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described macroscopically be the drift-di�usion-Poisson systemnt = div(rf(n)� nr�) (1)pt = div(rf(p) + pr�) (2)��� = n� p� C(x): (3)Here n � 0 and p � 0 are the position densities of the negatively and,repectively, positively charged particles, � is the (self-consistent) Coulombpotential and C(x) 2 L1(
) is the di�erence of background ion positiondensities. � > 0 is a (usually small) parameter representing the scaled Debye-length of the particle system. f = f(s) is the (nonlinear) pressure functionsatisfying f 0(s) > 0 for s > 0. For the sake of simplicity we assume in thispaper equal pressure-density equations of state for both particles.The equations (1),(2),(3) are posed in a bounded domain 
 � Rd , d 2 N ,where the particles are assumed to be con�ned. We assume zero-outuxconditions:(rf(n)� nr�) � � = (rf(p) + pr�) � � = 0 on @
; (4)and a zero-outward electric �eldr� � � = 0 on @
: (5)Here � denotes the (formal) exterior outward unit vector normal of @
.Also we supplement the equations by initial conditions for the densitiesn(x; t = 0) = n�(x) � 0 ; Z
 n�(x) dx =: N (6)p(x; t = 0) = p�(x) � 0 ; Z
 p�(x) dx =: P (7)N and P are the total negative and, respectively, positive charges, whichare conserved by the evolution of (1),(2). Therefore we do have to requiretotal charge neutrality of the systemN � P = Z
 C(x) dx: (8)As basic reference for drift-di�usion-Poisson systems with linear di�usionwe cite [MRS90], where many further references can be found. Recently, the2



limit t!1 has been investigated for the bounded domain [Gaj85, GaGr89,CJMTU00, Ott00] and for the whole space problem [BiDo99, BDM99, AMT98,AMTU98, CJMTU00, Ott00] and the limit � ! 0 of the parabolic- ellipticsystem ws analysed in [Gas, GLMS99] (where results for time intervals ofO(1)-length were obtained).In this paper we are interested in the limit � ! 0+ of the stationarysystem corresponding to (1)-(8). To compute the steady state of a nonlinear(possibly degenerate) convection-di�usion equation with given potential V =V (x) 2 L1(
),ut = div(rf(u) + urV (x)); Z
 u dx =M � 0; u � 0;we write the ux asrf(u) + urV (x) = ur(h(u) + V (x));where the enthalpy h = h(s) is de�ned byh(s) = Z s1 f 0(r)r dr: (9)Then for the equilibrium state u = u1(x) we �nd that h(u1(x))+V (x) isconstant on connected components of fu1 > 0g. It turns out that the uniqueequilibrium state, which minimizes the corresponding entropy [CJMTU00],is given by u1(x) = g(c� V (x)); (10)where g is the generalized inverse of the enthalpy,g(�) = ( 0 ; � � h := h(0+)h�1(t) ; h < � < h := h(1) ) ; 8� 2 (�1; h): (11)The constant c in (10) is determined such thatM = Z
 g(c� V (x)) dx: (12)
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Note that a unique constant c satisfying (12) exists (at least) forM 2 �0;M� ; M = 8><>: 1 if h =1Z
 g(h+ ess inf
 V � V (x)) dx if h <1For the typical choicef(s) = sm; 8>><>>: m > 1 : porous medium casem = 1 : linear casem < 1 : fast di�usion case (13)we calculateh(s) = 8>>><>>>: mm�1 (sm�1 � 1) ; m > 1 ��1 < h = � mm�1 ; h =1�log(s) ; m = 1 ��1 = h; h =1�m1�m �1� s�(1�m)� ; m < 1 ��1 = h; h = m1�m <1� (14)and g(�) = 8>>>><>>>>: ��1 + �m�1m �+� 1m�1 ; m > 1exp(�) ; m = 1�1� � 1�mm �� 11�m ; m < 1 (15)Another physically important case is given by the Fermi-Dirac distribu-tion [Groe86, GaGr89]f(s) = sF�1(s)� Z s0 F�1(�) d� (16)with h(s) = F�1(s)� F�1(1); �1 = h; h =1 (17)and g(�) = F �� + F�1(1)� :; (18)4



where F (�) = ZRd d v"+ exp� jvj22 � �� :By formally applying the solution formula (10) to (1)-(7), we obtain thesteady state drift-di�usion-Poisson system (called the \mean �eld equation"in the sequel) for the equilibrium potential � = �1��� = n[�]� p[�]� C(x); x 2 
 (19)n[�] = g(�[�] + �) (20)p[�] = g(�[�]� �) (21)subject to homogeneous Neumann conditionsr� � � = 0 on @
: (22)The constants �[�]; �[�] (so-called Fermi-levels), which determine the parti-cle densities n1 = n[�], p1 = p[�], are given by the normalisationsZ
 g(�[�] + �) dx = N; (23)Z
 g(�[�]� �) dx = P; (24)where (8) is assumed to hold for consistency reasons.We refer to [GaGr89, CDMS99] for an analysis of (19)-(22) in the \linear"case g(�) = exp(�) (Boltzmann distribution) and to [BDM99, Unt97] for themodel in \nonlinear" cases.It turns out that (19)-(21) is a critical point of the functionalJ�[�] = �2 Z
 jr�j2 dx� Z
C(x)� dx+ Z
G(�[�] + �) dx+ Z
G(�[�]� �) dx�N�[�]� P�[�]; (25)5



where G is a primitive of g. We shall show in the case h = 1 that J� is astrictly convex, weakly lower semicontinuous, bounded from below functionalon an apropriate convex set. The solution of (19)-(21) is therefore uniquelydetermined as the minimum of J�.Actually, the constraints (23), (24) which determine � and � makes theproblem nonlocal and it turns out that a transformed functional is easier tohandle (in case of h =1 and for carrying out the limit �! 0, see AppendixA). This new functional readsE�(n; p) = Z
H(n) dx+ Z
H(p) dx + 12� Z
 jrV j2 dxwhere (H 0)�1 = gj(0;+1) (i.e. H 0 = h) and where V = V [n � p� C] is givenby ��V = n� p� C(with homogeneous Neuman boundary conditions) and has now to be mini-mized under the constraintsN = Z
 n(x) dx and P = Z
 p(x) dx; n � 0; p � 0:The constants � and � now simply appear as Lagrange multipliers associatedto the normalization constraints for the L1-norms of n and p.This allows us to state our �rst result.Theorem. A. With the above notations, (19)-(21) has a unique solution.The functional E� is the one which is used to study in L1 the asymp-totic behaviour of drift-di�usion problems corresponding to a nonlinear dif-fusion (see [CJMTU00, BDM99] for the case with a Poisson coupling; see[AMTU98, AMT98, BiDo99] for the case with Poisson coupling and a lin-ear di�usion). Such a framework is also especially convenient for the studyof the so-called insulator limit (see [CDMS99] for a justi�cation in terms ofphysical quantities) corresponding to �! 0, and as in [CDMS99] (this paperis basically a generalization of [CDMS99] emphasizing the abstract structureof the problem), we have to distinguish two regimes.6



Theorem. B. If either N > R
 C+ dx or (equivalently) P > R
C� dx, thenthe solution of (19)-(21) converges as � ! 0 to the solution of (19)-(21)with � = 0, which is unique. In the other case, there exist two measurablesubsets of 
, 
n and 
p, respectively, with 
n � fC � 0g, 
p � fC � 0g,and a unique solution (n0; p0; V0), which is the limit of (n; p; V ) as � ! 0,such that��V0 = n0 � p0 � C; Z
 V0 dx = 0; Z
 n0 dx = N; Z
 p0 dx = P;V0 = ess inf
 V0 on 
n�V0 = C on 
 n (
n [ 
p)V0 = ess sup
 V0 on 
p ;
n0 = � C+ on 
n0 on 
 n 
n ; p0 = � C� on 
p0 on 
 n 
pThe conditions N > R
C+ dx and P > R
 C� dx are equivalent becauseof the global charge neutrality (25)). In the second case, �V0 = C on 
 n(
n[
p) and v0 is constant on 
n and 
p where it reaches its maximum andits minimum respectively. Note that this double obstacle for V is uniquelydetermined by the side condition R
n C+ dx = N .The paper is organized as follows. The remainder of the �rst section isdevoted to some preliminary results. A more detailed statement of TheoremA and its proof are given in Section 2, and Section 3 deals with the insu-lator limit. Remarks on the Legendre transform of the functional can befound in Appendix A and an extension to unbounded domains (correspond-ing to one species of particles, or two species when one looks for intermediateasymptotics) is given in Appendix B.Before going further, let us �x some notations and state the detailedassumptions we shall use throughout this paper.A.1 
 � Rd , d 2 N , is a bounded, nonvoid domain.A.2 h : J ! R, J = R+ := (0;1) or J = R+0 := [0;1), is continuous andstrictly increasing.h := infJ h, h := supJ h. J = R+ i� h = �1.7



A.3 H : R+0 ! R is continuous, di�erentiable on R+ and8s 2 R+ : H 0(s) = h(s):A.4 g : (�1; h)! J is the generalized inverse of h as de�ned in (11).A.5 C 2 L1(
). C = ess inf
 C, C = ess sup
 C.Remark 1. a) H is strictly convex.b) g is continuous and increasing, strictly increasing on (h; h) and limt!h g(t) =1.In the sequel we shall assume that assumptions A.1 and A.5 are alwayssatis�ed.Let f 2 L1(
) with R
 f dx = 0. If there is V 2 H1(
) with R
 V dx = 0and 8� 2 H1(
) : Z
rV � r� dx = Z
 f� dx;- which is, e.g., the case for all f 2 L1(
) \H�1(
) with R
 f dx = 0 - thenV will be uniquely determined (by f) and we will set V = V [f ] and certainlyZ
 jrV [f ]j2 dx <1:We observe: V [f ] is a weak solution of��V = f;subject to homogeneous Neumann boundary conditions. However, if, for agiven f , no such V 2 H1(
) exists, then we setZ
 jrV [f ]j2 dx =1:We introduce for N;P 2 R+ with N � P = R
C dx the setC := �(n; p) 2 L1+(
)� L1+(
) : Z
 n dx = N; Z
 p dx = P� ;and we de�ne for � 2 R+ ,E� : C ! R [ f1g;E�(n; p) = Z
H(n) dx+ Z
H(p) dx + 12� Z
 jrV [n� p� C]j2 dx;where we make use of Jensen's inequality ensuring that E� is bounded below.8



1.1 A Semilinear Elliptic PDE of Order TwoIn this section we shall derive several auxiliary results.Proposition 1. Assume A.1 and A.5 and let � 2 R+ . Let I � R be anonvoid, open interval and let m : I ! R be continuous and increasing with�1 � infI m < C � 0; 0 � C < supI m � 1:Then there is exactly one � 2 H1(
) with �(x) 2 I for almost all x 2 
 andm (�) � 2 L1(
); �� Z
r� � r� = Z
m(�)� dx� Z
 C � dx;for all � 2 H1(
). Furthermore, � has the following properties:1. � 2 L1(
); C � m�ess inf
 �� � m�ess sup
 �� � C,in particular: there is a constant �̂ 2 R+ such that8� 2 R+ : k�kL1(
) � �̂:2. � is the unique weak solution (in H1(
)) of the semilinear elliptic PDE��� = m(�)� C;subject to homogeneous Neumann boundary conditions.3. Z
m(�) dx = Z
C dx.Proof. Let M : I ! R; M(t) := Z tt0 m(s) ds;where t0 2 I with m(t0) = 0. Since m(t(< 0 for t < t0 and since m(t) > 0 fort > t0, the function M is a non-negative primitive of m. Furthermore, sincem is increasing, M is convex. We introduce the functionalF� : H1(
)! R [ f1g;F�(�) = 8><>: �2 Z
 jr�j2 dx+ Z
M(�) dx� Z
C � dx if � 2 C01 if � =2 C0 ;9



where C0 = f� 2 H1(
) : �(x) 2 I for almost all x 2 
g:We certainly have infC0 F� 2 R. Let (�k)k2N be a minimizing sequence of F�.By assumption we have for almost all x 2 
,limt!inf I(m(t)� C(x)) < 0; limt!sup I(m(t)� C(x)) > 0;hence there is a compact interval [a; b] � I (which is, by the way, independentof �) such that t 7! M(t) � C(x)t is decreasing on (inf I; a) and increasingon (b; sup I), i.e. for almost all x 2 
:8t 2 (inf I; a) : M(t)� C(x) t �M(a)� C(x) a;8t 2 (b; sup I) : M(t)� C(x) t �M(b)� C(x) b:Now we set for k 2 N , [�k] := minfb;maxfa; �kgg:Then ([�k])k2N is a sequence in H1(
) because cutting maps H1(
) (contin-uously) into itself. Furthermore, cutting does not increase the L2(
)-normsof the gradients [Zie89]. Hence8k 2 N : F�([�k]) � F�(�k);and therefore ([�k])k2N is a minimizing sequence of F� as well. By passing toa subsequence (but without changing notation) we have[�k]* � 2 L1(
) weak* in L1(
) as k!1;and therefore - since L1(
) � L2(
) and since the L2(
 : Rd)-norms of(r[�k])k2N are uniformly bounded - we have[�k]* � 2 H1(
)weakly in H1(
) as k!1:We readily deduce from a lower semicontinuity argument that � is a mini-mizer of F� in H1(
). Since F� is strictly convex due to the quadratic lead-ing term, � is the unique minimizer of F� in H1(
). The uniform bounds10



��(x) 2 [a; b] � I for almost all x 2 
 give m(�) 2 L1(
) and the associatedEuler-Lagrange equations8� 2 H1(
) : �� Z
r� � r� = Z
m(�)� dx� Z
C � dxeasily follow. The proof of the remaining statements is left to the reader.In particular cases the result of Proposition 1 can be extended as follows.Proposition 2. Assume A.1 and A.5 and let � 2 R+ . Let I � R be anopen, nonvoid interval with inf I 2 R or sup I 2 R. Let m : I ! R be con-tinuous and increasing. Assume furthermore one of the following conditions1. If inf I 2 R and ifinfI m = C � 0; 0 � C < supI m � 1;then we setm0 : [inf I; sup I)! [C;1); m0(�) = ( C if infI = �m(�) if infI < �2. If sup I 2 R and if�1 � infI m < C � 0; 0 � C = supI m;then we e setm0 : (inf I; sup I]! (�1; C]; m0(�) = ( m(�) if � < sup IC if � = sup I3. If inf I; sup I 2 R and ifinfI m = C � 0; 0 � C = supI m;then we setm0 : [inf I; sup I]! [C;1); m0(�) = 8>><>>: C if � = infIm(�) if infI < �C if � = sup I11



Then there is exactly one � 2 H1(
) with �(x) 2 dom(m0) for almost allx 2 
 andm0 (�) � 2 L1(
); �� Z
r� � r� = Z
m0(�)� dx� Z
 C � dx;for all � 2 H1(
). Furthermore, � has the following properties:1. � 2 L1(
); C � m0 �ess inf
 �� � m0�ess sup
 �� � C,in particular: there is a constant �̂ 2 R+ such that8� 2 R+ : k�kL1(
) � �̂:2. � is the unique weak solution (in H1(
)) of the semilinear elliptic PDE��� = m0(�)� C;subject to homogeneous Neumann boundary conditions.3. Z
m0(�) dx = Z
C dx.Proof. We consider case 1. Cases 2. and 3. can be treated in analogy. Wede�ne the functionm1 : (�1; sup I)! R;m1(�) = ( C + (�� inf I) if � 2 (�1; inf I]m(�) if � 2 (inf I; sup I)Since infm1 = �1 < C, we can apply proposition 1 to obtain:There is exactly one �1 2 H1(
) such that �1(x) 2 (�1; sup I) for almostall x 2 
 andm1 (�1) � 2 L1(
); �� Z
r�1 � r� = Z
m1(�1)� dx� Z
C � dx;for all � 2 H1(
). Furthermore, �1 has the following properties:1. �1 2 L1(
); C � m1 �ess inf
 �1� � m1 �ess sup
 �1� � C,12



2. �1 is the unique weak solution (in H1(
)) of the semilinear ellipticPDE ���1 = m1(�1)� C;subject to homogeneous Neumann boundary conditions.3. Z
m1(�1) dx = Z
C dx.m1 (�1) � 2 L1(
); �� Z
r�1 � r� = Z
m1(�1)� dx� Z
C � dx;We deduce from estimate 1.: m1(�1) = m0(�1). Hence for all � 2 H1(
),m0(�1)� 2 L1(
); �� Z
r�1 � r� = Z
m0(�1)� dx� Z
C � dx;�1(x) 2 dom(m0) = [inf I; sup I) for almost all x 2 
,�1 2 L1(
); C � m0 �ess inf
 �1� � m0 �ess sup
 �1� � C;�1 is a weak solution (in H1(
)) of the semilinear elliptic PDE���1 = m0(�1)� C;subject to homogeneous Neumann boundary conditions, andZ
m0(�1) dx = Z
C dx.Now let ��(x) 2 dom(m0) for almost all x 2 
 andm0 (��) � 2 L1(
); �� Z
r�� � r� = Z
m0(��)� dx� Z
C � dx:Then m0(��) = m1(��) as well and we deduce �� = �1 from the uniquenessresult cited above.The veri�cation that the semilinear elliptic PDE��� = m0(�)� C;subject to homogeneous Neumann boundary conditions andZ
m0(�) dx = Z
C dx, has a unique solution in H1(
) is left to the reader.13



1.2 An Abstract Variational ProblemIn this section we consider the limit � ! 0 of an abstract minimizationproblems with a class of functionals containing E�.Theorem 3. Let (B; k:k) be a Banach space and letC � Bbe nonvoid, convex and weakly closed in B. LetE; F : C ! R [ f1g; be bounded below with infC E <1; infC F <1:We set C� := fx 2 C : E(x) <1g:For � 2 R+ let x� 2 C.Assume1. x� is for each � 2 R+ a minimizer of E� := E + ��1F in C.2. x� * x0 weakly in B as �! 0.Thena) lim sup�!0 F (x�) � infC� F .b) If F is weakly lower sequentially continuous at x0, thenF (x0) � infC� F:c) If F is weakly lower sequentially continuous at x0 and if E(x0) < 1,then x0 is a minimizer of F in C�, i.e.F (x0) = infC� F:d) If x� is a minimizer of F in C�, thenlim sup�!0 E(x�) � E(x�):14



e) If x� is a minimizer of F in C� and if E is weakly lower sequentiallycontinuous at x0, then E(x0) � E(x�):f) If E and F are weakly lower sequentially continuous at x0 and if E(x0) <1, then x0 is a minimizer of F in C� whose \energy" E(x0) is less orequal the energy E(x�) of any minimizer x� of F in C�.Proof. a) Let �� 2 R be a lower bound of E in C. Let x 2 C with E(x) <1.Since � > 0 we have�(E(x�) + �) + F (x�) � �(E(x) + �) + F (x):Hence by non-negativity of E(x�) + �,lim sup�!0 F (x�) � F (x):b) follows from a).c) If E(x0) <1, then x0 is by b) a minimizer of F in C�.d) Let �� 2 R be a lower bound of E; F . Let x� 2 C� be a minimizer of Fin C�. Then E(x�) <1 and we obtain for all � 2 R+ the estimate(E(x�) + �) + 1�(F (x�) + �) � (E(x�) + �) + 1�(F (x�) + �);from which we deduce E(x�) <1, hence x� 2 C�, and due to F (x�) � F (x�),E(x�) � E(x�):e) follows from d) and f) follows from a)-e).2 The Main Results2.1 � 2 R+The main result of this section isTheorem 4. Assume A.1-A.5. Let � 2 R+ and let N;P 2 R+ withN � P = Z
C dx:Then: 15



1. The functional E� has a unique minimizer (n�; p�) in C.2. n�; p� 2 L1(
) withn� � C + Pmeas(
) ; p� � �C + Nmeas(
) :3. There are ��; �� 2 R such thatn� = g ��� � ��1V�� ;p� = g ��� + ��1V�� ;where V� = V [n� � p� � C], hence if one sets �� := ���1V�, then���� = g (�� + ��)� g (�� � ��)� C; Z
�� dx = 0;subject to homogeneous Neumann boundary conditions andZ
 g(�� + ��) dx = N; Z
 g(�� � ��) dx = P:Proof. Due to the lack of coercitivity (in case of h < 1) of E� it is notobvious that E� has a minimizer in C. The argumentation will be basedsettled on the semilinear equation��	 = g(� +	)� g(� � 	)� C (26)subject to homogeneous Neumann boundary conditions. In (26) the con-stants �; � are a priori unknown. Our program is to prove: There are �; � 2 Rsuch that R
 g(�+	) dx = N , R
 g(� �	) dx = P .We consider for c 2 (�1; 2h) the semilinear elliptic PDE��� = g(c+ �)� g(��)� C (27)subject to homogeneous Neumann boundary conditions. This problem �tswith m(:) = g(c+ :)� g(�:); I = (�h; h� c)16



to Proposition 1: there is a unique �c 2 H1(
) which solves (27) subjectto homogeneous Neumann boundary conditions. Furthermore, �c belongs toL1(
) and if we set nc = g(c+ �c); pc = g(��c);�c := ess sup
 �c; �c := ess inf
 �cthen we deduce from (27) the estimatesg �c+ �c�� g ���c� � C; g �c+ �c�� g ���c� � C: (28)Hence the functions nc; pc belong to L1(
). Let us introduceNc = Z
 nc dx = Z
 g(c+ �c) dx; Pc = Z
 pc dx = Z
 g(��c) dx:Then Nc � Pc = R
 C dx and we haveknckL1(
) � C + Pcmeas(
) ; kpckL1(
) � �C + Ncmeas(
) :We have to prove: there is c 2 R such that Nc = N , Pc = P . This isshown in several steps.c 7! (Nc; Pc) is continuous. Indeed, let c 2 (�1; 2h) and let (ck)k2N be asequence in (�1; 2h) with limk!1 ck = c and let (ck1(k))k2N be a subsequenceof (ck)k2N. We have to prove: there is a subsequence (ck2(k))k2N of (ck1(k))k2Nwith limk!1Nck2(k) = Nc; limk!1Pck2(k) = Pc:We deduce from (28): There are K0; K1 2 N such that for all k 2 NknckkL1(
); kpckkL1(
) � K1; k � K0:Hence there is a subsequence (k3(k))k2N of (k1(k))k2N and there are n0; p0 2L1(
) withnk3(k) * n0; pk3(k) * n0 weak* in L1(
) as k!1:17



We deduce: �k3(k) ! �0 strongly in H1(
) as k !1where ���0 = n0 � p0 � C;subject to homogeneous Neumann boundary conditions. Hence there is asubsequence (k2(k))k2N of (k3(k))k2N with�k2(k)(x)! �0(x) for almost all x 2 
 as k!1:We deducenk2(k)(x)= g(ck2(k) + �k2(k))(x)! g(c+ �0)(x) for almost all x 2 
 with k !1;pk2(k)(x) = g(��k2(k))(x)! g(��0)(x) for almost all x 2 
 with k!1:Hence n0 = nc, �0 = �c, p0 = pc and therefore due to weak* convergence inL1(
), limk!1Nck2(k) = Nc, limk!1 Pck2(k) = Pc.limc!2hNc =1, limc!2h Pc =1.Here we only consider h <1. The case h =1 can be treated similiarily.Due to Nc = Pc + R
C dx it su�cies to prove: limc!1 Pc = 1. Accordingto c+ �c(x) < h and ��c(x) < h for almost all x 2 
, we deducec� h < ��c(x) < h for almost all x 2 
:Hence limc!2hPc = limc!2hZ
 g (��c) dx � limc!2h g(c� h)meas(
) =1:If c < c1 < 2h, then c+ �c � c1 + �c1 and �c � �c1. Indeed we have���c = g(c+ �c)� g(��c)� C; ���c1 = g(c1 + �c1)� g(��c1)� C:18



Substraction and testing with [(c+ �c)� (c1 + �c1)]+ 2 H1(
) gives� � Z
 ��r[(c + �c)� (c1 + �c1)]+��2 dx= Z
(g(c+�c)�g(��c)�(g(c1+�c1)�g(��c1))[c+�c)�(c1+�c1)]+ dx � 0;because g is increasing and c < c1 implies ��c(x) � ��c1(x) for all x 2 
with c + �c(x) � c1 + �c1(x). Hence c + �c(x) � c1 + �c1(x) for almost allx 2 
. The estimate �c(x) � �c1(x) for almost all x 2 
 follows from asimiliar argument by using the test function [�c1 � �c]+ 2 H1(
).In particular we deduceIf c < c1 < 2h, then Nc � Nc1, Pc � Pc1Behaviour of nc, pc as c! �1 Let c� 2 (�1; 2h) be �xed. Then due toprevious estimates we have for all c 2 (�1; c�],knckL1(
) � C + Pcmeas(
) � kCkL1(
) + Nc� + Pc�meas(
) = K�;where K� 2 R+ is independent of c 2 (�1; c�]. In analogy we obtainkpckL1(
) � K�:We deduce: there is a sequence (ck)k2N 2 (�1; c�] with limk!1 ck = �1and there are n�; p� 2 L1(
) withnck * n�; pck * p� weak* in L1(
) as k !1;and certainly limk!1Nck = N�; limk!1Pck = P�:We also have for all k 2 N ,���ck = nck � pck � C;such that kr�ckkL2(
:Rd) � K119



for some K1 2 R+ independent of k 2 N. Hence - possibly after passing to asubsequence but without changing notations -�ck � 1meas(
) Z
�ck dx! V� 2 H1(
) strongly in H1(
) as k !1,where R
 V� dx = 0. We introduce! := limk!1Z
 �ck dx 2 R [ f1g;where we made use of the fact that c 7! R
�c dx is increasing. Now it iseasy to see: Either ! =1 with�ck !1 almost everywhere on 
 as k !1,or �ck ! �� strongly in H1(
) and almost everywhere on 
 as k !1,where ���� = n� � p� � C;subject to homogeneous Neumann boundary conditions.We also introduce!� := limk!1Z
(ck + �ck) dx 2 R [ f�1g;where we made use of the fact that c 7! R
(c + �c) dx is decreasing. Wededuce as above: Either !� = �1 withck + �ck ! �1 almost everywhere on 
 as k!1,orck + �ck ! �� strongly in H1(
) and almost everywhere on 
 as k!1,where ���� = n� � p� � C;20



subject to homogeneous Neumann boundary conditions.Existence of c 2 (�1; 2h) with Nc = N;Pc = P . Due to the previous resultsit remains to prove: limk!1Nck = 0 or limk!1 Pck = 0. We distinguish withrespect to R
 C dx.R
C dx > 0: In that case ! 2 R is not possible, becauselim infk!1 Z
 nck dx = lim infk!1 Z
 g(ck + �ck) dx= 0 = � lim infk!1 Z
 pck dx� Z
C dx < 0would follow. Hence ! =1 and therefore by Lebesgue's dominated conver-gence Theorem, limk!�1Pck = Z
 g(��ck) dx = 0:R
C dx = 0: It is easy to see: If ! = 1, then limk!1 Pck = 0, or if ! 2 R,then limk!1Nck = 0.R
C dx < 0: We consider the value of !�, proceed as in case of R
 C dx > 0and conclude limk!1Nck = 0.End of proof. We have shown: there is c 2 R such that���c = g(c+ �c)� g(��c)� Csubject to homogeneous Neumann boundary conditions has a solution �c 2H1(
) with R
 g(c+ �c) dx = N , R
 g(��c) dx = P . We setV� := ���c + �meas(
 Z
 �c dx;�� = c� 1meas(
) Z
�c dx; �� = 1meas(
) Z
�c dx;and n� = nc = g ��� � ��1V�� ; p� = pc = g ��� + ��1V�� :21



Then it is easy to see that (n�; p�) 2 C satisfy the variational inequalitiesh(n�) + ��1V� = �� on fn� > 0gh(n�) + ��1V� � �� on fn� = 0g ;h(p�)� ��1V� = �� on fp� > 0gh(p�)� ��1V� � �� on fp� = 0g ;where V� = V [n�� p��C]. It is left to the reader to verify that the validityof these variational inequalities ensures that (n�; p�) is the unique minimizerof E� in C and to prove that n�; p� have the properties as speci�ed in theTheorem.2.2 �! 0The main result of this section isTheorem 5. Assume A.1-A.5. Let N;P 2 R+ withN � P = Z
C dx:For � 2 R+ let (n�; p�) be the unique minimizer of E� in C, see theorem 4,and V� = V [n� � p� � C]. Then:1. There is (n0; p0) 2 C \ (L1(
))2 such thatn� * n0; p� * p0 weak* in L1(
) as �! 0;2. V� ! V0 = V [n0 � p0 � C] strongly in H1(
) as �! 0.Furthermore,3. If N > R
C+ dx, P > R
C� dx, then V0 = 0 and (n0; p0) is the uniqueminimizer ofE : C ! R [ f1g; E(n; p) = Z
H(n) dx+ Z
H(p) dx22



in C0 = f(n; p) 2 C : n� p = Cg 6= ;;i.e. there is a unique  2 R and a unique � 2 L1(
) withmaxf�C+;�C�g � �; Z
 � dx = N � Z
 C+ dx = P � Z
C� dx;h(C+ + �) + h(C� + �) =  on f� > �C+g \ f� > �C�gh(C+ + �) + h(C� + �) �  on f� = �C+g [ f� = �C�gdetermining n0; p0 vian0 = C+ + �; p0 = C� + �:4. If N = R
C+ dx, P = R
C� dx, then V0 = 0 andn0 = C+; p0 = C�:5. If N < R
C+ dx, P < R
C� dx then there is a unique pair (
n;
p)of measurable subsets of 
 such thatmeas(
n \ 
p) = 0; 
n � fC � 0g; 
p � fC � 0g;Z
n C+ dx = N; Z
p C� dx = P;n0 = C+ on 
nn0 = 0 on 
 n 
n ; p0 = C� on 
pp0 = 0 on 
 n 
p ;V0 = ess inf
 V0 on 
n�V0 = C on 
 n (
n [ 
p)V0 = ess sup
 V0 on 
p :23



Proof. Let (�k)k2N be a sequence in R+ with limk!1 �k = 0. By the uni-form estimates on kn�kL1(
), kp�kL1(
) there is a subsequence (�k1(k))k2N of(�k)k2N and there is (n0; p0) 2 C such thatn�k1(k) * n0; p�k1(k) * p0 weak* in L1(
) as k !1:Hence V�k1(k) ! V0 = V [n0 � p0 � C] strongly in H1(
) as k !1;hence after passing to a subsequence (k2(k))k2N of (k1(k))k2N,V�k2(k) ! V0 for almost all x 2 
 as k !1:We have to prove that (n0; p0) are actually independent of the sequence(�k)k2N. We proceed by a case-distinction and setF : C ! R+0 [ f1g; F (n; p) = Z
 jrV [n� p� C]j2 dx:The main ingredient is the application of theorem 3.Case I: N > R
 C+ and P > R
C�.We have C0 6= ;. By theorem 3, the pair (n0; p0) minimizes E in the set of allminimizers of F for which E is bounded, i.e. in f(n; p) 2 C0 : E(n; p) <1g.By strict convexity, the functional E has exactly one minimizer in that set.It is left to the reader to deduce the variational inequalities as speci�ed in 3.Case II: N = R
 C+ dx and P = R
C� dx.With the notations of Case I we have C0 = f(C+; C�)g. The statementfollows from theorem 3.Case III: N < R
 C+ dx and P < R
C� dx. In this case the set C0is void. However, we deduce from theorem 3 that (n0; p0) - we note thatE(n0; p0) <1 because n0; p0 2 L1(
) - is a minimizer of F in C� = f(n; p) 2C : E(n; p) <1g.We observe: V0 does not vanish identically. (Otherwise n0 � p0 = Cimplying N � R
C+ dx, P � R
C� dx). Hence due to R
 V0 dx = 0,0 < meas(fV0 < 0g);meas(fV0 > 0g) < meas(
);and therefore ess inf
 V0 < ess sup
 V0:24



The sequence (��k2(k) � ��1k2(k)V�k2(k)(x))k2N is, for almost all x 2 fV0 < 0g,bounded above as k ! 1. Hence limk!1 ��k2(k) = �1. By the well-known identi�cation of weak* limits in L1 and pointwise almost-everywherelimits of sequences of functions we obtain for almost all x 2 
: If (��k2(k) ���1k2(k)V�k2(k)(x))k2N converges in R [ f�1g, then n0(x) = limk!1 g(��k2(k) ���1k2(k)V�k2(k)(x)). Hence, up to a set of measure zero,fV0 > 0g � fn0 = 0g:Now take x 2 
 such that limk!1 V�k2(k)(x) = V0(x), that the sequence(�k2(k) � ��1k2(k)V�k2(k)(x))k2N is bounded above and V0(x) > ess inf
 V0. Thenthere is z 2 
 with limk!1 V�k2(k)(z) = V0(z) = V0(x)� � with some � 2 R+and the sequence (�k2(k) � ��1k2(k)V�k2(k)(z))k2N is bounded above, too. Sincelimk!1(V�k2(k)(x)� V�k2(k)(z))=�k2(k) =1, we obtain up to a set of measurezero: If limk!1 V�k2(k)(x) > ess inf
 V0, thenlimk!1��k2(k) � ��1k2(k)V�k2(k)(x)� = �1, and n0(x) = 0 follows.Hence 
n = fn0 > 0g � fV0 = ess inf
 V0gand in analogyfV0 < 0g � fp0 = 0g; 
p = fp0 > 0g � fV0 = ess sup
 V0g;in particular fn0 > 0g \ fp0 > 0g = ;. Now it is easy to see that the triple(n0; p0; V0) has the properties as speci�ed in 5. of the theorem. It remainsto be shown that there is at most one minimizer of F in C�. Assume that(n�; p�) is a minimizer of F in C�. If n0�p0 6= n��p�, then by strict convexitywe would obtainF ((n0 + n�)=2; (p0 + p�)=2)= Z
 jrV [((n0 � p0 � C)=2) + ((n� � p� � C)=2)]j2 dx< 12 Z
 jrV [n0 � p0 � C]j2 dx+ 12 Z
 jrV [n� � p� � C]j2 dx= F (n0; p0) + F (n�; p�)2 :25



Hence n� � p� = n0 � p0 and therefore n� = n0 + �, p� = p0 + � for some� 2 L1(
) with R
 � dx = 0. We have on 
 n 
n n0 = 0, hence � � 0, andwe have in analogy � � 0 on 
 n
p. Since 
n and 
p are disjoint we obtain� � 0, hence � = 0.Remark 2. a) Point 3 of Theorem 5 represents the case, where the limitsatis�es local charge-neutrality everywhere in 
.b) The limit V0 in point 5 of Theorem 5 is the unique solution of a doubleobstacle problem. The coincidence set 
n of the smaller obstacle ess inf
 V0 isthe set where the electron density n equals the doping pro�le, the coincidenceset 
p of the larger obstacle ess sup
 V0 is the set where the hole density pequals the negative doping pro�le and the noncoincidence set 
n (
n [
p) isthe depletion (vacuum) region where n = p = 0. Note that the double obstacleproblem for V0 is somewhat nonstandard since the obstacles are not a-priorilygiven but determined by the constraints R
n C+ dx = N and R
p C� dx = Pon the coincidence sets. However, the a-posteriori regularity theory for thefree boundaries is by now standard [Caf00]. They are (locally) C1;�-surfacesif the inhomogeneity C(x) is C�.Appendix A: Analysis of J�We shall explain in a simple case the connection between the functionals J�and E�, thus introducing for simplicity several technical assumptions thatcan be removed with a more detailed analysis.Consider as in the introduction the functionalJ�[�] = �2 Z
 jr�j2 dx� Z
C(x)� dx+ Z
G(�[�] + �) dx+ Z
G(�[�]� �) dx�N�[�]� P�[�];where � = �[�] and � = �[�] are determined by the conditionZ
 g(�[�] + �) dx = N; (29)Z
 g(�[�]� �) dx = P; (30)26



with g = G0 � 0, g 6� 0, lims!�1 g(s) = 0 and bounded 
 � Rd . Note thatfor � 2 L1(
), the map � 7! R
 g(� + �) dx is well de�ned, continuous byLebesgue's theorem of dominated convergence and converges to 0 and +1 as� tends to �1 and +1, respectively. Analogous properties of course holdfor the map � 7! R
 g(���) dx. Note also that if g is nondecreasing (whichis the case if G is convex), then g0 is a positive measure on R. If we furtherassume that g0 2 L1loc(R) and g0 > 0 on R, then the functionals �[:] and �[:]are actually C1 on L1(
), andd�[�] � � = �R
 g0(�[�] + �)� dxR
 g0(�[�] + �) dxd�[�] � � = R
 g0(�[�]� �)� dxR
 g0(�[�]� �) dxProposition 6. Assume A1 and A5. If G 2 C2(R), G00 = g0 2 L1loc(R),g0 > 0 on R and lims!+1 g(s) = +1, lims!�1 g(s) = 0, then �� is a weak solutionof ���� = g(�[��] + ��)� g(�[��]� ��)� C(x) (31)in H1\L1(
) subject to homogeneous Neumann boundary conditions if andonly if it is a critical point of J�[�] in H1 \ L1(
). The functional J�[�] isstrictly convex, so �� is unique.Proof. A straightforward calculation shows that for any �; � 2 H1\L1(
),dJ�[�] � � = Z
 ��r� � r�+ �g(�[�] + �)� g(�[�]� �)� C(x)��� dx+ �Z
(g(�[�] + �) dx�N� d�[�] � �+ �Z
(g(�[�]� �) dx� P� d�[�] � � :Using the constraints (29) and (30), we �nd that dJ�[��] � � = 0 exactlymeans that �� is a weak solution of (31).To prove the convexity of J�, we shall consider �1 and �2 in H1\L1(
).Denoting  = �2��1, �t = t�1+(1�t)�2 and j(t) = J�[�t] for any t 2 (0; 1),27



a direct computation shows thatj 0(t) = Z
 ��r�t � r + �g(�[�t] + �t) + g(�[�t]� �t)� C(x)� � dx ;andj 00(t) = � Z
 jr j2 dx+ Z
 �g0(�[�t] + �t)� g0(�[�t]� �t)� j j2 dx� (R
 g0(�[�t] + �t) dx)2R
 g0(�[�t] + �t) dx � (R
 g0(�[�t]� �t) dx)2R
 g0(�[�t]� �t) dx� � Z
 jr j2 dxby the Cauchy-Schwarz inequality.To prove the boundedness from below of J�, it is actually simpler toconsider the functionalE�(n; p) = Z
H(n) dx+ Z
H(p) dx+ 12� Z
 jrV [n� p� C]j2 dxwith H 0 = h and g related according to A4. Note that A2 and A3 are conse-quences of the assumptions of Proposition 6. This functional has (accordingto Theorem 3) a unique minimizer (n�; p�) in C such that�� = ��1V����� = n� � p� � Cwith n� = g(�[��] + ��) and p� = g(�[��]� ��) ;which is a critical point of J�, so (by convexity) J� is bounded from belowby J�[��].Note also that the constraints (29) and (30) can be rewritten as�[��] + �� = h(n�)�[��]� �� = h(p�) ;where we make use of n�; p� > 0 on 
 due to g > 0 on R. This is why�[��]N = R
(h(n�)� ��)n� dx�[��]P = R
(h(p�) + ��)p� dx28



and thereforeJ�[��] = ��2 Z
����� dx+ Z
G(�[��]+��)dx+ Z
G(�[��]���)dx� Z
C�� dx�N �[��]� P �[��]= �12 Z
(n� � p� � C)�� dx+ Z
(Goh(n�)� n�h(n�)) dx+ Z
(Goh(p�)� p�h(p�)) dx + Z
 ��(n� � p� � C) dx= � Z
H(n�) dx� Z
H(p�) dx� 12� Z
 jrV�[n� � p� � C]j2 dx= �E�[n�; p�]using the fact that ddt [th(t)�Goh(t)] = h(t), and H(t) = th(t)�Goh(t) (upto a constant which is chosen here equal to 0).Appendix B: Unbounded domainsIn this section we shall investigate (19)-(24) on unbounded domains. In thiscase the analysis has to overcome several additional di�culties and furtherassumptions are needed.We put C1c (
) = f� � 
 : � 2 C1c (Rd)g;and we assumeV.1 There is a linear operator V : L1loc(
) � dom(V )! L1loc(
), such thatfor all f 2 dom(V ), the function V [f ] is a weak solution of��V [f ] = f; + homogeneous Neumann boundary conditions;(32)i.e. � Z
 V [f ]�� dx = Z
 f� dx; 8� 2 C1c (
):29



V.2 The set dom2(V ) := ff 2 dom(V ) : rV [f ] 2 L2(
 : Rd)g containsT := �� 2 L1(
) : (supp(�) �� 
) ^ �Z
 � dx = 0�� ;and for all f 2 dom2(V ),Z
rV [f ] � rV [�] dx = Z
 V [f ]� dx; 8� 2 T:V.3 If (fn)n2N is a sequence in dom2(V ) withfn * f; weakly in L1(
) as n!1;and if (rV [fn])n2N is bounded in L2(
 : Rd), then f 2 dom(V ) andlimn!1Z
 V [fn]� dx = Z
 V [f ]� dx; 8� 2 C1c (
):Remark 3. a) It is easy to see that V.1, V.2, V.3 hold for bounded domains
 where dom(V ) is the set of all f 2 L1(
) with R
 f dx = 0 for which afunction Z 2 H1(
) exists such that R
Z dx = 0 and R rZ � r� dx =R
 f� dx for all � 2 H1(
), compare the de�nition of \V [f ]" in the previoussections.b) Assumptions V.1-V.3 apply in particular to 
 = Rd , d 2 N, and torespective half-space problems, see the discussion below.c) The veri�cation of V.1-V.3 of the examples of b) rely on the knowledgeof a Green's function. Whenever such a function is available, then one mayproceed similiar as in b) to investigate the validity of V.1, V.2, V.3.d) We note that (as e.g. in case of 
 = Rd , d � 3) the domain dom(V )of the operator V [:] may consist of functions which do not satisfy the globalelectroneutrality condition R
 f dx = 0.Example 1 
 = R. We set dom(V ) = L1(R) and introduce for x 2 R andfor f 2 dom(V ),E(f)(x) := � Z x�1 f(s) ds; V (x) := 8>><>>: Z x0 E(f)(s) ds ; x � 0� Z 0x E(f)(s) ds ; x < 0 :30



It is easy to see: E : dom(V ) ! L1(R) is non-expansive, i.e. Lipschitz-continuous with Lipschitz constant 1.Furthermore, V 0 = E(f) and V 00 = �f in the sense of distributions (see, e.g.,[Rud]).Hence V : dom(V )! C1(R) satis�es V.1.If � 2 L1(R) has compact support and satis�es RR � dx = 0, then E(�) hascompact support, too. Since E(�) 2 L1(R) we deduce V 0[�] = E(�) 2 L2(R),thus T = �� 2 L1(R) : (supp(�) �� R) ^ �RR � dx = 0�	 � dom2(V ).Now let f 2 dom2(V ) and let � 2 T. We take a sequence (fn)n2N in C1c (R)with fn ! f strongly in L1(
) as n!1 (see, e.g. [Ada]) and RR fn dx = 0for all n 2 N . Then V [fn] 2 C1c (R) for all n 2 N and thereforeZR �V [fn] dx = � ZR V [�]V 00[fn]; n 2 N :Since V [�] and V 00[fn] are continuously di�erentiable and since V [�] is com-pactly supported, we calculate by means of an integration by parts,� ZR V [�]V 00[fn] = ZR V 0[fn]V 0[�] dx = ZRE(fn)E(�) dx; n 2 N :Since E(�) 2 L1(R) is compactly supported and since E(fn) ! E(f)strongly in L1(R), we deduce RRE(fn)E(�) dx ! RRE(f)E(�) dx as n !1. On the other hand it is easy to see that E(fn)! E(f) strongly in L1(R)implies V [fn] ! V [f ] in L1loc(R) as n ! 1. This settles RR �V [fn] dx !RR �V [f ] dx as n!1 and thereforeZR V 0[f ]V 0[�] dx= ZRE(f)E(�) dx = limn!1ZRE(fn)E(�) dx = limn!1ZR V [fn]� dx= ZR V [f ]� dx:It remains to verify V.3. If fn * f weakly in L1(R), then (fn)n2N isbounded in L1(R). Hence (V 0[fn])n2N = (E(fn))n2N is bounded in L1(R).Furthermore, since the indicator function of (�1; x) is in L1(R) for eachx 2 R, we deduce E(fn)(x) ! E(f)(x) as n ! 1 for all x 2 R. As aconsequence, V [fn](x)! V [f ](x) for all x 2 R. Due to uniform boundedness31



of (E(fn))n2N in L1(R) we also have: V [fn] ! V [f ] in L1loc(R) as n ! 1.Hence V [fn]! V [f ] in the sense of distributions as well.Example 2 
 = R2 . We set dom(V ) := L1(R2). The Green's function ofthe Laplace operator isK(x) := � 12� log jxj; x 2 R2 ; x 6= 0:Since K(x) 2 L1loc(R2) we have for each f 2 L1(R2),K ? f := ZR2 K(:� y)f(y) dy 2 L1loc(R2):For f 2 L1(R2) we set V [f ] := �K ? f:V [:] certainly satis�es V.1.We observe for i = 1; 2,@iV [f ] = �(@iK) ? f; @iK(x) = � 12� 1jxj xijxj ;in the sense of distributions.In the sequel we shall use several estimates on V [f ] and on rV [f ]. Theseresults can be found in [ArNi],Proposition 7. (Follows from Lemma 3.3c) in [ArNi]) There is a positivereal number K8 such that: Iff 2 L1(R2) \ L2(R2); and ZR2 f dx = 0; and ZR2 jxj jf(x)j dx <1;then rV [f ] 2 L2(R2 : R2) andkrV [f ]kL2(R2:R2) � K8�kfkL2(R2) + ZR2 jxj jf(x)j dx� :Proposition 8. (Follows from Lemma 3.1 in [ArNi]) There is a positivereal number K9 such that: Iff 2 L1(R2); and ZR2 f dx = 0;32



then for all x 2 R2 ,jV [f ](x)j � K9  ZR2(1 + jyj) jf(y)j dy + �ZR2(1 + jyj)2 jf(y)j2 dy� 12! :Proposition 9. (Follows from Lemma 3.1 in [ArNi]) There is a positivereal number K10 such that: Iff 2 L1(R2); and ZR2 f dx = 0;then V [f ] 2 L6(R2) withkV [f ]kL6(R2) � K10: ZR2(1 + jyj) jf(y)j dy + �ZR2(1 + jyj) 32 jf(y)j 32 dy�23! :Now we shall verify V.2. If � 2 L1(R2) is compactly supported withRR2 � dx = 0, then � full�lls the requirements of Proposition 7. HencerV [�] 2 L2(R2 : R2) and therefore � 2 dom2(V ).Let f 2 dom2(V ). Then the function (x; y)! K(x� y)f(y)�(x) belongsto L1(R2 � R2). Hence due to the Fubini-Tonelli Theorem,ZR2 V [f ]� dx = � ZR2 �ZRd K(x� y) f(y) dy� �(x) dx= � ZR2�R2 K(x�y) f(y) �(x) d(x; y) = � ZR2 �ZR2 K(x� y) �(x) dx� f(y) dy= � ZR2 �ZR2 K(y � x) �(x) dx� f(y) dy = ZR2 V [�]f dx;where we made use of K(�x) = K(x). Thus, in order to verify V.2, itremains to prove ZR2 rV [f ] � rV [�] dx = ZR2 V [�]f dx:We take a sequence (�n)n2N in C1c (R2) with limn!1 k�� �nkL2(R2) = 0, see[Ada]. We can assume: There is R 2 (0;1) such that supp(�) � fjyj � Rgand supp(�n) � fjyj � Rg for all n 2 N . We deduce from Proposition 7:rV [�n]!rV [�] strongly in L2(R2 : R2) as n!1: (33)33



Furthermore, since K 2 L1loc(R2) and since �n 2 C1c (R2), we have V [�n] 2C1(R2) for all n 2 N , see e.g. [Ada].Let us take � 2 C1(R) with � = 1 on (�1; 0] and � = 0 on [1;1). Fork 2 N we introduce�k : R2 ! R; �k(x) = �� jxjk � 1� :Then �k 2 C1c (R2) for all k 2 N , hence �kV [�n] 2 C1c (R2) for all n; k 2 N .We calculate for all n; k 2 N,ZR2 f (�kV [�n]) dx = � ZR2 V [f ] �(�kV [�n]) dx = ZR2 rV [f ]�r(�kV [�n]) dx= ZR2(rV [f ] � r�k) V [�n] dx+ ZR2(rV [f ] � rV [�n]) �k dx;where made use of V [�n] 2 L1(R2) (which follows from Proposition 8) andrV [�n] 2 L2(R2 : R2) for all n 2 N.We consider the limit n!1 now.Due to Proposition 8 the sequence (V [�n])n2N is bounded in L1(R2). ByProposition 9 the sequence (V [�n])n2N converges strongly in L6(R2), to V [�]as n!1. Hence for all k 2 N ,limn!1ZR2 f (�kV [�n]) dx = limn!1Zfk�jxj�2kg f (�kV [�n]) dx= Zfk�jxj�2kg f (�kV [�]) dx = ZRd f (�kV [�]) dx:Similiar argumentations (in particular exploiting the fact that each integra-tion is in fact an integration over a �xed (i.e. independent of n 2 N) boundeddomain) yield for all k 2 N ,limn!1ZR2(rV [f ] � r�k) V [�n] dx = ZR2(rV [f ] � r�k) V [�] dx;limn!1ZR2(rV [f ] � rV [�n]) �k dx = ZR2(rV [f ] � rV [�]) �k dx:34



Hence for all k 2 N ,ZR2(f V [�]) �k dx = ZR2(rV [f ] � r�k) V [�] dx+ ZR2(rV [f ] � rV [�]) �k dx:(34)Now we consider the limit k !1. Since f V [�]; (rV [f ] � rV [�n]) 2 L1(Rd)and since limk!1�k(x) = 1 for all x 2 Rd with 0 � �k � 1 for all k 2 N ,we have limk!1ZR2(f V [�]) �k dx = ZR2 f V [�] dx; (35)limk!1ZR2(rV [f ] � rV [�]) �k dx = ZR2 rV [f ] � rV [�] dx: (36)Furthermore, for all k 2 N and for all x 2 Rd ,jr�k(x)j � sups2[0;1] j�0(s)jk =: K11k :Now we have for all k 2 N ,����ZR2(rV [f ] � r�k) V [�] dx���� = ����Zfk�jxj�2kg(rV [f ] � r�k) V [�] dx����� Zfk�jxj�2kg jrV [f ]j jr�kj jV [�]j dx� K11k kV [�]kL1(R2) p3k2� �Zfk�jxj�2kg jrV [f ]j2 dx� 12� 4K11 kV [�]kL1(R2) �Zfk�jxj�2kg jrV [f ]j2 dx� 12 : (37)Due to jrV [f ]j 2 L2(R2 : R2),limk!1Zfk�jxj�2kg jrV [f ]j2 dx = 0:We deduce from (37),limk!1ZR2(rV [f ] � r�k) V [�] dx = 0: (38)35



Employing (35), (36), (38) we deduce from (34) by passing to the limit k !1, ZR2 f V [�] dx = ZR2 rV [f ] � rV [�] dx:Finally, let us verify V.3. Let � 2 L1(R2) be compactly supported, let'ssay supp(�) � fjyj � Rg for some positive R. Then it is easy to deduce forall x 2 R2 ,����ZR2 K(x� y)�(y) dy���� � k�kL1(R2) Zfjyj�Rg jK(y)j dy � KR k�kL1(R2);where KR is a positive number only depending on R. As a consequence,K ? � 2 L1(R2). Now let (fn)n2N be a sequence in L1(R2) with fn * fweakly in L1(R2) as n!1. Then for all � 2 L1(R2) with compact support,limn!1ZR2 fn(y) (K ? �)(y) dy = ZR2 f(y) (K ? �)(y) dy;while on the other hand for all n 2 N by the Fubini-Tonelli Theorem,ZR2 V [fn]� dx = � ZR2 �ZR2 K(x� y) f(y) dy��(x) dx= � ZR2 �ZR2 K(x� y) �(x) dx� f(y) dy = � ZR2 fn(y) (K ? �)(y) dy;and ZR2 V [f ]� dx = � ZR2 f(y) (K ? �)(y) dyas well.Example 3 
 = Rd , d � 3. We set dom(V ) := L1(Rd). The Green's functionof the Laplace operator isK(x) := 1!d(d� 2) jxjd�2 ; x 2 Rd ; x 6= 0;where !d is the (d�1)-dimensional surface measure of the unit sphere in Rd .Since K 2 L1(Rd) + L1(Rd) we have for each f 2 L1(Rd),K ? f = ZRd K(:� y)f(y) dy 2 L1(Rd) + L1(Rd):36



For f 2 L1(Rd) we set V [f ] := �K ? f:V [:] certainly satis�es V.1.We observe for all i = 1; : : : ; d,@iV [f ] = �(@iK) ? f; @iK(x) = � 1!d jxjd�1 xijxj ;in the sense of distributions. Furthermore, for each i = 1; : : : ; d, the function@iK belongs to L1(Rd) + L1(Rd).Now let � 2 L1(Rd) be compactly supported1. We take R 2 (0;1) withsupp(�) � fjyj � Rg. Then � 2 Lp(Rd) for all p 2 [1;1] and we calculatefor all i = 1; : : : ; d, for all x 2 Rd and for all q 2 (1; dd�1), p = qq�1 ,j@iV [�](x)j = 1!d ����ZRd jx� yj1�dxi � yijx� yj�(y) dy���� � 1!d ZRd jx�yj1�dj�(y)j dy= 1!d Zjyj�R jx� yj1�dj�(y)j dy � 1!d �Zjyj�R jx� yjq(1�d) dy�1=q k�kLp(Rd)� k�kLp(Rd)!d �Zjyj�R jyjq(1�d) dy�1=q = k�kLp(Rd)!1=pd �Z R0 s(d�1)(1�q) ds�1=q= R1�d+(d=q)(d+ q � dq)1=q !1=pd k�kLp(Rd); (39)and the estimate j@iV [�](x)j � R k�kL1(Rd) follows in analogy.On the other hand, we have for all x 2 Rd with jxj > 2R,j@iV [�](x)j � 1!d �Zjyj�R jx� yjq(1�d) dy�1=q k�kLp(Rd)� (jxj � R)1�d!d �Zjyj�R 1 dy�1=q k�kLp(Rd) = Rd=qd1=q !1=pd (jxj�R)1�d k�kLp(Rd);(40)and the estimate j@iV [�](x)j � Rdd (jxj �R)1�d k�kL1(Rd), jxj > R, follows inanalogy.1RRd � dx = 0 is not required here. 37



We set for p 2 (d;1),K(d; p; R) := 8>>>><>>>>: !�1=pd max((p� 1)1� 1p R1� dp(p� d)1� 1p ; R(d� dpd1� 1p ) ; p 2 (d;1)max�R; Rdd � ; p =1 :Furthermore, we putud;R(x) := ( 1 ; jxj � R + 1(jxj �R)1�d ; jxj > R + 1 :Then we deduce from (39), (40):j@iV [�]j � K(d; p; R) k�kLp(Rd) ud;R; p 2 (d;1]: (41)Since ud;R 2 Lr(Rd) for all r 2 (d=(d� 1);1], we deduce from (41):8p 2 (d;1]; 8r 2 (d=(d� 1);1] :There is a constant K4(d; r; p; R) 2 (0;1) such thatkrV [�]kLr(Rd:Rd) � K4 k�kLp(Rd): (42)In particular: rV [�] 2 L2(Rd : Rd). Hence � 2 dom2(V ).Remark 4. In a similiar way one can prove the estimatejV [�]j � K1(d; p; R) k�kLp(Rd) vd;R; (43)where p 2 (d=2;1]; � 2 L1(Rd); supp(�) � fjyj � Rg;andK1(d; p; R) := 8>>>><>>>>: 1(d� 2) !1=pd max((p� 1)1� 1p R2� dp(2p� d)1� 1p ; Rd� dpd1� 1p ) ; p 2 (d2 ;1)1d� 2 max�R22 ; Rdd � ; p =1 ;38



vd;R(x) := ( 1 ; jxj � R + 1(jxj �R)2�d ; jxj > R + 1 :Then one can proceed as above to derive from (43) that V [�] 2 Lr(Rd) for allr 2 ( dd�2 ;1] and furthermore8p 2 (d=2;1]; 8r 2 (d=(d� 2);1] :There is a constant K5(d; r; p; R) 2 (0;1) such thatkV [�]kLr(Rd) � K5 k�kLp(Rd): (44)The estimates (41), (42), (43), (44) allow to proceed similiar as for d = 2.Let f 2 dom2(V ) and let � 2 L1(Rd) be compactly supported. Then thefunction (x; y) 7! K(x � y) f(y) �(x) belongs to L1(Rd � Rd). We proceedas for d = 2 with the aid of the Fubini-Tonelli Theorem to concludeZRd V [f ]� dx = ZRd V [�]f dx;and it remains to proveZRd rV [f ] � rV [�] dx = ZRd V [�]f dx:We take a sequence (�n)n2N in C1c (Rd) with limn!1 k�� �nkL2d(Rd) = 0, see[Ada]. We can assume: There is R 2 (0;1) such that supp(�) � fjyj � Rgand supp(�n) � fjyj � Rg for all n 2 N . We deduce from (41):rV [�n]!rV [�] strongly in L2(Rd : Rd) as n!1: (45)Furthermore, since K 2 L1loc(Rd) and since �n 2 C1c (Rd), we have V [�n] 2C1(Rd) for all n 2 N , see e.g. [Ada].Let us take � 2 C1(R) with � = 1 on (�1; 0] and � = 0 on [1;1). Fork 2 N we introduce2�k : Rd ! R; �k(x) = �(jxj � k):2The function �k is di�erent from the corresponding function for d = 2.39



Then �k 2 C1c (Rd) for all k 2 N , hence �kV [�n] 2 C1c (Rd) for all n; k 2 N .We calculate for all n; k 2 N,ZRd f (�kV [�n]) dx = � ZRd V [f ] �(�kV [�n]) dx = ZRd rV [f ]�r(�kV [�n]) dx= ZRd(rV [f ] � r�k) V [�n] dx+ ZRd(rV [f ] � rV [�n]) �k dx;where made use of V [�n] 2 L1(Rd) and rV [�n] 2 L2(Rd : Rd) for all n 2 N .We consider the limit n!1 now.Due to (44) the sequence (V [�n])n2N is bounded in L1(Rd) and convergesstrongly in Lr(Rd), r 2 ( dd�2 ;1) to V [�] as n!1. Hence for all k 2 N ,limn!1ZRd f (�kV [�n]) dx = limn!1Zfk�jxj�k+1g f (�kV [�n]) dx= Zfk�jxj�k+1g f (�kV [�]) dx = ZRd f (�kV [�]) dx:Similiar argumentations (in particular exploiting the fact that each integra-tion is in fact an integration over a �xed (i.e. independent of n 2 N) boundeddomain) yield for all k 2 N ,limn!1ZRd(rV [f ] � r�k) V [�n] dx = ZRd(rV [f ] � r�k) V [�] dx;limn!1ZRd(rV [f ] � rV [�n]) �k dx = ZRd(rV [f ] � rV [�]) �k dx:Hence for all k 2 N ,ZRd(f V [�]) �k dx = ZRd(rV [f ] � r�k) V [�] dx+ ZRd(rV [f ] � rV [�]) �k dx:(46)Now we consider the limit k !1. Since f V [�]; (rV [f ] � rV [�n]) 2 L1(Rd)and since limk!1�k(x) = 1 for all x 2 Rd with 0 � �k � 1 for all k 2 N ,we have limk!1ZRd(f V [�]) �k dx = ZRd f V [�] dx; (47)40



limk!1ZRd(rV [f ] � rV [�]) �k dx = ZRd rV [f ] � rV [�] dx: (48)Furthermore, for all k 2 N and for all x 2 Rd ,jr�k(x)j � sups2[0;1] j�0(s)j =: K2:Now we have for all k 2 N ,����ZRd(rV [f ] � r�k) V [�] dx���� = ����Zfk�jxj�k+1g(rV [f ] � r�k) V [�] dx����� Zfk�jxj�k+1g jrV [f ]j jr�kj jV [�]j dx� K2 �Zfk�jxj�k+1g jrV [f ]j2 dx� 12 �Zfk�jxj�k+1g jV [�]j2 dx� 12 : (49)If we take R 2 (0;1) with supp(�) � fjyj � Rg, then we have due to (43)for all k 2 N with k > maxf2R;R+ 1g,Zfk�jxj�k+1g jV [�]j2 dx � K1(d;1; R) k�k1 Zfk�jxj�k+1g(jxj �R)2�d dx= !d K1(d;1; R) k�k1 Z k+1k (s�R)4�2d sd�1 ds� 22d�4 !d K1(d;1; R) k�k1 Z k+1k s3�d ds� 22d�4 !d K1(d;1; R) k�k1; (50)while on the other hand due to jrV [f ]j 2 L2(Rd),limk!1Zfk�jxj�k+1g jrV [f ]j2 dx = 0:We deduce from (49) and from (50),limk!1ZRd(rV [f ] � r�k) V [�] dx = 0: (51)41



Employing (47), (48), (51) we deduce from (46) by passing to the limit k !1, ZRd f V [�] dx = ZRdrV [f ] � rV [�] dx:The veri�cation of V.3 can be performed in analogy to d = 2.Example 4 
 = fx 2 Rd : x1 > 0g, d 2 N . In this case we consider forf 2 L1(
) the Poisson equation��V = f �; in Rd ; (52)where for (x1; : : : ; xd) 2 Rd ,f �(x1; : : : ; xd) = 8>><>>: f(x1; : : : ; xd) ; x1 > 0f(�x1; x2; : : : ; xd) ; x1 < 00 ; else :Then we set V [f ] := VRd[f �] � 
, where VRd [:] is the solution operator of (52)as discussed in the previous examples. The veri�cation of V.1, V.2, V.3 isstraight-forward.For � > 0, the equation ��� = n� p� Cwith n = g(�[�] + �) and p = g(�[�] � �) has no solution with n and pin L1(
) if g > 0 on R (i.e. if h = �1). In that case it is essential tointroduce a con�nement by an external potential W , see [BDM99], i.e. onehas to replace (19) - (24) by��� = n[�]� p[�]� C(x); x 2 
; (53)n[�] = g(�[�] +W + �); (54)p[�] = g(�[�] +W � �); (55)Z
 n[�] dx = Z
 g(�[�] + ��W ) dx = N; (56)Z p[�] dx = Z
 g(�[�]� ��W ) dx = P; (57)with W !1 as jxj ! 1. 42



Remark 5. One may ask about the physical interpretation of W , in partic-ular whether W can be viewed as electrostatic potential. The problem withtwo species of particles with opposite sign charges is that an external elec-trostatic potential cannot be con�ning for both species, except if W = jxj2(by rescaling), but it is then not possible to have a charge density C unlessit is concentrated at the origin, see [BDM99]. The physical problem is thenthe question of the free expansion of two species of particles with oppositecharges but same total charge, which has already been studied (for the wholespace case) in [BDM99]. We shall therefore keep in mind that if one onlywishes to consider electrostatic models of W , then for h = �1, the onlyrealistic cases correspond to W = jxj2 when 
 is a cone and C � 0, or eitherN = 0 or P = 0 and W con�ning.We proceed as in the previous sections to analyze (19)-(22), (56), (57) bymeans of the functional E�, formally de�ned asE�(n; p) = Ea(n; p) + 1� Eel(n; p);Ea(n; p) := Z
H(n) dx+ Z
H(p) dx + Z
(n+ p)W dx;Eel(n; p) := 12 Z
 jrV [n� p� C]j2 dx; (58)where (n; p) 2 C, i.e. n; p 2 L1+(
) with knkL1(
) = N and kpkL1(
) = P . Asin the previous sections we set the electrostatic energy Eel(n; p) equal to 1whenever n�p�C =2 dom2(V ). The con�ning potentialW of (58) is assumedto be bounded below. Hence the last integral of Ea(n; p) has a well-de�nedvalue in R [ f1g. A bit more delicate is the integrability of H(n), H(p).In contrast to the situation for bounded domains, the convexity of H is notsu�cient to assign to each of the �rst two integrals of Ea(n; p) a value inR [ f1g. In fact, we have to impose an additional assumption included inthe followingProposition 10. Let 
 � Rd , d 2 N, be a nonvoid domain. Let N;P � 0and let W 2 L1loc(
) be bounded below. Furthermore, assume A.2 - A.5,V.1 - V.3 andA.6 There are �; � 2 R with nN := g(��W ); pP := g(� �W ) 2 L1(
),Z
 nN dx = N; Z
 pP dx = P;43



and H�(nN); H�(pP ) 2 L1(R).Then E� is bounded below on C.Proof. We exploit the convexity of H. We have for each n 2 L1+(
) withR
 n dx = N ,((H(n) + nW )� (H(nN) + nN W )) = H(n)�H(nN) +W (n� nN)� H 0(nN) (n� nN ) +W (n� nN )= (h(nN ) +W ) (n� nN ) � � (n� nN);because h(nN ) = h(g(��W )) = � �W whenever nN > 0 and h(nN ) (n �nN) = h(nN )n � (��W )n = (��W ) (n� nN ) whenever nN = 0. Hence,Z
�H(n) + nW� dx� Z
�H(nN) + nNW� dx� Z
 � (n� nN ) dx = � �Z
 n dx� Z
 nN dx� = � (M �M) = 0;and the inequalityZ
�H(p) + pW� dx� Z
�H(pP ) + pPW� dx � 0with p 2 L1+(
) with R
 p dx = P follows analogously. Due to the assumup-tion H�(nN ); H�(pP ) 2 L1(
) and due to the assumed boundedness of Wfrom below we deduce that R
(H(nN) + nNW ) dx, R
(H(pP ) + pPW ) dxhave values in R [ f1g.Remark 6. a) Since g is strictly increasing there is at most one pair (�; �) 2R2 satisfying A.6.b) If N = 0 and if g > 0 on R (i.e. if and only if h = �1), then there isno � 2 R with R
 g(� �W ) dx = N = 0. Hence, if one wishes to considerthe case N = 0 with h = �1, then one has to modify the functional E�by cancelling (or setting to zero, respectively) all terms which involve n. Weleave the details of the corresponding analysis to the reader.c) Proposition 10 does not exclude E� � 1 on C.Now let us turn our attention to the existence of minimizers of E� in C.As an example, we state the following result in case of h = +1 for which apurely variational argument provides an immediate answer.44



Theorem 11. Let 
 � Rd , d 2 N, be a nonvoid domain. Let N;P > 0 andlet W 2 L1loc(
). Furthermore, assume A.2 - A.6, V.1 - V.3 and1. C 2 L1(
).2. W is bounded below. lim infx2
; jxj!1W (x) =1.3. h =1.4. Ea + Eel 6� 1 on C.5. Ea(nN ; pP ) < 1 (that is, H(nN) + H(pP ) + (nN + pP )W 2 L1(
)),where nN ; pP are as in A.6.Then E� has a unique minimizer (n0; p0) in C and the triple (�0; n0; p0) =(���1V0; n0; p0) with V0 = V [n0 � p0 �C] is a solution (the unique \equilib-rium solution") of (53)-(57).Remark 7. a) Assumption 4. E� 6� 1 on C implies in case of 
 = R1 ,
 = R2 or in case of 
 � Rd , d 2 N, with meas(
) < 1 global chargeneutrality N � P = R
C which is not the case for 
 = Rd , d � 3b) By straight-forward modi�cations one can also include N = 0; P > 0 orN > 0; P = 0.Proof. E� is bounded below by Proposition 10. Furthermore, E� 6� 1 on C.Hence infC E� > �1. We apply a standard minimization argument. SinceE� is strictly convex, E� has at most one minimizer. This minizer is shownto exist by taking the limit of a minimizing sequence (nk; pk)k2N. The limit(n0; p0) of this sequence belongs to C because of the weak-L1 compactnessof any minimizing sequence according to the Dunford-Pettis criterion: thereis no concentration because H is superlinear at 1 (h = 1) and no vanish-ing (because of the growth of W at 1) in the language of concentration-compactness theory.As shown in the proof of Proposition 10, we haveH(n)+H(p)+(n+p)W �H(nN)+H(pP )+(nN+pP )W 2 L1(
) for all (n; p) 2 C. Hence the functionalEa� is lower semicontinuous with respect to weak convergence in L1(
) andwe haveZ
H(n0) dx+ Z
H(p0) dx+ Z
W (n0 + p0) dx� lim infk!1 Z
H(nk) dx+ Z
H(pk) dx+ Z
W (nk + pk) dx: (59)45



Furthermore, since (rVk)k2N, Vk = V [nk � pk � C], is bounded in L2(
 :Rd), we have - maybe after extracting a subsequence but without changingnotations - for all i = 1; : : : ; d,@iVk * Zi; weakly in L2(
) as k !1;hence Z
(Z21 + : : :+ Z2d) dx � lim infk!1 Z
 jrVkj2 dx: (60)Since C 2 L1(
) we have nk � pk � C * n0 � p0 � C weakly in L1(
) ask ! 1. We deduce from V.3, Vk ! V0 = V [n0 � p0 � C] in the sense ofdistributions. Hence Zi = @iV0, i = 1; : : : ; d and we deduce E�(n0; p0) �lim infk!1E�(nk; pk) = infC E� from (59) and (60).Now we shall derive the associated variational inequalities. With the aidof V.2 we deduce from standard arguments,h(n0) +W + ��1V0 = � on fn0 > 0g; h(p0) +W � ��1V0 = � on fp0 > 0g;for some �; � 2 R. In case of h > �1 the functionH is di�erentiable on eachcompact subset of [0;1) and in this case we obtain by standard argumentsh+W + ��1V0 � � on fn0 = 0g; h+W � ��1V0 � � on fp0 = 0g;and we conclude n0 = g (��W � ��1V0), p0 = g (� �W + ��1V0),i.e. (���1V0; n0; p0) is a solution of (53)-(57). It remains to consider the caseh = �1. It su�cies to prove: n0 > 0 and p0 > 0 almost everywhere on
. This is shown in an indirect way. If n0 = 0 on a subset 
0 of 
 withmeas(
0) > 0, then there is a compact subset K0 of 
0 with meas(K0) > 0as well and one can take a test function � 2 L1(
) which is compactlysupported in 
, ran(�) = fc0;�c1g (where c0; c1 are positive real numbers),�(x) = c0 if and only if x 2 K0, ��1(�c1) � f" � n0 � "�1g (where " 2 (0; 1)is apropriately chosen), and R
 � dx = 0. We observe: (n0+��; p0) 2 C for allsu�ciently small �. Since (n0; p0) minimizesE� in C one has for all su�cientlysmall � 2 (0;1), E�(n0 + �; p0)� E�(n0; p0) � 0;while it is not di�cult to deduce from h = �1 via V.2 that lim�!0(E�(n0+�; p0)� E�(n0; p0))=� = �1. Hence n0 > 0 almost everywhere on 
. p0 > 0almost everywhere on 
 follows in analogy.46



Remark 8. a) Propositon 11 highlights the role of the con�ning potential Wwhich ensures weak compactness of minimizing sequences of E�.b) One may ask whether each solution (�0; n0; p0) of (19)-(22), (56), (57)is actually a minimizer of E� in C. The discussion of this (very natural)question, however, requires rather technical additional assumptions (and istherefore omitted here): In contrast to the situation for bounded domainsthere is no a priori estimate which ensures E�(n0; p0) <1.The introduction of the con�ning potential W is inevitable whenever h =�1. Let us turn our attention to a discussion of (19)-(24) (i.e. the modelequations without W ) in the case h > �1 now.In this situation it is possible to build solutions with compact support asfollows (we recall: without any external con�nement potential !).Take a � 2 C2(
) with compact support in 
 and consider n� = g(�+�)and p� = g(� � �) for � and � such that h � � > 0 > � � h. The densityn� (respectively p�) is supported in the set corresponding to � > h � �(respectively � < � � h). We may then de�neC = ���� + g(� + �)� g(� � �) ;and compute N and P corresponding to �, � and �. Then the triple(�; n�; p�) is certainly a solution of (19)-(24). In particular, we observe thatglobal neutrality holds due to the fact that � has a compact support. N 6= 0(respectively P 6= 0) holds if and only if ess sup
� > h � � (respectivelyess inf
� < � � h).We note that this construction actually does not depend on whether 
is bounded or not, but only on the condition supp(�) �� 
. The conditionthat � has a compact support can be replaced by the condition that � is equalto a constant �1 outside a compact subset of 
, with h� � > �1 > � � h.In unbounded domains, it is actually su�cient to assume that � = �1 in aneighborhood of @
 and� � h < lim infjxj!1; x2
�(x) � lim supjxj!1; x2
�(x) < h� � :If there exists a solution � with ���1 compactly supported in 
 for aconstant �1 2 (� � h; h� �), then the global neutrality conditionN � P � Z
C dx = 0 (61)47



holds, but this is not necessarily the case if 
 is unbounded. Consider forinstance a radial potential � which is asymptotically periodic, oscillatingbetween two values in (� � h; h � �), with C = ��� for jxj large enough(case h > �1): C is clearly not in L1(
).The global electroneutrality does not either hold in the presence of anexternal potential W . We can for instance (see [Dol91]) consider in 
 = Rd(d � 3) the equation�� = N e��W (x)R
 e��W (x) dx � P e���W (x)R
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