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Affine Volterra processes have gained more and more interest in recent years. In partic-

ular, this class of processes generalizes the classical Heston model and the more recent

rough Heston model. The aim of this work is hence to revisit and generalize the constant
proportion portfolio insurance (CPPI) under affine Volterra processes. Indeed, existing

simulation-based methods for CPPI do not apply easily to this class of processes. We

instead propose an approach based on the characteristic function of the log-cushion
which appears to be more consistent, stable and particularly efficient in the case of affine

Volterra processes compared with the existing simulation techniques. Using such ap-

proach, we describe in this paper several properties of CPPI which naturally result from
the form of the log-cushion’s characteristic function under affine Volterra processes. This

allows to consider more realistic dynamics for the underlying risky asset in the context of

CPPI and hence build portfolio strategies that are more consistent with financial data.
In particular, we address the case of the rough Heston model, known to be extremely
consistent with past data of volatility. By providing a new estimation procedure for its

parameters based on the PMCMC algorithm, we manage to study more accurately the
true properties of such CPPI strategy and to better handle the risk associated with it.

Keywords: Portfolio insurance ; CPPI ; Volterra process ; Rough volatility ; Particle

Monte Carlo Markov Chain.

1. Introduction

The constant proportion portfolio insurance (CPPI) is a dynamic strategy of invest-

ment that yields a super-linear participation in future asset returns while retaining

a security guarantee on a part of the invested capital (called the floor). Under the

assumption of frictionless trading, this strategy therefore protects a portfolio of

stocks against the downside risk but still allows for an upside potential. Basically,

the CPPI method consists in maintaining the risk exposure equal to a constant

multiple of the excess of wealth over a floor. The CPPI was introduced for a port-

folio of bonds by Perold & Sharpe (1988) and revisited by Black & Jones (1987) for

equities. A first stream of literature extensively studies the theoretical properties

of continuous-time CPPI strategies. A comparison of OBPI (option-based portfolio

insurance) and CPPI is provided in Bertrand & Prigent (2001) under the classical
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Black and Scholes (B&S) framework and under the assumption of frictionless trad-

ing. This first set of research also deals with the effects of jump processes, stochastic

volatility models, regime switching models and gap risk on the CPPI method, cfr

Cont & Tankov (2009), Prigent & Bertrand (2003), Hainaut (2011), Balder et al.

(2009) and references therein. The second stream of literature focuses on solving an

optimization problem that arises when we assume investors maximize their end-of-

period expected utility. In this setting, the optimality of the CPPI strategy depends

on the risk profile of the investor, which has been thoroughly studied in Kingston

(1989), Grossman & Vila (1992), Branger et al. (2010), Bertrand & Prigent (2019).

Finally, the third stream tries to identify problems with the design of CPPI strate-

gies and then proposes modifications to mitigate them. We refer to Pain & Rand

(2008) for a summary of the different variations of CPPI proposed in the literature.

Our contribution lies within the framework of the first stream of literature. In

this paper, we derive a methodology based on the characteristic function of the

log-cushion, which enables to derive and study the properties of continuous-time

CPPI with frictionless trading under the very general class of affine Volterra pro-

cesses, as defined in Abi Jaber et al. (2019). In fact, we show that the characteristic

function of the log-cushion for affine Volterra processes is obtained in quasi-closed

form, which then allows to easily and efficiently compute the moments, the density

as well as several risk-measures for the CPPI value at maturity. Our approach is

therefore not restricted to the study of CPPI properties under a particular model

as already done in the literature but extends directly and easily to a wide class of

models, allowing to take into account different market behaviors and more realistic

dynamics for the underlying risky asset in the context of CPPI. Moreover, using the

log-cushion’s characteristic function instead of the existing simulation-based tech-

niques allows to derive far more rapidly and more accurately the desired portfolio

properties.

In particular, we will focus our analysis on CPPI properties under the rough Heston

model, which is an important member among the class of affine Volterra processes

(based on a power-law kernel), enjoying growing popularity among practitioners and

academicians. Indeed, the rough Heston model of El Euch & Rosenbaum (2019) is

a highly tractable implementation of rough volatility models which has been shown

to be remarkably consistent with financial time series data, as initially explained

in Gatheral et al. (2018). The rough Heston model therefore allows to better as-

sess the true properties of the CPPI strategy compared with other dynamics for

the underlying asset. More precisely, we will demonstrate that thanks to its rough

variance process, the rough Heston model will lead to a more accurate assessment

of the risk of the CPPI strategy by providing a better modeling of the left tail of

the portfolio distribution. Indeed, as explained in Paulot & Lacroze (2009), this left

tail must be computed with great precision since it plays an important role in the
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riskiness of such CPPI strategy. However, the non-Markovian nature of the vari-

ance process under the rough Heston model requires to deviate from the classical

stochastic volatility approach for CPPI described in Prigent & Bertrand (2003) and

to work with the characteristic function of the log-cushion instead. Moreover, the

analysis of CPPI properties (performance, density and risk measures) will be carried

out for the classical Heston model as well, which also belongs to the class of affine

Volterra processes and for which well-established simulation techniques exist. Fi-

nally, we will compare the obtained results with the B&S model, which has already

been extensively studied in the context of CPPI. In the last practical part of the

paper, we will show how to introduce gap risk and transaction costs in such CPPI

strategy based on affine Volterra processes and hence go beyond the assumption of

frictionless/continuous trading.

At last, we contribute with this work to provide a full econometric estimation of the

rough Heston’s parameters based on the time series of observed log-returns using

the Particle Monte-Carlo Markov Chain algorithm. So far, this rough Heston model

has only been calibrated in the literature based on risk-neutral option quotes ob-

served on the market and we now propose a new estimation procedure for deriving

these parameters directly and efficiently under the real-world probability measure,

which is necessary in the case of portfolio insurance. This way, we will also show

that the rough Heston model provides a better statistical fit of past log-return data

compared with the Heston and B&S models.

2. Model setup under rough volatility

As mentioned above, the CPPI strategy consists in maintaining the risk exposure

equal to a constant multiple m of the excess of wealth over a floor F . This way, the

value of the portfolio P is above the floor F at any time t in the considered period

of time [0, T ]. The value of the floor thus gives the dynamical insured amount and

is assumed to evolve at a constant interest rate r following

dFt = Ft r dt .

Note that a more complex dynamic could be chosen for modeling the interest rates

but this choice does not impact the conclusions of our work. Obviously, the initial

floor F0 is less than the initial portfolio value P0 and is equal to F0 = e−rTG,

where G is the guaranteed amount at maturity. The difference P0 −F0 is called the

cushion, denoted by C0. Its value Ct at any time t in [0, T ] is given by

Ct = Pt − Ft .

Now denote the exposure Et, which is the total amount invested in the risky as-

set St. The standard CPPI method consists of letting Et = mCt where m is the

constant multiple. In order to have a convex payoff in the underlying, we impose

m > 1. From Bertrand & Prigent (2016), we have thatm is an exogenous parameter
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chosen by the portfolio manager. A first alternative is to choose m as the inverse of

the maximal negative daily return anticipated by the fund manager. For example,

if the manager expects that the worst daily return will be −25% over [0, T ], then

the upper bound on the multiple m such that the value of the fund Pt remains

above the floor Ft for all time t ∈ [0, T ] is given by 4. A more accurate alternative

is to choose m according to the occurrence probabilities of extreme events in the

risky asset such as described in Bertrand & Prigent (2016). We will apply their

methodology in Section 6 to provide an upper bound of the multiple m based on a

dataset of S&P500 daily log-returns.

Moreover, we consider in this paper a continuous-time CPPI strategy and we assume

in a first step continuous/frictionless trading over the whole investment horizon

[0, T ]. In the last section, we will then briefly discuss the possible ways of taking

into account gap risk, borrowing constraints and transaction costs by restricting

trading on a discrete time grid.

We also assume in the sequel that the risky asset St is a diffusion process such

that

dSt = St

(
µdt+

√
Vt dWt

)
, (2.1)

where Wt is a standard Brownian motion defined on a probability space (Ω,F ,P)
with a right-continuous filtration (Ft)t≥0. The cornerstone of this section is to con-

sider that the variance process Vt exhibits a rough behavior. Indeed, in their ground-

breaking paper, Gatheral et al. (2018) show that for a very wide range of assets,

historical volatility time series exhibit a behavior that is much rougher than that

of a Brownian motion (as implied by standard stochastic volatility models). More

precisely, they emphasize that volatility dynamics based on fractional Brownian mo-

tions with a Hurst exponent in
(
0, 12

)
are extremely consistent with the historical

volatility process of major indices. Such condition on the Hurst index aims to gen-

erate rough sample paths and to introduce short-range dependence in the volatility

process, as explained in Gatheral et al. (2018). On the contrary to long-memory

volatility models (H > 1/2), this rough behavior of volatility allows to perfectly

reproduce at any time scales a lot of statistical properties of the past volatility

time series, as confirmed in many other studies, such as in Bennedsen et al. (2016).

Furthermore, Gatheral et al. (2018) find that classical statistical procedures aiming

at detecting volatility persistence tend to conclude the presence of long memory

in data generated from their rough volatility model. This allows these authors to

explain and understand why long memory of volatility has been widely accepted as

a stylized fact until now. This recent change of paradigm towards rough volatility,

both by academicians and practitioners, allows to study more accurately the true

properties of CPPI strategies. Indeed, such comparisons with other portfolio insur-

ance techniques have been mainly limited so far to the B&S case or to classical

stochastic volatility models based on Brownian motions. We will show in this paper
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the impact of taking into account rough volatility on CPPI properties by considering

the rough Heston model of El Euch et al. (2018) and we will explain why it provides

a better modeling of the risk associated with the CPPI strategy. This rough Heston

model is in fact an extension of the the classical Heston model where El Euch et al.

(2018) introduce the power-law kernel (t− u)H−1/2 in the Heston variance process

Vt in order to allow for a rough behavior of Vt in a Heston-type model. They hence

find the following variance process under the rough Heston model

Vt = V0 +
1

Γ(H + 1/2)

∫ t

0

λ (θ − Vu)

(t− u)1/2−H
du+

ν

Γ(H + 1/2)

∫ t

0

√
Vu

(t− u)1/2−H
dŴu ,

(2.2)

where λ is the speed of mean reversion of the variance process towards the level θ

and where ν is the volatility of variance parameter. Ŵt is again a standard Brown-

ian motion defined on (Ω,F ,P) such that ⟨W, Ŵ ⟩t = ρ t with a constant correlation

ρ. When H = 1/2, we can verify that we indeed recover the classical Heston model.

It can also be shown that the trajectories of the variance itself under the rough He-

ston are almost surely Hölder-continuous of order H − ε, for any ε > 0, leading to

a rough behavior of the variance process with short-range memory when H < 1/2

and smoother trajectories with long-range dependence when H > 1/2. These au-

thors also provide a microstructure foundation of such model as shown in El Euch

& Rosenbaum (2019).

We now define the forward variance curve ξs(t) := E[Vt|Fs], t ≥ s. We can eas-

ily recover Vs from ξs(t) as Vs = limt→s ξs(t). Following Bergomi & Guyon (2012),

forward variance models are models that can be written as a function of this curve

ξs(t). As shown in El Euch et al. (2018), this is the case of the rough Heston model

(2.2). More precisely, we have the following forward variance curve dynamic for this

rough Heston model

dξs(t) = ν(t− s)α−1Eα,α(−λ(t− s)α)
√
Vs dŴs . (2.3)

where α = H + 1/2 and Eα,β(z) denotes the generalized Mittag-Leffler function

defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
.

Let now ηs(t) =
√
Vs κ(t− s) where κ(t− s) = ν(t− s)α−1Eα,α(−λ(t− s)α), we can

then rewrite (2.3) as

dξs(t) = ηs(t)dŴs . (2.4)

This writing will be useful in the sequel to ease notations. Note that ηs(t) satisfies

the Assumption 2.1. of Gatheral & Keller-Ressel (2019) as shown in the proof of

Appendix 10.2 and that κ(t − s) is a decreasing L2-kernel, which is necessary in

the following of the paper to define the characteristic function of the log-cushion.
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Moreover, it is shown in El Euch et al. (2018) that the initial forward variance curve

at time s = 0 in the rough Heston model is given by

ξ0(t) = V0 + (θ − V0)
λ

ν

∫ t

0

κ(s)ds (2.5)

3. CPPI in the rough Heston model

Under the assumption of frictionless trading for CPPI, we can first consider the

stochastic volatility case of Prigent & Bertrand (2003) where the volatility σt of the

underlying risky asset St is stochastic. They first show that the cushion value at

any time t is

Ct = C0 exp

{
(r +m(µ− r)) t− 1

2
m2

∫ t

0

Vs ds+m

∫ t

0

√
Vs dWs

}
. (3.1)

Then, from

Sm
t = Sm

0 exp

{
m

(
µ t− 1

2

∫ t

0

Vs ds

)
+m

∫ t

0

√
Vs dWs

}
, (3.2)

Prigent & Bertrand (2003) find that :

Ct = Sm
t αt , (3.3)

with αt =
(

C0

Sm
0

)
exp{βt t} and βt = −(m− 1)r − 1

2

(
m2 −m

)
1
t

∫ t

0
Vs ds .

Finally, since the CPPI fund is the sum of the cushion and the floor, we get that

Pt = Ft+S
m
t αt . On the contrary to the B&S framework, we no longer have that the

parameter αt is a constant but a random variable instead. Moreover, the portfolio

value Pt now depends on the whole path of the variance process
∫ t

0
Vsds and hence,

the short-memory of the rough-Heston variance process with H < 1/2 will have an

impact on Pt. However, expressions (3.2) and (3.3) will not be useful in our case, i.e.

when the variance process exhibits a rough behavior as in equation (2.2). Indeed,

as explained in El Euch et al. (2018), the rough Heston model is non-Markovian

with respect to the current variance state Vs, which makes the quantity
∫ t

0
Vs ds

hard to compute and to obtain from Monte-Carlo simulations and even from more

advanced numerical schemes such as the Hybrid scheme of Bennedsen et al. (2017).

However, Gatheral & Keller-Ressel (2019) show that the rough Heston is Markovian

in the forward variance curve ξs(t). Indeed, given the state vector ξs(t), the dynam-

ics of the model are well-determined. Hence, we will now capitalize on this Markov

property with respect to ξs(t) in order to compute more precisely and efficiently

the value of the CPPI portfolio at any time t. Denoting Xt = logCt, it is useful to

rewrite equation (3.1) as

dXt = (r +m(µ− r)) dt− 1

2
m2 Vt dt+m

√
Vt dWt = (r +m(µ− r)) dt+ dYt ,

(3.4)
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where

dYt = −1

2
m2 Vt dt+m

√
Vt dWt. (3.5)

We now want to obtain the characteristic function of the forward variance model

(Y, ξ), i.e. of the process Y together with the family of processes (ξs(t))t≥s. From

Theorem 2.6. of Gatheral & Keller-Ressel (2019) and from the dynamic of ξs(t)

given in equation (2.4), we have that that our forward variance model (Y, ξ) has an

affine cumulant-generating function (CGF) in the sense that its CGF is of the form

logE
[
eu(YT−Ys)|Fs

]
=

∫ T

s

g(T − r, u)ξs(r)dr , (3.6)

for all u ∈ [0, 1], 0 ≤ s ≤ T and where g(·, u) is R−-valued and continuous on [0, T ]

for all T > 0 and u ∈ [0, 1]. This leads to the following theorem :

Theorem 3.1. The function g(·, u) : R+ → R− is the unique global continuous

solution of the fractional Riccati equationa :

g(t, u) = Rv

(
m,u,

∫ t

0

κ(t− r)g(r, u)dr

)
= Rv (m,u, (κ ⋆ g)(t, u)) , (3.7)

where

Rv(m,u,w) =
1

2
m2(u2 − u) +mρuw +

1

2
w2 . (3.8)

Proof. Cfr Appendix 10.2.

We now show how to determine the function g(·, u) in the case of the CPPI under

the rough Heston model (2.2). First let’s denote

ψ(t, u) =
1

ν
(κ ⋆ g)(t, u) =

∫ t

0

(t− s)α−1Eα,α (−λ(t− s)) g(s, u)ds .

Thanks to Lemma A.2 of El Euch & Rosenbaum (2019), we find

Dαψ(t, u) + λψ(t, u) = g(t, u) .

Then, using relations (3.7) and (3.8) with the fact that (κ ⋆ g)(t, u) = ν ψ(t, u), we

obtain

Dαψ(t, u) =
1

2
m2(u2 − u) + (mρuν − λ)ψ(t, u) +

1

2
ν2 ψ(t, u)2 . (3.9)

Finally, we can transform the affine CGF (3.6) into a characteristic function by

imposing u = iz. Therefore, we obtain the following characteristic function in

forward-variance form of (Y, ξ) for the rough Heston, conditionally on the initial

state (Ys, ξs) :

ΦY
s (T, z) = E

[
eizYT

∣∣Ys, ξs] = exp

{
izYs +

∫ T

s

Dαψ(T − r, iz)ξs(r) dr

}
. (3.10)

aThe convolution operator ⋆ between two functions f, g is defined as : (f ⋆g)(t) :=
∫ t
0 f(t−r)g(r)dr.
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From equation (2.5) and Appendix 10.1 on fractional calculus, we can easily rewrite

the initial characteristic function of (Y, ξ) at time s = 0 as

ΦY
0 (T, z) = E

[
eizYT

∣∣Y0, V0] = exp

{
izY0 +

∫ T

0

ψ(T − r, iz)

(
λθ +

V0 r
−α

Γ(1− α)

)
dr

}
.

(3.11)

The characteristic function of the log-cushion in forward variance form (X, ξ) at

time s = 0 for the rough Heston model directly follows from (3.11) :

ΦX
s (T, z) = E

[
eizXT

∣∣X0, V0
]
= exp

{
iz (X0 + (r +m(µ− r))T )

+

∫ T

0

ψ(T − r, iz)

(
λθ +

V0 r
−α

Γ(1− α)

)
dr

}
.

(3.12)

The key issue we tackle in this paper is to propose the most appropriate dynamic

of the underlying risky asset under P using statistical methods on financial data

such as to obtain the true properties of CPPI strategy. We are therefore interested

in the dynamic of the portfolio under the real probability measure P and we hence

need to estimate the parameters (α, µ, λ, θ, ν, ρ) based on the observed time series of

log-returns. Moreover, having a characteristic function in quasi-closed form for the

log-cushion value Xt thanks to equation (3.12), we can obtain easily and efficiently

several risk measures for Ct such as the VaR and TVaR, as well as its moments of

all orders. This will be discussed in the following sections.

4. Estimation of the rough Heston model

We first choose as starting date t = 0, the 31st of July 2021. Since we decide

throughout this paper to consider a fixed investment horizon of T = 1 year for the

CPPI strategy, we use the U.S. swap rate for this maturity equal to r = 0.2546%.

Then, in order to estimate the parameters of our model, we consider daily time

series of log-returns from January 2017 to July 2021 for the S&P500 making a

total of 1141 data points. In the literature so far, calibration of the rough Heston

model has been exclusively done based on risk neutral option quotes such as in

El Euch et al. (2019) or Dupret et al. (2021). We now introduce a new approach

for providing a full econometric estimation of the rough Heston’s parameters under

the real probability measure P, which is based on the Particle Markov Chain Monte

Carlo (PMCMC) procedure of Andrieu et al. (2010). This algorithm is built from

a sequential Monte-Carlo filter that we now describe.

4.1. Filtering

This section introduces the filtering technique, also called sequential Monte-Carlo

(SMC) filter, that is used to determine the most likely evolution of the hidden vari-
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ance process Vt. There is a considerable literature on the development of simulation-

based methods to perform filtering of nonlinear Gaussian models. Leading contribu-

tions are reviewed by Doucet et al. (2001). This SMC will be combined in the sequel

with a Monte-Carlo Markov Chain to estimate the parameters of the rough Heston

model but for the moment, we assume that its parameters are known. We consider

a sample of discrete observations of log-returns Rt = ln St+∆

St
where ∆ is the time

step between two observations. The sample is denoted by r = {r1, r2, . . . , rn} where

n = T/∆. We denote vj and rj the realizations of Vtj and Rtj for j = 1, . . . , n

with tn = T . The dynamic of log-returns is approached by applying Itô Lemma on

equation (2.1) and then discretizing the obtained equation, which gives

Rj+1 =

(
µ− Vj

2

)
∆+

√
Vj ∆Wj+1 .

The increment ∆Wj can be rewritten as ∆Wj =
√
1− ρ2 ∆W 1

j + ρ∆W 2
j where

∆W 1
j ∼ N(0,

√
∆) and where ∆W 2

j ∼ N(0,
√
∆). Therefore, we have

Rj+1 =

(
µ− Vj

2

)
∆+

√
1− ρ2

√
Vj ∆W

1
j+1 + ρ

√
Vj ∆W

2
j+1 . (4.1)

The variance process (2.2) is discretized the same manner by

Vj+1 = V0 +

j∑
k=0

(tj+1 − tk)
α−1

Γ(α)
λ (θ − Vk)∆ +

j∑
k=0

(tj+1 − tk)
α−1

Γ(α)
ν
√
Vk ∆W

2
k+1 .

(4.2)

In practice, we prefer to use the much more time-efficient simulation scheme of

Abi Jaber (2019) for discretizing (Vj)j=1,...,n. These authors managed to build the

rough variance process as superposition of infinitely many factors sharing the same

Brownian motion but mean-reverting at different speeds. Limiting the number of

factors allows to speed up the simulation scheme while still ensuring a extremely

good proximity with the true original variance process. We denote the set of param-

eters ϑ = (α, µ, λ, θ, ν, ρ) and as mentioned above, it is assumed to be known for the

moment. The particle filter estimates the most likely sample paths of the variance

process. We denote by ∆w2
j the realizations of ∆W 2

j . The information Vj = vj and

∆W 2
j = ∆w2

j is stored in a particle, i.e. a vector denoted uj =
(
vk, ∆w

2
k

)
k=1:j

.

Contrary to classical stochastic volatility models, we now have to keep track of the

whole sample path of the variance process and of the related Brownian increments

in the particles from k = 1 to j due to the non-Markovian nature of the rough

Heston model.

The visible information up to time tj is stored in a vector r1:j = {r1, . . . , rj} and the

density of the observation f(rj |uj), conditionally to the information in the particle,

is a Gaussian probability density function. More precisely, if we denote by ϕ(·) the
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pdf of a N(0, 1), we have from equation (4.1) that

f(rj |uj) = ϕ

(
rj −

(
µ− vj−1

2

)
∆− ρ

√
vj−1 ∆w

2
j√

1− ρ2
√
vj−1

√
∆

)
. (4.3)

On the other hand, the transition density f(uj+1|uj) is simulated based on equation

(4.2). The initial pdf of u0 is denoted f(u0). Then, using Bayesian arguments,

one can show that the posterior distribution of uj conditionally to the available

information at tj is equal to

f(uj | r1:j) =
f(rj |uj)∫

f(rj |uj)f(uj | r1:j−1)duj
f(uj | r1:j−1) , (4.4)

where we predict

f(uj | r1:j−1) =

∫
f(uj |uj−1)f(uj−1 | r1:j−1) duj−1 . (4.5)

The calculation of f(uj | r1:j) can then be performed in three steps. First, in the pre-

diction step, we approach f(uj | r1:j−1) by simulations, based on relations (4.5) and

(4.2). In practice, the integral in (4.5) is replaced by a Monte-Carlo simulation of

N particles, denoted u
(i)
j for i = 1, . . . , N and the density f(uj | r1:j) is replaced by

the probability of occurrence denoted p
(i)
j for the particle i, i.e. p

(i)
j = P (u(i) | r1:j).

In the correction step, the probabilities f(uj | r1:j) are computed via equation (4.4).

In the third step, we perform a resampling with replacement and with probabilities

p
(i)
j , i = 1, . . . , N in order to keep track of the most likely sample paths of the vari-

ance process. The structure of the particle filter algorithm is presented in Appendix

10.3. Finally, the filtered variance process for the period j is computed as

V̂j = E(Vj | ri:j) =
N∑
i=1

v
(i)
j p

(i)
j ,

whereas the log-likelihood of the whole sample path is approached before resampling

by the sum

ln f(r |ϑ) =
n∑

j=1

ln

(
N∑
i=1

p
(i)
j f(rj |u(i)j )

)
. (4.6)

4.2. Econometric estimation

We have so far considered that the set of parameters ϑ is known, which is not

the case in practice. An inherent problem of particle filters is that the estimate of

the likelihood is not a smooth function of parameters. Practically, the calibration

of a model by maximizing the log-likelihood (e.g. with a gradient descent) is then

uncertain. We here prefer using the PMCMC procedure which has been shown

by Andrieu et al. (2010) and Johannes & Polson (2010) to be highly efficient for

such financial estimation of stochastic volatility models. We now denote the set
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of unknown parameters by Θ = (α, µ, λ, θ, ν, ρ). We here again adopt a Bayesian

approach and Θ is a multivariate random variable with realizations ϑ and with

state space χ. The parameters posterior distribution, based on the observed sample

r = {r1, · · · , rn} is

f(ϑ | r) = f(ϑ)f(r |ϑ)∫
χ
f(ϑ′)f(r |ϑ′) dϑ′ , (4.7)

where f(ϑ) and f(r |ϑ) denotes respectively the parameter prior distribution and

the likelihood of the data. The density f(ϑ | r) is built by the PMCMC method. It

generates samples from f(ϑ | r) by creating a Markov chain with the same distri-

bution as the parameters posterior one. Once that the Markov chain has reached

stationarity after a transient phase, called burn-in period, samples from the pos-

terior distribution are simulated. Standard MCMC algorithm requires a pointwise

estimate of f(r |ϑ), which is not available in our model. Instead, f(r |ϑ) is ap-

proached by its estimate (4.6), yield by the particle filter of the previous section.

The construction of the Markov chain consists of two steps, repeated iteratively

for k = 1, . . . ,K. At the beginning of the (k + 1)th iteration, we propose a candi-

date parameter ϑ
′
from a proposal distribution q(ϑ

′ |ϑk) given the previous state of

the Markov chain, ϑk. The proposal distribution must have a support that covers

the target distribution. In the second step, we determine if we update the state ϑ
′
.

For this purpose, the acceptance probability of the Metropolis-Hasting algorithm

described in Appendix 10.3 (cfr Algorithm 2), is computed as follows

ρ(ϑ
′
, ϑk) = min

{
f(ϑ

′ | r)
f(ϑk | r)

q(ϑk |ϑ
′
)

q(ϑ′ |ϑk)
, 1

}
. (4.8)

This determines the probability that we assign the candidate parameter as the next

state of the Markov chain, ϑ
′ → ϑk+1. Intuitively, if we disregard the influence of

the proposal distribution q(·, ·), a candidate is accepted if it increases the posterior

likelihood f(ϑ
′ | r) > f(ϑk | r). The presence of q(·, ·) in (4.8) allows a small decrease

in the posterior likelihood, such as to explore the space of parameters χ.

In numerical applications, the transition distribution q(ϑ
′ |ϑk) is assumed Gaus-

sian, ϑ
′ ∼ N(ϑk, σϑ Im) where Im is the identity matrix. As this distribution is

symmetric, we have q(ϑk |ϑ
′
) = q(ϑ

′ |ϑk) and the acceptance probability simplifies

to

ρ(ϑ
′
, ϑk) = min

{
f(r |ϑ′

)

f(r |ϑk)
f(ϑ

′
)

f(ϑk)
, 1

}
.

The resulting samples of parameters ϑ1:K (after a burn-in period) serves next to

build the empirical distribution of f(ϑ | r), which is obtained by

f(ϑ | r) ≈ 1

K

K∑
k=1

δϑk
(dϑ) ,
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where δϑk
(dϑ) are the Dirac atoms located at ϑ = ϑk, with equal weights. The

estimate of parameters with respect to the posterior distribution is then

Θ̂ = E(Θ | r) =
∫
χ

f(ϑ | r) dϑ ≈ 1

K

K∑
k=1

∫
χ

δϑk
(dϑ) =

1

K

K∑
k=1

θk . (4.9)

We now use the PMCMC algorithm to calibrate the set of parameters Θ =

(α, µ, λ, θ, ν, ρ) of the rough Heston model (2.2). The standard deviation σϑ of the

transition distribution is set to σϑ = (0.01%, 0.01%, 0.1%, 0.01%, 0.01%, 0.1%). Even

if the procedure converges theoretically to parameter estimates, it is advisable to

provide realistic initial parameters to improve the speed of convergence. Therefore,

we impose ϑ0 = (0.7, 0.05, 0.3, 0.04, 0.2,−0.7). The filter runs with N = 1000 par-

ticles and we perform K = 20 000 iterations of the PMCMC procedure. Table 1

reports the rough Heston estimates with a burn-in period of 18 000 iterations. The

obtained log-likelihood (4.6) is equal to 3693.66.

Table 1. Parameter estimates of the rough Heston model for the S&P500 index and
standard error (std. err.) of these estimates.

α̂ µ̂ λ̂ θ̂ ν̂ ρ̂

Estimators PMCMC 0.8504 0.1446 0.2434 0.2122 0.3528 -0.5536

PMCMC std. err. 0.0128 0.0191 0.1272 0.0239 0.0183 0.0359

We observe that the estimate of the speed of mean-reversion λ is quite volatile

with a high standard error. The other parameter estimates are more reliable. The

advantage of our method based on a maximum likelihood estimator (MLE) for

estimating α is the nice properties associated with such MLE. It is consistent,

asymptotically unbiased and of minimal variance whereas the method of moment

proposed by Gatheral et al. (2018) only exhibits consistency. Our estimator of α is

hence more accurate. However, the method of moments of these authors based on

the q−variation of the log-volatility can be used to confirm that the roughness index

of the simulated rough Heston volatility with the MLE of Table 1 is consistent with

the observed regularity of the past volatility time series. Using the methodology of

these authors to estimate the smoothness of the past volatility between January

2017 and July 2021, we find an estimated value of the Hurst index Ĥ = 0.2324.

We then simulate sample paths of our variance process Vt under the rough Heston

model with α = 0.8504 and T = 4.5 years (time length between January 2017 and

July 2021), which gives T × 252 = 1142 daily time steps. Based on these simulated

sample paths, we find via the method of moments that the regularity of the cor-

responding volatility process is on average equal to Ĥ = 0.2505, which is highly

consistent with the value estimated based on the observed time series of volatility

between 2017 and 2021.
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5. Other models

In order to compare the rough Heston model with other models such as the Heston

or B&S models in terms of CPPI properties, we need to derive the characteristic

function of the log-cushion in these models. We show in this section that such

log-cushion’s characteristic function can be well defined analytically under affine

Volterra processes and we can hence generalize the above results for this larger

class of processes.

5.1. Heston model

First, the Heston model under the real probability measure P is given by

dSt = St µdt+ St

√
Vt dWt , (5.1)

dVt = λ(θ − Vt) dt+ ν
√
Vt dŴt . (5.2)

The two Brownian motions are defined as above. We have that V0 = σ2
0 is the initial

variance, θ is the long-run variance of Vt, λ denotes the speed of mean-reversion

and ν is the volatility of variance parameter. From Bergomi & Guyon (2012), we

know that the Heston model can be rewritten as a forward variance model with an

affine CGF of the form of equation (3.6). Furthermore, based on Example 2.10. of

Gatheral & Keller-Ressel (2019) and from Theorem 3.1, we obtain directly that the

characteristic function of the log-cushion in the Heston model under P is

ΦX(T, z) = E
[
eizXT

∣∣X0, V0
]
= exp

{
iz (X0 + (r +m(µ− r))T )

+ V0 ψ(T, iz) + λθ

∫ T

0

ψ(r, iz)dr

}
, (5.3)

and where ψ(·, iz) solves a (non-fractional) Riccati equation

∂

∂t
ψ(t, iz) = −1

2
m2(z2 + iz) + (mizρ ν − λ)ψ(t, iz) +

ν2

2
ψ(t, iz)2 . (5.4)

Note that this Riccati equation is consistent with the classical ODE’s initially de-

rived for the Heston model, such as in Gatheral (2011) (with m = 1). We also see

that the fractional derivative of the rough Heston (which conveys the short memory

to the model with H < 1/2) is replaced by a classical time derivative in the Riccati

equation.

We again apply the PMCMC procedure above with the particle filter of section

4.1 in order to estimate the parameters of the Heston model. The discretized vari-

ance process (4.2) now becomes under the Heston model

Vj+1 = Vj + λ(θ − Vj)∆ + ν
√
Vj ∆W

2
j+1 , (5.5)

and we now have the particle uj = (vj ,∆w
2
j ) so that the process (uj)j=1,...,n is a

Markov chain (note that we do not need anymore to keep track of the whole sample
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path from k = 1 to j as in the rough Heston case). The set of unknown parameters

becomes Θ = (µ, λ, θ, ν, ρ) since we do not have to estimate the roughness parameter

α, equal to 1 in the Heston model. We use the same standard deviation σϑ and ini-

tial parameters ϑ0 as in the rough Heston model (but removing their α-component).

Finally, we again run the filter with N = 1000 particles and K = 20 000 iterations

and we obtain the following Table 2 with a log-likelihood equal to 3498.03.

Table 2. Parameter estimates of the Heston model for the S&P500 index
and standard error of these estimates.

µ̂ λ̂ θ̂ ν̂ ρ̂

Estimators PMCMC 0.1392 0.9256 0.1435 0.4831 -0.5506

PMCMC std. err. 0.0324 0.2656 0.0532 0.0106 0.0631

We first note a lower log-likelihood compared with the rough Heston model. This

significant difference of log-likelihood confirms that the rough Heston model pro-

vides a better fit from a statistical point of view. The average rate of return µ and

the anti-correlation ρ are comparable between the two models. The mean reversion

level θ is now lower compared to the rough Heston model while the speed of mean

reversion λ is much higher. We again obtain a high standard error for the speed of

mean-reversion level λ whereas the other estimates are more reliable.

5.2. Affine Volterra processes

The methodology described above for deriving the characteristic function of the

rough Heston and Heston models can be extended to the more general class of affine

Volterra processes. This class of processes is defined in Abi Jaber et al. (2019) by

the following d-dimensional stochastic convolution equation of the form

Zt = Z0 +

∫ t

0

KZ(t− s)b(Zs)ds+

∫ t

0

KZ(t− s)σ(Zs)dWs , (5.6)

where W is a d-dimensional P-Brownian motion, where KZ is a convolution kernel

such that KZ ∈ L2
loc(R+,Rd×d) and where the coefficients b and σ satisfy the

regularity and integrability conditions studied in Abi Jaber et al. (2019). This class

of processes is called affine since the coefficient a(z) = σ(z)σ(z)T (with σ(z) positive

semidefinite) and the coefficient b(z) are both affine of the form

a(z) = A0 + z1A
1 + · · ·+ zdA

d ,

b(z) = b0 + z1b
1 + · · ·+ zdb

d ,

for d-dimensional symmetric matrices Ai and vectors bi. We next introduce the d×d
matrix

B =
(
b1 · · · bd

)
, (5.7)

and for any row vector u ∈ Cd, we define the row vector

A(u) =
(
uA1uT , · · · , uAduT

)
. (5.8)



November 25, 2021 8:59 CPPI˙DUPRET˙HAINAUT˙2021˙FINAL

Porfolio insurance under Volterra processes 15

We then recall from the log-cushion dynamic (3.5) that

Yt = Y0 −
1

2
m2

∫ t

0

Vs ds+m

∫ t

0

√
Vs dWs . (5.9)

Moreover, we now consider that the variance process Vt follows the general (one-

dimensional) convolution equation given by

Vt = V0 +

∫ t

0

K(t− s) (β + bVs) ds+

∫ t

0

K(t− s)
(
α+ a

√
Vs

)
dŴs , (5.10)

again with a constant correlation ρ such that ⟨W, Ŵ ⟩t = ρ t, with β, b, α, a ∈ R and

a convolution kernel K ∈ L2
loc(R+,R) such that :

K is strictly positive and completely monotone. There is γ ∈ (0, 2] such that

h

∫
0
K(t)2dt = O(hγ) and

T

∫
0
(K(t+ h)−K(t))2dt = O(hγ) for T <∞. (5.11)

Hence, we take d = 2 and consider the two-dimensional process Z = (Y, V ). In

order to have an affine Volterra process Z compatible with the given equation (5.9)

of Y , we need to impose the coefficient a(z) of Z to be of the form

A0 =

(
0 0

0 0

)
A1 =

(
0 0

0 0

)
A2 =

(
m2 mρa

mρa a2

)
. (5.12)

This amounts to set α = 0 in the variance process 5.10. Otherwise, there does not

exist a positive semidefinite matrix σ(z) which is such that a(z) = σ(z)σ(z)T is

affine. The coefficients b(z) and the kernel of the two-dimensional affine Volterra

process Z are given by

b0 =

(
0

β

)
B =

(
0 − 1

2

0 b

)
KZ =

(
1 0

0 K

)
. (5.13)

We clearly see that the Heston model described in Section 5.1 can be retrieved

by setting the kernel K ≡ 1 and the coefficients a = ν, β = λθ and b = −λ in

the variance process. For the rough Heston model, we need to impose a power law

kernel K(t) = tα−1/Γ(α) for the variance process instead, which is known to satisfy

the condition (5.11). We now derive from Abi Jaber et al. (2019) the characteristic

function of the log-cushion under the two-dimensional affine Volterra process Z for

general coefficients a, β, b and for general convolution kernel K.

Theorem 5.1. Let Z = (Y V )T be a solution of (5.6) with KZ ∈ L2(R+,R2×2),

where we assume that K satisfies (5.11) and where A(·) is given by (5.8). Let

u = (u1 u2) ∈ C2 with Re u1 ∈ [0, 1] and Re u2 ≤ 0 and assume that ψ =

(ψ1 ψ2)
T ∈ L2

(
[0, T ],C2

)
solves the Riccati-Volterra equation

ψ = uKZ +

(
ψB +

1

2
A(ψ)

)
⋆ KZ . (5.14)
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Using the form of KZ and of the coefficients b(z) and a(z) given by (5.12) and

(5.13), we obtain

ψ1 = u1 , (5.15)

ψ2 = u2K +K ⋆RΨ(ψ) , (5.16)

where we define

RΨ(ψ) =
1

2
m2(ψ2

1 − ψ1) + (b+mψ1ρa)ψ2 +
a2

2
ψ2
2 and RΦ(ψ2) = βψ2 .

Then, the Laplace transform of ZT is given by

E[euZT ] = eϕ(T )+χ(T )V0+u1Y0 , (5.17)

where

ϕ′ =
d

dt
ϕ = RΦ(ψ2) , χ′ =

d

dt
χ = RΨ(ψ) ,

and

ϕ(0) = 0 , χ(0) = u2 .

Proof. Cfr Appendix 10.4.

However, we are especially interested in the characteristic function of the log-cushion

Xt which can be obtained from the dynamic of Yt using equation (3.5). Therefore,

we now study the following affine Volterra process Z̃ = (X, v) and obtain the next

Corollary 5.1 with the same assumptions as in the previous theorem.

Corollary 5.1. The Laplace transform of the the log-cushion XT at horizon T

associated with the affine Volterra process Z̃ is given by

E[eu1XT ] = eϕ(T )+χ(T )V0+u1(X0+(r+m(µ−r))t) , (5.18)

with ϕ and χ defined by

ϕ′ =
d

dt
ϕ = RΦ(ψ2) , χ′ =

d

dt
χ = RΨ(ψ) ,

where RΦ(ψ2) and RΨ(ϕ) are defined in Theorem 5.1 and with initial conditions

defined by

ϕ(0) = 0 , χ(0) = 0 .

The process ψ = (ψ1 ψ2)
T ∈ L2

(
[0, T ],C2

)
is now the solution of the following

Riccati-Volterra equation

ψ1 = u1 , (5.19)

ψ2 = K ⋆RΨ(ψ) = K ⋆

(
1

2
m2(u21 − u1) + (b+mu1ρa)ψ2 +

a2

2
ψ2
2

)
. (5.20)

Proof. Cfr Appendix 10.5.
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It is important to note that we only consider here the unconditional characteris-

tic function of affine Volterra processes at time s = 0. Indeed, Theorem 5.1 and

Corollary 5.1 do not hold anymore at a later time s since we cannot write the con-

ditional characteristic function E[eu1XT |Fs] as a linear function of ϕ(·) and χ(·).
Based on this Corollary 5.1, we can easily recover the characteristic function of the

log-cushion under the Heston model, which is given by equations (5.3) and (5.4)

and under the rough Heston model, given by (3.12) and (3.9). It suffices to take

u1 = iz, a = ν, β = λθ and b = −λ with K ≡ 1 as convolution kernel in the Heston

model and K(t) = tα−1/Γ(α) in the rough Heston model. Moreover, from Acker-

mann et al. (2020), we note that we could extend the results above by considering a

time-dependent mean-reversion level θ(t) instead of the constant θ and hence work

with the generalized rough Heston model of El Euch & Rosenbaum (2019).

We finally conclude that the class of Volterra processes tends to be suitable for

building CPPI strategies that are analytically tractable through their characteris-

tic function. Such affine Volterra processes allow to easily derive CPPI properties

under various market conditions. Indeed, recent empirical studies suggest that the

memory properties of market fears are unstable and change over time, leading to

fluctuating behavior of financial markets as argued by Caporale et al. (2018). Fol-

lowing Cadoni et al. (2017), roughness is also associated with risks in pension fund

portfolios where such CPPI strategies are often used. Affine Volterra processes are

also useful for studying CPPI strategies based on underlying assets related to the

commodity market, cfr Benth et al. (2020).

5.3. Black and Scholes model

Finally, for the sake of comparison with what has already be done in the literature,

we analyze the characteristic function of the log-cushion in the B&S model. In this

B&S model, we have that the log-cushion dynamic can be rewritten, in a similar

way as in equation (3.5), by

dXt = (r +m(µ− r))dt− 1

2
m2σ2 dt+mσdWt . (5.21)

Hence, it directly comes that the characteristic function of the log-cushion is given

by

ΦX
0 (T, z) = E

[
eizXT

∣∣X0

]
= exp

{
iz

(
X0+T (r +m(µ− r))

)
− 1

2
m2(z2 + iz)σ2 T

}
. (5.22)

There are no latent variables in this model which implies that we do not need

to use a particle filter and that we can directly apply the Metropolis-Hasting

algorithm with unknown parameters Θ = (µ, σ). Since the log-return follows
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Rj ∼ N
(
(µ− σ2/2)∆, σ2∆

)
, the log-likelihood is now directly obtained by

ln f(r |ϑ) = −n
2
ln(2πσ2∆)− ln


∑n

j=1

(
rj − (µ− σ2

2 )∆
)2

2σ2∆

 .

Again with K = 20 000 iterations, we find a log-likelihood of 3380.25 and the

following parameter estimates :

Table 3. Parameter estimates of the B&S
model and std. err. of these estimates.

µ̂ σ̂

Estimators PMCMC 0.1099 0.1988

PMCMC std. err. 0.0657 0.0042

The log-likelihood is the lowest of the analyzed models, leading to the poorest

statistical fit. We obtain a very precise estimator of the volatility σ, which is lower

compared to the mean levels derived in the two previous models. The mean rate of

return µ is also lower in the B&S model and has a quite high standard error.

5.4. (Fractional) Riccati equations

In order to obtain the characteristic function of the log-cushion in the rough Heston

model, we need to solve the fractional Riccati equation (3.9). Based on Momani &

Shawagfeh (2006), we use an Adomian decomposition method combined with Padé

approximants to obtain numerically the solution of such fractional Riccati equa-

tions. This method is highly effective and stable in order to capture the essential

behavior of the solution ψ(t, u) in the fractional Riccati case and provides solutions

that are consistent with the numerical scheme described in the classical paper of

Diethelm et al. (2002) for finding solutions of fractional differential equations. For

the Heston model, we need to solve the ordinary Riccati equation (5.4). No analyti-

cal solution can be found to this first-order nonlinear ODE and we hence also resort

to the Adomnian method of Momani & Shawagfeh (2006) with α = 1 to derive

numerically the solution ψ(t, u).

We now show how to compute the moments of different orders for the portfolio

value PT at maturity. We mainly consider the Heston and rough Heston models,

which are two important members of our class of affine Volterra processes Z̃. We

also compare these results under the B&S framework for the log-cushion dynamic.

6. Moments

From the characteristic function of the log-cushion, the moments of order k of the

cushion Ct can be directly obtained by imposing iz = k. Indeed, we have

ΦX(T,−ki) = E
[
ekXT

]
= E

[
ek logCT

]
= E

[
Ck

T

]
. (6.1)
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We consider here the situation at time s = 0 where the initial amount in the fund

P0 is 100 and where the guaranteed amount G(= FT ) at maturity T = 1 is 95. We

find that F0 = 95e−1r = 94.77 and hence that C0 = P0 − F0 = 5.23.

For the multiple, applying the extreme value approach of Bertrand & Prigent (2016),

we are able to provide an upper bound of the multiple m based on our dataset of

past log-returns for the S&P500. Considering a management period of 1 month (21

days) and a risk tolerance ε of 0.5%, we find empirically an upper boundm ≤ 4.1117

such that the shortfall probability satisfies P
[
∃ j ∈ [1, n] : Ctj ≤ 0

]
≤ ϵ by following

the methodology of these authors. We therefore choose a value m = 4 satisfying

this upper bound such that the worst daily return anticipated by the fund man-

ager over the investment horizon is 25%. Using the models introduced above, we

are able to find the kth order moment of the cushion value CT and we hence ob-

tain the following Table 4 describing the expectation, standard deviation/volatility,

skewness and kurtosis of the portfolio value PT at maturity, using the relation

E[P k
T ] = E[(CT + FT )

k
] :

Table 4. Comparison of the first four moments of PT based on the characteristic function
of the log-cushion under each of the three estimated models.

Expectation Volatility Relative Skewness Relative Kurtosis

B&S 103.0599 7.5695 3.6458 33.5037

Heston 104.0626 8.1671 2.7833 55.3041

Rough Heston 104.2598 6.2334 2.1259 68.7292

First, we have logically that the expected value of the fund is lower in the B&S

model due to the lower rate of return µ. We also see that volatility and skewness

are lower in the rough Heston model due to the much lower speed of mean reversion

λ. However, the main difference comes from the 4th moment which is higher in the

rough Heston case and lower in the B&S model. These differences can be explained

by the absence of leverage effect in the B&S model and by the roughness property

of the variance process under the rough Heston case, as we will see below with Table

5. Note that moments of the fund obtained via simulations such as in Prigent &

Bertrand (2003) are consistent with the values derived from our method based on

the characteristic function of the log-cushion. Moreover, the methodology derived

in this paper overcomes the instability and slowness of these simulations and allows

to accurately and efficiently generate the moments of the fund value PT .

Finally, we want to emphasize the impact of rough volatility on the portfolio’s

moments. We therefore impose for the rough Heston model the same parameters

µ, λ, θ, ν, ρ as in the Heston model (cfr Table 2) and we consider for the roughness

index α a value of 0.75. For the B&S model, we also take µ = 0.1392 as in the

Heston model and σ equal to the average Heston volatility 1
t

∫ t

s=0
E[σs]ds = 0.2156.

Using these comparable parameters, we obtain the following Table 5. First, we have
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Table 5. Comparison of the first four moments of PT based on the characteristic function

of the log-cushion under each of the three models with comparable parameters.

Expectation Volatility Relative Skewness Relative Kurtosis

B&S 104.0626 9.5189 4.3010 48.4466

Heston 104.0626 8.1671 2.7833 55.3041

Rough Heston 104.0626 8.1870 2.7220 116.7027

that the B&S model provides a volatility and a skewness that are higher than in the

other models. This is due to the negative correlation ρ of the Heston and rough He-

ston models which decreases their moment values. Therefore, since the B&S model

does not take into account the leverage effect, it tends to overestimate the moments

of the fund PT . Concerning the kurtosis, the absence of heavy tail in the B&S model

compensates for the absence of leverage effect and we hence obtain a lower 4th mo-

ment compared with the two other models. Next, the main difference between the

Heston and rough Heston models comes from the 4th moment, with a much higher

kurtosis in the rough Heston case. The roughness of the volatility hence strongly

impacts the tail of the portfolio distribution and the occurrence probability of ex-

treme events affecting the CPPI value. Indeed, as explained in Paulot & Lacroze

(2009), CPPI is very sensitive to tails events and its value distribution depends

mainly on the mean volatility and on the left tail of the underlying distribution.

Hence, this rough behavior of volatility is crucial and must be taken into account

in order to better assess the tail of the distribution and the true CPPI properties.

In a similar way as for the calculation of the moments of the portfolio value PT ,

we now show that we can derive efficiently and consistently several risk measures

as well as the density of PT based on the characteristic function of the log-cushion.

Results will be obtained both with the true estimated parameters of each model as

well as with the comparable parameters based on the Heston model as in Table 5.

7. Risk Measure and probability density

Based on Artzner et al. (1999), we define the Value-at-Risk (VaR) as the ε-quantile

of the portfolio value at the term of a chosen time horizon T . This risk measure

is used to appraise the shortfall risk and despite that it is not a coherent risk

measure (cfr Artzner et al. (1999)), the Value-at-Risk still remains an essential tool

for asset allocation. If ε ∈ [0, 1] is the maximum shortfall probability accepted by

the investor, then the VaR is defined as the shortfall level, q, such that

P (PT ≤ q) = ε ⇐⇒ P (CT ≤ q − FT ) = ε ⇐⇒ P (XT ≤ log (q − FT )) = ε

(7.1)
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where XT = logCT . If we then denote the probability density function of XT by

fT (·), this relation becomes∫ log(q−F0e
rT )

−∞
fT (x) dx = ε . (7.2)

Another common measure of risk is the Tail Value-at-Risk (TVaR), denoted tv,

which is the expected shortfall level if the portfolio value breaches the VaR q,

tv = E[PT |PT ≤ q] ⇐⇒ tv = E
[
CT + F0e

rT
∣∣CT ≤ q − F0e

rT
]

⇐⇒ tv = E
[
eXT

∣∣XT ≤ log(q − F0e
rT )
]
+ F0e

rT (7.3)

Equation (7.3) can be rewritten in terms of the pdf fT (·) as follows

tv =
1

ε

∫ log(q−F0e
rT )

−∞
ex fT (x) dx+ F0e

rT . (7.4)

The TVaR is a coherent risk measure, also called expected shortfall and can iden-

tically be defined as the conditional tail expectation when applied to continuous

random variables.

The probability distribution of the log-cushion XT (conditionally to X0 and V0)

under the above models is not analytically determined (except for the B&S model).

However, its characteristic function ΦX(T, z), which is also the Fourier Transform

of its density, has a quasi-closed form under these models. By inverting numeri-

cally the characteristic function of XT , it is hence possible to determine its density

of probability and to compute numerically the VaR and TVaR by equations (7.2)

and (7.4). This numerical scheme, adapted from Hainaut (2011), relies on the Fast

Fourier Transform (FFT) algorithm and is detailed in Appendix 10.6.

7.1. Application

7.1.1. Comparable parameters

The log-cushion density obtained numerically from the FFT algorithm (cfr Ap-

pendix 10.6) is first plotted below in Fig. 1 for each of the studied models based on

the Heston parameters (as used in Table 5). The number of steps involved in the

FFT algorithm is set to N = 2048. We first observe that the log-cushion is normally

distributed under the B&S model, which explains the shape of the blue curve in Fig.

1. Compared with the other models, we see that the probability density function

of the B&S log-cushion is shifted to the right with more weight attributed to high

values of the log-cushion. We also see that log-cushion values are more dispersed

around the mean in the B&S model. This explains the higher volatility σ[PT ] of the

portfolio value in Table 5.

The density functions of the log-cushion under the Heston and rough Heston mod-

els are extremely similar. Both are negatively-skewed with fat left tails. First, this
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Fig. 1. Density of the log-cushion for the three models with comparable parameters and m = 4.

negative skewness of the log-cushion explains why the skewness of the portfolio

value PT in Table 5 is lower than in the B&S model when taking the exponential

of the distribution (but still positive since the effect of the exponential function on

the skewness overcomes the negative skewness of the log-cushion). Secondly, the

fatter left tail observed for the black and red curves below is the reason why we

obtain a higher kurtosis in Table 5, compared with the B&S model. Finally, based

again on Table 5, we also observe that this is logical to obtain very similar densities

between the Heston and rough Heston models since the three first moments are

extremely close to each other. Only the kurtosis differs between these two models,

which is indeed confirmed on Fig. 1 with a fatter left tail for the rough Heston in

red compared with the Heston curve in black. A higher multiplier value m would

have emphasized these effects.

Based on the probability density function of the log-cushion, we can now derive

its quantiles and hence use formula (10.12) to compute the VaR q of the portfolio

value PT . We then obtain the following Table 6 describing five percentiles of interest

for PT (mainly describing the left tail of the distribution) with m = 4 :

Table 6. Comparison of different quantiles of the portfolio value PT be-

tween models (comparable parameters).

0.5% 1% 5% 25% 50%

B&S 95.6766 95.8388 96.5130 98.4903 101.2466

Heston 95.0566 95.1140 95.5953 98.2514 102.1060

Rough Heston 95.0272 95.0674 95.4746 98.0959 101.9930

This Table 6 confirms and details Fig. 1 of the log-cushion density. The rough Heston
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model tends to have the lowest values for small percentiles (and hence be the most

risky) since it has the fattest left tail, closely followed by the Heston model. We

also clearly see that the B&S model exhibits the highest values for small quantiles,

which is again explained by its lower kurtosis. The trend reverses for higher quantiles

such as the median where we obtain larger values for the Heston and rough Heston

models compared with the B&S model. We now turn to the TVaR of the portfolio

value which is defined by formula (7.4) and we obtain the following Table 7 for all

our models with m = 4 :

Table 7. Comparison of the TVaR at levels 0.5%, 1%, 5% and

25% of PT between models (comparable parameters).

0.5% 1% 5% 25%

B&S 95.5316 95.6478 96.1108 97.2603

Heston 95.0284 95.0569 95.2950 96.5821

Rough Heston 95.0120 95.0310 95.2182 96.4484

By definition, we have that the TVaR is below the VaR at corresponding levels.

Again, we confirm that the rough Heston model has the fattest left tail and is

the most risky with significant probability attributed to very small values of PT ,

while the B&S portfolio value exhibits the highest TVaR for small percentile levels.

Finally, it can again be confirmed that the values of VaR and TVaR derived in Table

6 and Table 7 are consistent and close to the values obtained from simulations.

However, simulation-based methods (Monte-Carlo, Hybrid scheme, . . .) are way

more slow and less stable than working directly with the characteristic function of

the log-cushion, especially for the rough Heston model due to the non-Markovian

nature of its variance process.

7.1.2. True estimated parameters

We now derive the log-cushion density (Fig. 2) as well as the VaR and TVaR of the

portfolio value PT (Tables 8 and 9) based on the original parameters of each model

as in Table 4 since these parameters are those of true interest.

Table 8. Comparison of different quantiles of the portfolio value PT be-

tween models with the true estimated parameters.

0.5% 1% 5% 25% 50%

B&S 95.7578 95.9212 96.5856 98.4303 100.8681

Heston 95.0566 95.1140 95.5953 98.2514 102.1060

Rough Heston 95.1368 95.2596 96.1420 99.7313 103.4551

Despite having the highest kurtosis in Table 4, the rough Heston model with the

true estimated parameters is less risky than the Heston model with higher risk

measures in the rough Heston (VaR, TVaR) for small quantiles. Indeed, this can

be explained by the fact that the rough Heston model has a substantially lower
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Fig. 2. Density of the log-cushion for each model with the true estimated parameters and m = 4.

Table 9. TVaR at levels 0.5%, 1%, 5% and 25% of PT for each

model with the true estimated parameters.

0.5% 1% 5% 25%

B&S 95.6096 95.7222 96.1842 97.2726

Heston 95.0284 95.0569 95.2950 96.5821

Rough Heston 95.0699 95.1320 95.5921 97.6052

volatility and skewness in Table 4 compared with the Heston model, which also

impacts the riskiness and gap risk of the CPPI strategy (as we will see in the next

section). The impact of the kurtosis on these two models can however be seen in

Tables 8 and 9 with lower differences between risk measures at small levels (0.5%,

1%, 5%) and higher differences at larger levels (25%, 50%). Fig. 2 confirms these

findings.

8. Discrete-time CPPI

Since we have assumed continuous trading on the whole investment horizon [0, T ],

we cannot take into account the gap risk, i.e. the risk of violating the floor pro-

tection. We can indeed observe in Table 6 that the final value of the portfolio PT

is systematically above the guarantee G = 95, even for very small quantiles. This

gap risk is caused by liquidity constraints and steep drops in the risky asset oc-

curring before the fund manager can rebalance the portfolio. It therefore needs

to be managed. Such gap risk is discussed thoroughly in Cont & Tankov (2009)

and in Bertrand & Prigent (2016). Nevertheless, both liquidity constraints and

gap risk can be modeled in the setup of Balder et al. (2009) where the price dy-

namic of the risky asset is again described by a continuous-time stochastic pro-

cess but where trading is now restricted to discrete time. In their framework,
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they consider the sequence τn of equidistant refinements of the interval [0, T ], i.e.

τn =
{
tn0 = 0 < tn1 < . . . < tnn−1 < tnn = T

}
. This sequence represents the effective

trading times and as above, we consider a management period of one month so that

n = 12 (since T=1). Following Balder et al. (2009), the self-financing condition

of the CPPI portfolio implies the following recursive relation for the cushion with

k = 1, . . . , n− 1 :

Ctnk+1
=

Ctnk

(
m

Stn
k+1

Stn
k

− (m− 1)erT/n

)
if Ctnk

> 0

Ctnk
erT/n if Ctnk

≤ 0.

(8.1)

Balder et al. (2009) consider that the price dynamic St simply follows a geo-

metric Brownian motion and hence, they manage to derive closed-form formula

for the shortfall probability PSF = P (∃k ∈ [1, n] : Ctnk
≤ 0), for the expected

shortfall ESF = E
[
−Ctnn

∣∣∃k ∈ [1, n] : Ctnk
≤ 0
]
and for the gap risk GPR =

E
[
−Ctnn 1{∃k∈[1,n] :Ctk

≤0}
]
. In order to handle and compute such gap risk measures

associated with our Heston and rough Heston models, we need to simulate the price

process in (8.1) under each of these two models since no closed-form formula exist in

such cases. For the Heston model, well known simulation techniques exist (cfr Lord

et al. (2010)). For the rough Heston, we again consider the time-efficient simulation

scheme of Abi Jaber (2019) based on a lifted version of the Heston model, which

appears to be extremely fast and accurate. We first obtain the following Table 10

with the comparable parameter estimates used in Table 5 :

Table 10. Shortfall probability, Expected shortfall and Gap
risk for the three models with comparable parameters.

PSF ESF Gap risk

B&S 1.08× 10−5 0.24237 2.62× 10−6

Heston 0.0228 0.5100 0.0116

Rough Heston 0.0438 0.8125 0.0356

We clearly see that the rough Heston model provides the highest risk measures due

to its fatter left tail. The B&S CPPI strongly underestimates the gap risk and gives

measures way below the two other models. Moreover, we have the following Table

11 giving these different risk measures based on the true estimated parameters :

Table 11. Shortfall probability, Expected shortfall and
Gap risk for the three models with m = 4 and the true

estimated parameters.

PSF ESF Gap risk

B&S 1.65× 10−6 0.1990 3.28× 10−7

Heston 0.0228 0.5100 0.0116

Rough Heston 0.0053 0.4373 0.0025

What is fundamental to note is that the rough Heston model with the true esti-

mated parameters provides a shortfall probability in accordance with the empirical
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one associated with a m = 4. Indeed, recall from Section 6 that the estimated

shortfall probability ε based on the empirical log-return data with m = 4 is equal

to 0.5%. Hence, we see that the B&S model strongly underestimates the shortfall

probability of the CPPI strategy while the Heston model overestimates it and tends

to be too risky. The fact that the rough Heston model manages to remarkably repro-

duce such empirical shortfall probability means that rough volatility models indeed

better reproduce tail events and are more consistent with the gap risk derived from

empirical data of log-returns. This again confirms the importance of taking into

account the roughness of volatility when considering and assessing CPPI strategies.

Note that the client of a CPPI fund may be insured against this gap risk in such a

way that he can recover from the bank the loss made if the fund breaks the floor. In

this case, the share of a CPPI fund is a financial product with an optional compo-

nent, i.e. the sum of a self-financing portfolio corresponding to the uninsured CPPI

strategy and a put option with discounted payoff −CT 1{∃k∈[1,n] :Ctk
≤0}. Practi-

cally, our methodology allows to better assess the gap risk since it provides a better

modeling of the tails of the CPPI distribution and since it is more consistent with

financial data. Clients and practitioners can hence better hedge against this gap

risk. Moreover, transaction costs could also be taken into consideration with this

discrete setting, cfr Balder et al. (2009).

9. Conclusion

This paper proposes to derive and study the properties of CPPI strategies based on

the characteristic function of the log-cushion. The class of affine Volterra processes

appears to be particularly adapted for building such CPPI strategies in friction-

less markets since their log-cushion’s characteristic function is given in quasi-closed

form and can be evaluated rapidly using numerical schemes. This method allows

to generalize results previously established in the literature for a large class of

models, especially when the variance process associated with the risky asset is non-

Markovian in the current variance state. Through the choice of the coefficients a

and b as well as the convolution kernel K of affine Volterra processes, various and

more realistic dynamics can be envisaged for the underlying risky asset on which

the CPPI strategy is defined. In particular, we investigate the CPPI strategy under

rough volatility with the rough Heston model (using a power law kernel K) since

this model is known for being extremely consistent with past volatility time series.

We then show how to obtain effectively and accurately very consistent results from

the characteristic function of the log-cushion, such as the moments, the density,

several risk measures as well as some gap risk measures for the portfolio value PT .

Moreover, the Heston model which belongs as well to the class of affine Volterra

processes (with an identity kernel), is also studied in this paper and we again get

results in a more effective and accurate way using the characteristic function of the

log-cushion compared with classical simulation-based methods. For the sake of com-

parison, this characteristic function is also given under the simple B&S framework.
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These three models are estimated directly under the real probability measure based

on the PMCMC procedure of Andrieu et al. (2010) from a dataset of S&P500 daily

log-returns. In particular, this PMCMC algorithm is adapted for the rough Hes-

ton model so as to take into account the non-Markovianity of its variance process.

This allows to deviate from the existing calibration procedure of the rough Heston

in the literature, exclusively based on risk-neutral data, and to provide a better

statistical fit of the past time series of log-returns. From this econometric estima-

tion of the considered models, we emphasize the importance of taking into account

the roughness of volatility for providing a better modeling of the tail of the CPPI

distribution. This roughness property of volatility has indeed a strong impact on

the kurtosis of the CPPI distribution and since CPPI strategy is very sensitive to

tail events, we show that the rough Heston model enables to study more accurately

the true properties of the portfolio value at maturity. These effects are confirmed

with the analysis of the log-cushion density under each model as well as with the

study of several risk measures such as the VaR and TVaR. Finally, in a more prac-

tical way, the rough Heston better models the gap risk associated with the CPPI

strategy compared with the Heston and B&S models. It therefore provides a better

protection of the guaranteed amount at maturity for the client and allows the issuer

to build a more accurate hedging strategy.

10. Appendix

10.1. Fractional Calculus

We define the fractional integral of order r ∈ (0, 1) of a function f as

Irf(t) =
1

Γ(r)

∫ t

0

(t− s)r−1f(s) ds ,

whenever the integral exists, and its fractional derivative of order r ∈ (0, 1) as

Drf(t) =
1

Γ(1− r)

d

dt

∫ t

0

(t− s)−rf(s) ds ,

whenever it exists. If we take the power-law kernel K(t) = tr−1/Γ(r), the fractional

integral and derivative are given by the following convolution operator

Irf(t) = (K ⋆ f) (t) , Drf(t) =
d

dt

(
I1−rf(t)

)
.

10.2. Proof of Theorem 3.1.

The proof closely follows the one of Gatheral & Keller-Ressel (2019) and expands

their results in the context of CPPI. Let

Gs = (g ⋆ ξ)s(T, u) =

∫ T

s

g(T − r, u)ξs(r)dr , (10.1)

Ms = exp (uYs +Gs) . (10.2)
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Hence, it directly comes from (3.6) that M is a martingale. It is also shown in

Gatheral & Keller-Ressel (2019) that G can be rewritten as an Itô process of the

form

Gs =

∫ T

0

g(T − r, u)ξ0(r)dr −
∫ s

0

g(T − r, u)Vr dr +

∫ s

0

hr(T, u)dWr , (10.3)

where

hs(T, u) = (g ⋆ η)s(T, u) =

∫ T

s

g(T − r, u)ηs(r)dr .

This equation 10.3 for G is obtained using the stochastic Fubini theorem which

requires the Assumption 2.1 of Gatheral & Keller-Ressel (2019) imposing the two

following conditions on ηs(·) :

(a) For dt ⊗ dP-almost all (t, ω), it hold that t 7→ ηs(s + t, ω) is non-negative

and decreasing on (0, T )

(b) For any T > 0, the following integrability condition holds almost surely :∫ T

0

(∫ T

0

ηs(r)
2ds

)1/2

dr <∞ .

We now expand their results and show that the CGF is still affine when considering

the following dynamic for Y (cfr equation (3.5)) :

dYs = −1

2
m2 Vs ds+m

√
Vs dWs .

Then, applying Itô’s lemma to Ms = exp(uYs +Gs), we have that

dMs

Ms
=(dWs terms)

+

(
1

2
m2(u2 − u)Vs − g(T − s, u)Vs +muρ

√
Vs hs(T, u) +

1

2
hs(T, u)

2

)
ds .

Since we know from Section 2 that ηs(T ) =
√
Vs κ(T − s), we find the following

simplification for hs(T, u), similar as the one derived in Gatheral & Keller-Ressel

(2019) :

hs(T, u) = (g ⋆ η)s(T, u) =
√
Vs

∫ T−s

0

g(T − s− r, u)κ(r)dr =
√
Vs (g ⋆ κ)(T − s) .

Therefore, if we define

Rv(m,u,w) =
1

2
m2(u2 − u) +mρuw +

1

2
w2 , (10.4)

we find that

dMs

Ms
= (dWs terms) + (Rv (m,u, (g ⋆ κ)(T − s))− g(T − s, u))Vs ds .
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In order to have that M is a local martingale, we need to cancel the terms in ds

and we hence find the following expression for g(·, u),

g(t, u) = Rv (m,u, (g ⋆ κ)(t, u)) = Rv

(
m,u,

∫ t

0

κ(t− r)g(r, u)dr

)
, (10.5)

Finally, following Gatheral & Keller-Ressel (2019), one can show that M is a true

martingale and then, expression 10.5 enables to compute the CGF of the forward

variance model (Y, ξ) using

logE
[
eu(YT−Ys)|Fs

]
=

∫ T

s

g(T − r, u)ξs(r)dr . (10.6)

□

10.3. Algorithms

Algorithm 1 Particle filtering of the rough Heston model.

Initial step : draw N values of v
(i)
0 for i = 1, · · · , N from the initial distribution

f(v0), which is assumed to be uniform U[0,0.36].

Main procedure :

for j = 1 to n do

Prediction step :

Draw a sample ∆w
2(i)
j from a N(0,

√
∆), i = 1, · · ·N .

Update v
(i)
j using the relation :

v
(i)
j = v

(i)
0 +

j−1∑
k=0

(tj − tk)
α−1

Γ(α)
λ
(
θ − v

(i)
k

)
∆+

j−1∑
k=0

(tj − tk)
α−1

Γ(α)
ν

√
v
(i)
k ∆w

2(i)
k+1

Correction step :

The particle u
(i)
j =

(
v
(i)
k ,∆w

2(i)
k

)
k=1:j

has a probability of occurrence

p
(i)
j =

f(rj |u(i)j )∑
i=1:N f(rj |u(i)j )

where

f(rj |u(i)j ) = ϕ

rj −
(
µ− v

(i)
j−1

2

)
∆− ρ

√
v
(i)
j−1 ∆w

2(i)
j√

1− ρ2
√
v
(i)
j−1

√
∆


Resampling step :

Resample with replacement N particles with importance weights p
(i)
j .

The initial importance weights are set to p
(i)
j = 1/N .

end for
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Algorithm 2 Metropolis Hastings algorithm.

Main procedure :

for j = 1 to n do

Simulate ϑ
′ ∼ q(ϑ

′ |ϑt)
Take

Θt+1 =

{
ϑ

′
with probability ρ(ϑt, ϑ

′
)

ϑt with probability 1− ρ(ϑt, ϑ
′
)

where ρ(ϑt, ϑ
′
) is the acceptance probability

ρ(ϑt, ϑ
′
) = min

{
f(ϑ

′ | r)
f(ϑk | r)

q(ϑk |ϑ
′
)

q(ϑ′ |ϑk)
, 1

}
end for

10.4. Proof of Theorem 5.1.

This proof follows Keller-Ressel et al. (2018) and expands their results in the context

of CPPI. For an investment horizon T , we also define Mt = eUt , with Ut given by

Ut = ϕ(T − t) + χ(T )V0 −
∫ t

0

χ′(T − s)Vsds+

∫ t

0

ψ2(T − s)dLs + ψ1(T − s)Yt

= ϕ(T − t) + χ(T )V0 −
∫ t

0

χ′(T − s)Vsds+

∫ t

0

ψ2(T − s)dLs + u1Yt , (10.7)

since ψ1 = u1 due to the form (5.15) and where dLt = (β + bVs) ds +(
0 + a

√
Vs
)
dŴs as in Section 5.2 to ensure that the process Z = (Y, V ) is an

affine Volterra process. Using Itô’s lemma on Mt = eUt , we have

dMt

Mt
=− ϕ′(T − t)− χ′(T − t)Vt dt+ ψ2(T − t)(β + bVt)dt+

1

2
ψ2(T − t)2a2Vt dt

+
1

2
m2(u21 − u1)Vt dt+ ρψ2(T − t)

(
0 + a

√
Vt

)
u1m

√
Vt dt+ (dWt terms) ,

which gives

dMt

Mt
= (−ϕ′(T − t) +RΦ(ψ2(T − t))) dt+(−χ′(T − t) +RΨ(ψ(T − t)))Vt dt+(dWt terms) ,

where we define

RΦ(ψ2) = βψ2 + 0 ,

and

RΨ(ψ) =
1

2
m2(ψ2

1 − ψ1) + (b+mψ1ρa)ψ2 +
a2

2
ψ2
2

=
1

2
m2(u21 − u1) + (b+mu1ρa)ψ2 +

a2

2
ψ2
2 .
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Hence for M to be a local martingale on [0, T ], we find that ϕ′ = RΦ(ψ2) and that

χ′ = RΨ(ψ). Imposing that ϕ(0) = 0 and χ(0) = u2 and using the definition of Ut

as well as the form (5.16) of ψ2, it is straightforward to show that

UT = ϕ(0) + χ(0)VT + u1YT = u2VT + u1YT , (10.8)

Since we assume that K satisfies (5.11) and that u ∈ C2 with Re u1 ∈ [0, 1] and

Re u2 ≤ 0, the Riccati-Volterra equation (5.16) has a unique global solution ψ2 and

M is a true martingale, as shown in Theorem 7.1. of Abi Jaber et al. (2019). Hence,

since M is a true martingale, we have with u = (u1 u2) and Z = (Y V )
T
that

E[euZT ] = E[eu2VT+u1YT ] = E[MT ] =M0 = eϕ(T )+χ(T )V0+u1Y0 .

□

10.5. Proof of Corollary 5.1.

We build the exact same proof as in Theorem 5.1. with the same assumption on K

except that we now impose u2 = 0 such that χ(0) = 0. Hence, the terminal value

UT of the process U defined by (10.7) is now

UT = ϕ(0) + χ(0)VT + u1YT = u1YT .

Since M is still a true martingale when u2 = 0, we have that

E[euZT ] = E[eu1YT ] = E[eUT ] = E[MT ] =M0 = eϕ(T )+χ(T )V0+u1Y0 ,

and the solution ψ now becomes

ψ1 = u1 ,

ψ2 = K ⋆RΨ(ψ) . (10.9)

Finally, recall from (3.5) that the dynamic of the log-cushion is denoted Xt and is

given by

dXt = (r +m(µ− r)) dt+ dYt .

Hence, the Laplace transform of the affine Volterra process Z̃ = (X,V ) with u2 = 0

becomes

E[euZ̃T ] = E[eu1XT ] = eϕ(T )+χ(T )V0+u1(X0+(r+m(µ−r))t) .

And finally the characteristic function of the log-cushion under the general affine

Volterra process Z̃ is obtained by replacing u1 by iz.

□
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10.6. Fast Fourier Transform

We present here the approach used to determine numerically the density of proba-

bility of the log-cushion XT , which then allows to obtain the VaR and TVaR of the

portfolio value VT for each model. First, the characteristic function of XT , denoted

ΦX(T, z), is by definition the Fourier Transform of the density fT (x) of XT :

ΦX(T, z) = E[eizXT ] =

∫ +∞

−∞
eizxfT (x) dx .

Since we know the characteristic function of XT for the B&S, Heston and rough

Heston models, we can derive the density function fT (x) using the Fourier inversion

theorem which states that

fT (x) =
1

2π

∫ +∞

−∞
ΦX(T, z) e−izxdz =

1

π

∫ +∞

0

ΦX(T, z) e−izx dz , (10.10)

where the second equality results from the symmetry of the integrand. Next,

we illustrate how to derive the density function fT (x) from equation (10.10) via

the Fast Fourier Transform (FFT). FFT is an efficient algorithm for comput-

ing the following transformation of a vector (αn, n = 1, · · · , N − 1) into a vector

(βn, n = 1, · · · , N − 1), where N is typically a power of 2 :

βn =

N−1∑
j=0

exp

(
−2πi

N
jn

)
αj .

This method is quicker than computing the discretization of the integral (10.10)

since the FFT algorithm computes in only O(n log n) operations (rather than

O(n2)). The first step of the FFT consists in discretizing the integral (10.10). We

denote ∆z the step of discretization and N the number of steps. The discretization

mesh is defined by

{zj} = {j∆z ∈ R+ | 0 ≤ j ≤ N − 1} .

We then need to define a mesh of discretization for the density values fT (x), spaced

by ∆x and counting the same number N of elements as {zj}. The mesh of the

density is then

{xn} = {−xmin + n∆x ∈ R+ | 0 ≤ n ≤ N − 1} ,

where xmin = N∆x
2 and with the following condition on the steps of discretizations

∆z∆x = 2π
N . Therefore, we can reformulate (10.10) into the following form
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fT (xn) =
1

π

∫ +∞

0

ΦX(T, z) e−izxndz

⇐⇒ fT (xn) =
1

π

N−1∑
j=0

ΦX(T, zj) e
−izjxn ∆z

⇐⇒ π fT (xn)︸ ︷︷ ︸
βn

=

N−1∑
j=0

e−i 2π
N j n ei zj xmin ΦX(T, zj)∆z︸ ︷︷ ︸

αj

. (10.11)

This way we can apply the FFT with αj = ei zj xmin ΦX(T, zj)∆z in order to obtain

the output vector βn = π fT (xn) for n ∈ 0, · · · , N − 1. Finally, once we estimated

the density via the FFT, we can easily derive the ε-quantile of XT denoted xε. Using

equation (7.1), we find that the VaR level q of the portfolio value VT at maturity

is equal to

q = exε + FT . (10.12)

The TVaR tv at level ε of VT can then be computed by discretizing (7.4) :

tv =
1

ε

∑
xn: xn≤log(q−F0erT )

exnfT (xn)∆x + F0e
rT . (10.13)
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