of IUI’2004. ACM Press, New

York, 2004, pp. 358-359.

11. Mori, G., Paternò, F., Santoro, C. “Design and Development

of Multidevice User Interfaces through Multiple Logical

Descriptions.” IEEE Transactions on Software Engineering

IEEE Press Piscataway, NJ, USA, 30, 8 (2004), 507–520.

12. Pastor, O. “Generating User Interfaces From Conceptual

Models: A Model-Transformation Based Approach.” In Proc.

CADUI’2006. Kluwer Academics, Dordrecht, 2006, pp. 1-14.

13. Pastor, O. and Molina, J.C. “MDA in Practice: a Software

Production Environment Based on Conceptual Modeling.”

Springer-Verlag, Berlin, 2007.

14. Vanderdonckt, J. “Model-Driven Engineering of User

Interfaces: Promises, Successes, and Failures.” In S. Buraga

and I. Juvina (eds.), Proc. ROCHI'2008, (Iasi, 18-19

September 2008). Matrix ROM, Bucarest, 2008, pp. 1–10.

15. Vanderdonckt, J. and Montero, F., “Generative Pattern-Based

Design of User Interfaces”, Proc. PEICS'2010

16. Van Welie pattern catalogue (05/03/2012):
http://www.welie.com/patterns/

17. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell,

B., Wesslén, A. Experimentation in Software Engineering: An

Introduction. Volume 6 of International Series in Software En-

gineering. Springer, 2000.

Question

ID
Question statement

Statistics per questions

Average Median
Average of

deviations

Standard

deviation
Confidence

1 Overall, I am satisfied with how easy it is to use this system 5,67 6,00 0,84 1,11 0,56309217

2 It was simple to use this system. 5,40 6,00 0,91 1,12 0,567407115

3 I could effectively complete the tasks and scenarios using

this system

5,20 5,00 1,15 1,47 0,745719046

4 I was able to complete the tasks and scenarios quickly using

this system.

5,80 6,00 0,80 1,08 0,54772223

5 I was able to efficiently complete the tasks and scenarios

using this system.

5,47 6,00 0,97 1,19 0,600812099

6 I felt comfortable using this system. 5,27 5,00 1,22 1,53 0,776168992

7 It was easy to learn to use this system. 5,80 6,00 0,69 1,01 0,513239047

8 I believe I could become productive quickly using this

system.

5,47 6,00 0,97 1,19 0,600812099

9 Whenever I made a mistake using the system, I could

recover easily and quickly

5,33 6,00 1,24 1,54 0,780868343

10 The information (on-line help, on-screen messages and

other documentation) provided with the system was clear

5,67 6,00 0,89 1,05 0,529610677

11 It was easy to find the information I needed 5,40 6,00 0,99 1,18 0,598778888

12 The information provided for the system was easy to

understand

5,13 5,00 1,21 1,51 0,761897047

13 The information was effective in helping me complete the

tasks and scenarios.

5,07 5,00 1,27 1,67 0,843916033

14 The organization of information on the system screens was

clear.

5,60 6,00 0,93 1,24 0,62858689

15 The interface of this system was pleasant. 5,27 5,00 0,95 1,22 0,618810449

16 I liked using the interface of this system. 5,53 5,00 1,10 1,25 0,630523989

17 This system has all the functions and capabilities I expect it

to have.

5,47 5,00 0,90 1,06 0,536474169

18 Overall, I am satisfied with this system. 5,07 5,00 0,89 1,16 0,588507476

19 I always know where I am and how to go where I want 5,93 6,00 0,63 0,88 0,447213328

20 Colors are chosen in order to let information visible 5,60 6,00 0,69 0,83 0,419057927

Table 1 : Questions and scores

304

