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Abstract

Cabled sea floor observatories are used to study the oceans. Not
only the amount of data they generate is too large to be treated
manually, but also a lot of irrelevant data degrades the treatment
efficiency. Treating the acquired data at the source reduces the
amount of data. But this leads to the design of complex sensors
mixing data acquisition and treatments.

Simulation can help supporting the design activity. However,
there is no way to bypass accurate modeling of concurrent systems
while ensuring a strong semantic during the model execution.

In this paper, we present an experimentation using Models of
Computation to model the concurrency in the program of a smart
sensor. Besides, we introduce an actor-based simulation frame-
work.The simulation framework is used to quickly and cheaply test
alternatives of architecture in the early stages of the design process.
Some actors implement the computation behavior, some others im-
plement the communication behavior. This dinstinction promotes
agility during the exploration phase. Several MoCs are investigated
among which, Kahn Process Network, Communicating Sequential
Process and Synchronous Data Flow.

The implementation relies on SCALA at first, while Smalltalk
and the Biniou framework are used to speed up the process, through
aleviating the need for software simulator and compiling to hard-
ware platforms instead.

Keywords  Actor, Model of computation, smalltalk, scala

1. Introduction

In 2008 the European Council published the directive 2008/56/EC
which obliges European states to check the water quality in their
coastal area on the long term. This raises the interest for coastal sea
floor observatories. An example of such a project is the MeDON
(Marine eData Observatory Network) project an observatory de-
ployed near Brest in France[13]. The usual structure of a cabled
sea floor observatory is a network of sensors linked to one or more
servers that perform the computations. The drawback of cabled sea
floor observatories is the creation of huge amount of data to pro-
cess and to store. Besides, the data exhibits a lot of redundancy and
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noise.

According to Spencer et al.[28] one way to reduce this issue is to

introduce smart sensors. A smart sensor is a small system that con-
tains, beside a sensing device, a microprocessor to perform com-
putations on the acquired data. The behavior of a smart sensor can
be broken down into a set of tasks responsible for the acquisition,
processing and dissemination of data. For example, a smart sen-
sor built around an HD camera may be made of a task to acquire
images, several tasks to classify forms and a task that manage the
network communications. In the case of a camera, the acquisition
of data should be continuous. So acquisition and treatments are pro-
cess that should occur simultaneously. Likewise, the dissemination
of data over the network should not pause the acquisition of data. It
implies the need to implement concurrent processes in the software
of a smart sensor. Designers need to take into account the execution
of each process and the inter-process communications (IPC). In the
example of the HD camera, designers must decide how many pro-
cess are devoted to treatments and how data are shared between ac-
quisition and treatments and between treatments and dissemination.
A typical question is having only one image processing chain or
multiple ones that work in parallel on different part of an image. In
addition the number of possible architectural solutions is increased
with the number of possible uses of IPC. The set of combinations of
breakdown in processes and IPCs make the design space of a smart
sensor. Designers must explore this design space. This raises the is-
sue of modeling the concurrency and the communication between
the processing elements of the smart sensor and how to execute the
obtained model.
In this paper, we present a framework to cheaply and quickly test
different alternatives of software architecture. We conform to the
actor model described by Agha[2] as the modeling and execu-
tion framework. Our goal is implement models of concurrency
and communication from an higher level of abstraction also called
Model of Computation. Our prototype supports modeling data ex-
change and synchronization between processes using either Kahn
Process Network (KPN)[15], Communicating Sequential Process
(CSP)[12] or Synchronous Data Flow (SDF)[20] viewed as Mod-
els of Computation. In order to easily implement MoCs, we need
a programming structure that natively describes concurrency and
communication. The actor model is such a programming structure.
We implement KPN, CSP and SDF as actors having the different
semantics of communication and synchronization. We obtained an
actor based framework of simulation for the functional design of
Smart Sensors. Our framework enables reuse by using actors with
a well defined functional boundary. Besides, our framework sup-
ports the testing of different configuration and communication or
synchronization by implementing several Models of Computation.
Our prototype is used to:
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e help designers understand the required functions of a smart
sensor;

e simulate different alternatives of software architecture;

e refine the alternatives of software architecture until they are
stable and precise enough to be analyzed by more precise tools
like Ptolemy or Forsyde.

From a practical point of view, we made a first implementation
of our framework in Scala. Scala has the advantages of running on
the Java Virtual Machine and of being able to integrate existing
pieces of code written in Java. Besides, Scala is used by major
industrial actors. We also made an implementation in Smalltalk
using the Actalk library. Smalltalk has been used in the context of
multi-agent systems[23]. An agent formalism describes a network
of smart sensors as it can be seen as a network of autonomous
entities that communicate with each other in order to perform a
mission. Smalltalk is also used to address the issue of programming
a virtual machine able to support multiple concurrency mechanisms
[22]. In both cases, concurrent processes that have to communicate
are involved. The communications between the different processes
are an issue. Our framework implemented in Smalltalk can help in
testing different solution for the communication.

Another benefit of using Smalltalk lies in the compatibility with
some legacy work we been leading since mid 2000s, referred as
Biniou [18]. Biniou is a framework that support describing appli-
cations as a set of concurrent processes, prior to synthesize the ap-
plication onto a reconfigurable device. This process, often referred
as high level synthesis (HLS), can either rely on global schedul-
ing on distributed scheduling, with either a known behavior or inter
modules arbitrary synchronizations. The benefit of using Biniou is
to easily stress some design options, while providing a hardware
speedup compared to pure software execution. Besides, as Biniou
embeds debugging (observability, controllability) features within
the generated hardware, this speed up comes at no cost in term of
exploration and analysis.

The rest of the paper is organized as follows. Section 2 first
describes some related work and summarizes the definitions used
in the paper for the main concepts. Section 3 provides more de-
tails on the context and our motivations. Section 4 delves into the
choices made for the implementation of our framework. Section 5
demonstrates the usage of our framework on a simplified example
of Smart Sensor.

2. Related Work

The modeling of embedded systems in general and modeling of
sensors in particular has been studied in different ways. This section
provides background and focus on the notion of Model of Compu-
tation and Actors, as they both drive our modeling.

2.1 Background

SensorML[3] has been used for describing the specification of
sensors with a XML format. The XML Schema of SensorML is
standardized by the Open Geospatial Consortium. In SensorML
a sensor has a series of attributes and may be composed of pro-
cesses linked together. Robin and Botts[24] demonstrated the use
of SensorML to describe chains of processes to analyze acquired
data. SensorML describes the relations between processes but does
not provide a description of the communication or synchroniza-
tion mechanisms between processes. In [6], Diallo and al. show the
ability of MoCs to describe the communication semantic in mod-
els. They define a modeling language called Cometa that enables to
model the communication and synchronization mechanism defined
by a MoC.

ThingML[8] is a Domain Specific Language (DSL) to model
resource-constrained systems such as smart sensors. Fleurey and al.
promote a Model Driven Engineering approach using nested state
machines to model the behavior. Several model-to-code transfor-
mations are defined to target the Java programming language, the
Arduino family of board and the Atmel AVR and TI MSP chips.
As the final aim of ThingML is to generate code, the designers of
the system must be highly confident in their model and transfor-
mation engines. As any generated code, the result here is not hu-
man readable, and specific tools must be considered to meter the
impact of high level (modeling) changes that the designer would
operate. Several tools or language libraries implement particular
MoCs. Communicating Sequential Process is implemented in the
Java Programming Language with JCSP or in Scala with Commu-
nicating Scala Objects[30]. A SDF based approach can be found in
industrial tools like Scade Suite[31]. However, this different tools
are restricted to one Model of Computation. As we want to ex-
plore architecture that may mix different MoCs we need a tool that
implement different MoCs. Ptolemy[7] is an analysis tool for het-
erogeneous systems based on Models of Computation. Ptolemy is
made of a graphical modeling tool that enables to model the system.
The model is executable through an implementation of the Models
of Computation in Java. Heterogeneity is handled through nested
components. Ptolemy is intended to analyze models of systems.
The analysis of the models is only significant if the models are sta-
ble. Forsyde[25] is both a tool and a methodology for the design
based on Models of Computation of system on chips (SoC). MoCs
in ForSyDe are implemented in Haskell. The suggested methodol-
ogy is based on the use of modeling during the whole design cycle.
The model is refined incrementally until the designer gets a model
ready for implementation on a SoC.

Our approach is synergetic with these works, as we describe
concurrency between processes and to unambiguously explicit their
communications and synchronizations. We are addressing design-
ers in charge of design space of the whole system. We offer them
facilities to simulate several alternatives of architecture to select
those best suitable for the system. Our environment intents to serve
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Figure 1. Tool flow overview

as an exploration step, with fast but coarse grained evaluations.
Simulating architecture alternatives (central left bubble in figure
1) helps the designer to fully capture the functional requirements.
Once done, architecture models are stabilized and refined, and third
party tools such ForSyDe or Ptolemy can be controlled to offer
more accurate metrics and analyze features. For example, in our
framework an entity can use different MoCs at the same level. Our
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framework enables to verify that the functionality of the entity is
well performed. However, mixing MoCs raises heterogeneity is-
sues [7]. Ptolemy is specifically designed to deal with these issues
and enables to validate the entity.

2.2 Models of Computation

A Model of Computation (MoC) for concurrent applications
defines[21]:

1. the composition of the concurrent components of the applica-
tion including the description of how to perform computations;

2. the concurrency mechanisms that govern the execution of the
components;

3. the communication mechanisms.

MoCs are used in the design of embedded systems[14] such as
smart sensors. They provide an abstraction of the concurrency that
enables to design a concurrent system without having to take into
account the implementation of concurrency on the actual system.
This ability is really useful in the first phase of the design cycle
when the final platform may not have been chosen yet.

2.3 Actor Model

The chosen semantics for actor is concurrent entities called actors
that run in parallel[2]. An actor is able to send messages to other
actors and to receive messages from them. Each actor has its own
buffer to receive messages. When an actor sends a message to an-
other it is never blocked. On the contrary, when reading data from
its buffer, an actor can be blocked if the buffer is empty.

In some languages such as Erlang[1] or Scala[10], actors are a
language features. In other languages such as Java (for example
Kilim[29]) or Smalltalk (Actalk[4]), actors are provided through
libraries.

3. Context and Motivations

Contrary to standard sensors, smart sensors have a microprocessor
that makes them intelligent[28]. A smart sensor is able to acquire
data, to perform computations on these data and to send the result
of the computations over a network. A smart sensor is also able to
modify its behavior according to data sent by other smart sensors.
In the context of sea floor observatories, smart sensors are studied
because their embedded intelligence enable them to automatically
register into the sensor network of the observatory[32]. So the smart
sensor can be seen as a plug and play component of the deployed
observatory. They are also able to reduce the amount of data that is
sent on the network.

A smart sensor is a complex system that mix hardware and soft-
ware. Faults and errors in such a system come either from software
or hardware or their interactions between software and hardware.
In the context of sea floor observatories recovering from a failure
may require an on-site intervention requiring expensive materials.
Besides the underwater environment is very hostile. So hardware
failures due to unexpected causes have a high rate of appearance.
As the software of a smart sensor might be the most manageable
part, a lot of pressure is put on the software engineers. They have
to reduce the risks of pure software failures. The software of a smart
sensor is made of concurrent processes that communicate and syn-
chronize. This concurrency hides complexity, however, it can be
the source of a lot of software failures. In order to ensure the over-
all quality of their softwares, software engineers use strict devel-
opment methodologies supported by tools. The INCOSE details a
system engineering methodology in [11]. One of the steps is the
design of the architecture of the system. It consists in defining dif-
ferent candidates of architecture and then validate them. The dif-

ferent validated architectures are compared to choose the one that
best fits to the system requirements. In order to validate the can-
didate architectures, simulation can be used. We are interested in
the concurrent behavior of the system, the communication and syn-
chronization. Simulation requires a way to ease the modeling of
these aspects.

In the case of small size systems, it is tempting to develop the soft-
ware of the smart sensor directly on the final platform. So the soft-
ware is both a prototype and the final application. This mix may
contain portion of code of different quality levels that can cause
the failure of the system. Besides, according to the maturity of the
project, the final hardware platform is not known in advance. So
it is not possible to develop directly on it. This leads to the need
of using a prototyping platform that is able to simulate concurrent
applications. The concurrency is well defined by Models of com-
putation. MoCs enable reasoning about the system at a higher level,
abstracting the low level (platform specific) details. This additional
level of indirection has the following advantages as shown in Figure
2:

e it enables to generate software for different platforms from the
same model;

e it enables to perform simulation of the system on a platform ag-
nostic simulation framework to validate functional properties;

e it ensures the coherence of the different generated software as
communication and synchronization are well-defined.

Platform B

Platform A

Figure 2. Benefits of using Models of Computations

Besides, design tools of embedded systems such as ForSyDe[25]

make a use of Models of Computation. In order to define the ar-
chitectural alternatives, designers must analyze the functions of the
system. A tool that enable to fast prototype the system helps to
understand the main functions of a system. It is also a way to com-
municate with a client to check for the well understanding of his
needs. Besides, communication and synchronization mechanisms
have a high impact on the architecture of a system. It is manda-
tory to identify and analyze this impact as soon as possible. So,
designers must be able to do experiments with several Models of
Computations.
From our point of view, our platform should enable to quickly
modify a prototype to test a new version of the code. The platform
should also be easily extended by adding new Models of Computa-
tion. The Ptolemy project lists twelve different MoCs[5]. However,
the list of existing MoCs is not restricted to those listed by the
Ptolemy project. So the process of making the implementation of a
new MoC compatible with our framework should be made as easy
as possible. Last but not least, the platform should enable to create
modular prototypes. So processes already developed to prototype
one smart sensor should be reused to prototype another smart sen-
sor of the same kind.
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4. Architectural choices
4.1 Framework Architecture

The architecture of a concurrent system is made of several com-
puting blocks that execute simultaneously and that exchange data.
The choice of the breakdown into blocks and the combination of
communication ways between blocks is an architectural alterna-
tive. The breakdown in blocks may be made according to the goal
of the system. However, the choices of communication mechanisms
are wide. Most of the problems such as deadlocks or inconsistency
of shared variables. So we choose to focus on the communication
mechanisms. In our framework, we did not implement a scheduler
to simulate the concurrency. We rely on the concurrency mecha-
nisms provided by the implementation language. We focus on the
implementation of different communication mechanisms each of
them are defined by a Model of Computation. We need a model
that natively describes concurrent processes and their communica-
tion. This is the case of the actor model. Besides, in [27] we showed
that each concurrent processes of a smart sensor can be made of a
thread with a FIFO to store received data. This implementation is
similar to the actor model. So we choose to use the actor model
as the underlying concurrency mechanism to implement our proto-
typing platform. The actor model provides modularity. Actors are
building blocks that encapsulate their behavior. Besides, actors do
not share variables. As the communication with an actor is only
based on message exchanges it is possible to replace an actor by
another one that is reactive to the same messages.

An actor has a single FIFO to receive the messages from the other
actors. Karmani and Agha[17] points out that this mechanism does
not guarantee the order of reception of messages by an actor. They
suggest the creation of dedicated communication channels between
the actors. For modularity reasons, we use the solution suggested by
Karmani and Agha. Each channel of communication can be associ-
ated to a Model of Computation to formally describe how the mes-
sages should be exchanged. Each Model of Computation describes
a particular communication and synchronization mechanism.

In order to take into account a variety of behaviors, we capture
the functional properties of a given MoC into an actor. This solu-
tion offers the benefit of separating the functional behaviors of the
application from the behaviors that rule communications.

A naive example of synchronization of concurrent processes is
illustrated by table 1. This code creates two processes that commu-
nicate through a SharedQueue. As reading is blocking and writing
is not, this implicitly describes a Khan Process Network synchro-
nization scheme. The issue is to let the designer change at will the
semantic of the synchronization, while keeping constant the topol-
ogy of the processes network.

Figure 3 shows the principles of the architecture of our prototype.

Put MoC Data
Channel
Ack Actor Get

Computation
Actor 1

Computation
Actor 2

Figure 3. Principle of the implementation

The interesting part is that, once this partition done, evolution
becomes easy, bringing a fundamental basis for exploration. A
simple implementation is proposed, based on three main classes:
Actor, Channel and MocActor. The code in the Actor class does
not depend on the used Moc as shown by listing 2.

read

“Get”

(self channels at: #input) postRequest: #req.
”Data”

“(self channels at: #input) getAck

write: aData

”Put”

(self channels at: #output) postRequest:
aData.

”Ack”

(self channels at: #output) getAck

| channel |

channel := SharedQueue new.

[[true] whileTrue:[ channel nextPut:
self produceData]] fork.

[[true] whileTrue:[self process:
channel next]] fork.

Listing 1. A naive implementation of Khan Process network

In order to be modular and to enforce reusability, we use the
Adapter design pattern[9]. We implement a MoC as an actor that is
reactive to two messages:

e Put: message sent by a writer process to send data on the
channel;

e Get: message sent by a reader process to read data on the
channel.

Listing 2. The Actor’s read and write operations

As illustrated, we have defined a common protocol for data
exchange between a concurrent block and a MoC block. To send
data, a concurrent block should send a Pur message to the MoC
block and wait for an Ack message. To read data, a concurrent
block should send a Ger and wait for a Data message. In the case
of MoCs that describe non-blocking write operations such as KPN
or SDF, the MoC actor performs the sending of the Ack message
just after the reception of a Put message. As the MoC actor does
not wait for the reception of a Get message, we can simulate a non-
blocking write operation. Otherwise, the Ack message is sent when
the synchronization between the writer and the reader processes
can occur.

4.2 Implementation

In the former section, the principles for the implementation have
been explained. The next subsections illustrate the implementation
of Kahn Process Networks, Communicating Sequential Processes
and Synchronous Data Flows. A special focus has been set on the
particularities of these MoCs.

4.2.1 Implementing Communicating Sequential Process

Communicating Sequential Process (CSP) has been introduced by
Hoare[12]. CSP also describes a network of concurrent processes.
In CSP communications are rendez-vous based. Both write and
read operations are blocking. It also has a conditional rendez-vous
mechanism that introduces indeterminism in the Model of Com-
putation. To achieve that, multiple rendez-vous are started concur-
rently. But only the first one that can be made, goes to the end.
The other ones are canceled once the first one succeeded. Besides,
a guard is used to select which conditional rendez-vous must be
started.

Communicating Sequential Process are well suited for the mod-
eling of systems requiring tight synchronization between processes.
An example is the dining philosopher problem that can be easily
solved with CSP.
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In our implementation, the rendez-vous between a producer
and a consumer is managed by a dedicated Actor called CspRen-
dezVous. the CspRendezVous actor implements several methods to
handle incoming messages and to execute a rendez-vous. Each
method follows the same principles:

e they are called on the reception of a trigger event;

e methods called after reception of a message from a consumer
wait for a message from a producer and vice-versa;

e if a conditional rendez-vous is canceled then the original mes-
sage must be put in queue again;

Figure 4 is a extract of the state machine implemented in the
CspRendezVous actor. It details the reception of a Get message from
a reading process. A method named executeGet is called after the

Get(consumer) /Put(token, producer)/executeRdv()

getReceived

CondSnd(token, producer)/producer!ChecklsFirst \Cancel

waitingCndRdvConfirmation

Figure 4. Part of the state machine of CspRendezVous to manage
the reception of a Ger message

IsFirst/executeRdv()

reception of a Ger message and it waits either for a Put message or
for a CondSnd message.
When a Put message is received the method executeRdy is called.
This method performs the rendez-vous by sending an Ack message
to the producer and a Data message to the consumer.
When a CondSnd message is received, a ChecklsFirst message is
sent to the producer. This message informs the producer that the
rendez-vous is possible. The producer checks if it is the first rendez-
vous that is able to complete. If that is the case, it sends an IsFirst
message to the CspRendezVous actor which calls the executeRdv
method. In the other case, the CspRendezVous actor receives a
Cancel message from the producer and simply sends to itself a Get
message to restart the rendez-vous as the consumer tries a non-
conditional rendez-vous. An example of the sequence of messages
sent during a conditional communication is shown Figure 5.
Conditional rendez-vous are initiated by a specific actor which

Application Com CondReceive CondReceive CspRdv  CspRdv
Actor Manager 1 2 1 2
Get
Create
Create
CondRev
CondRev,
ChecklsFirst
IsFirst
Cancel
IsFirst
Cancel
Data
Data
Data

Figure 5. Example of sequence of messages sent during a Condi-
tional communication

is able to start several actors which are competing to perform a
rendez-vous. This actor reacts to a Get or a Put message sent by an
application actor. It also checks which rendez-vous is successful at
the first place and cancels the others.

4.2.2 Implementing Kahn Process Networks

Kahn Process Network is a Model of Computation that describe a
network of communicating parallel process[15]. The process net-
work is an oriented graph. In KPN, the communication are made
through non-blocking write operations and blocking read opera-
tions. The communications are made through channels made of an
infinite FIFO. Processes in KPN can be created during the execu-
tion of the process network.

Kahn Process Network is useful in the modeling of systems
based on data flows. Signal processing or scientific computing ap-
plications are example of data flow applications.

Our implementation is based on the proposal of Kahn and
McQueen[16]. The FIFO of a channel is managed by a dedicated
actor called KpnChannel. The attributes of this actor are:

queue The FIFO managed by the actor.

hungryConsumer A consumer of data that is blocked on a read
operation on the FIFO.

isFinishReceived The flag that indicates that no more data will be
received from the producer.

monitor A specific actor that manages the different FIFOs.
The KpnChannel actor may receive three different messages:
° Get,
e Put,
e Finish.

Figure 6 describes the state machine implemented in the actor Kp-
nChannel. When receiving a Get message, the KpnChannel ac-
tor checks if its queue is empty. If there are data in the queue,
the KpnChannel sends the head of the queue to the consumer in
a Data message. Otherwise, the KpnChannel checks if the isFin-
ishReceived flag is set. In such a case, the KpnChannel sends the
Finish message to the consumer and the KpnChannel kills itself.
Otherwise, the attribute blockedConsumer is set and a message
ReadBlocked is sent to the monitor. Then the KpnChannel waits
for new messages.

When receiving a Put message, the KpnChannel first sends an Ack
message to the producer. Then it checks if there is an hungryCon-
sumer. In such a case, the KpnChannel sends a message Data to the
hungryConsumer and a message ReadUnblocked to the monitor.
The attribute hungryConsumer is set to null and the KpnChannel
waits for new messages. Otherwise, the data received from the pro-
ducer are enqueued and the KpnChannel waits for new messages.
When receiving a Finish message, if there is an hungryConsumer,
the KpnChannel sends to it a Finish message and kills itself. Oth-
erwise, the flag isFinishReceived is set to true and the KpnChannel
goes on waiting for new messages.

The attribute monitor is a reference to an actor of kind KpnMon-
itor. Its role is to detect deadlocks. A deadlock occurs when all
active process are blocked into a read operation. So the KpnMon-
itor keeps a count of the active process and of those blocked in a
read operation.

4.2.3 Implementing Synchronous Data Flow

Synchronous Data Flow (SDF[20]) describes communication with
non-blocking write and blocking read operations as KPN. SDF
adds the constraint that the production or consumption rates on the
communication links are constant and well known. As a result SDF
offers the ability to pre-determine a scheduling of the different pro-
cesses. A SDF process begins by reading the required amount of
data on each of its inputs, then performs its processing and finally
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!queue.isEmpty()]/send(Data)

queue.isEmpty()&&isFinishReceived]/consumer ! Finish

[hungryConsumer! =null]/hungryConsumer!Finish

Figure 6. State machine of the actor KpnChannel

writes a given amount of data on each of its outputs.

As KPN, Synchronous Data Flow is also well suited to model
data flow applications. Unlike KPN, SDF can only be used when
the data production rate of the different processes are known. It is
the case in most of the signal processing applications.

Our implementation use a multithreaded dynamic schedule as

described by Schaumont[26]. The different actors in the applica-
tion work concurrently. The scheduling of the actors is left to the
underlying virtual machine. The scheduling is not made explicit in
a dedicated actor that activates the others in a predefined order.
The actor SdfChannel has an attribute nbElemToRead which de-
fines how much data must be read by the consumer at each read
operation. If there is not enough data in the FIFO then the read
operation is blocked until the required amount of data is reached.
The SdfChannel actor receives either a Get or a Put message. The
content of a Put message is a list of data. This list is dequeued to
be inserted in the FIFO.
When a Get message is received, the size of the FIFO is com-
pared to the nbElemToRead attribute. If it is superior or equal,
nbElemToRead elements of the FIFO are dequeued to populate a
List of data that is sent to the consumer. Otherwise, the consumer
is blocked until enough data is available.

4.3 Using Scala and Smalltalk

We made two full implementation, an implementation in Scala and
one in Smalltalk. Scala and Smalltalk both provide interesting pro-
gramming mechanisms. An example is the collection manipulation
methods such as map and filter in Scala and collect and select in
Smalltalk. These methods ease the manipulation of data structures.
However, the type system is the big difference between Scala and
Smalltalk. Even if a type inference mechanism is implemented in
Scala, the Scala programming language remains a statically typed
language. It has the advantage of raising some errors at compile
time, however, the type of each variable has to be either inferred
from the context or made explicit by the programmer. It has an im-
pact on the use of generic messages for the communication between
actors.

Listing 3. The CSP MoC in Smalltalk

For example, the Put message as an argument with the generic
type Data (equivalent of Object in Smalltalk). The processing of
the Data message in a consumer process requires type checking
and casting before a clean use of the value carried by the Data
message. On the contrary, Smalltalk is dynamically typed. So there
is need of type checking and casting. This produces a more readable
code. The code does not contain programming constraints due to
the programming language. Besides, dynamic typing seems more
suited for fast prototyping purposes as a change of type of a variable
does not have effects on the whole code.

process
”Two processes”
[l
“read data, may be blocking”
self fifo nextPut:
(self channels at: #input) getRequest.
“automatic acknoledge”
(self channels at: #input)
postAck: #acknoledge
]Jrepeat] fork.

([

“read request, may be blocking”

(self channels at: #output) getRequest.

”fifo access request, may be blocking”

(self channels at: #output) postAck:
self fifo next

]Jrepeat] fork

process

[[| ack data |

“read request, may be blocking”

ack :=(self channels at: #output) getRequest.
“read data, may be blocking”

data :=(self channels at: #input) getRequest.
(self channels at: #output) postAck: data.
(self channels at: #input) postAck: ack]
repeat] fork

Listing 4. The KPN MoC in Smalltalk

The listings 3 and 4 illustrate how the bahavior divergence is imple-
mented. The MocActor object (MocActor being an abstract com-
mon super class to CSPMocActor and KPNMocActor) implements
the process method, which schedules the get/ack operations over
the I0s channels. Every channel has two SharedQueues and sup-
port posting and requesting operations over them. Besides, the Mo-
cActor owns an additional SharedQueue named FIFO. This shared
queue supports temporary storage of data for KPN and SDF Moc.
It’s useless for CSP, though.

5. Experimentation
5.1 Description of the Experimentation

In the MeDON project[13], we deployed a high definition camera.
This camera produces a lot of images that are manually processed.
The major drawbacks of this solution are:

e it requests manpower to analyze the acquired images;
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e non-relevant data are unnecessarily stored waiting for process-
ing.

Our solution is creating a smart sensor using the HD camera as the
sensing device. The smart sensor will embed image processing al-
gorithms. These algorithms are used on the acquired data before
they are sent to a ground-based server. In the following, we simpli-
fied the example. The acquisition part consists in reading an image
file on the disk. An example of image processing algorithm is the
Sobel edge detection algorithm. The data sending consists in writ-
ing the result of the Sobel algorithm on the disk.

5.2 Exploring the Logical Architecture Alternatives

The exploration phase intends to determine the best solution when
describing the architecture as a set of communicating processes.
Not all of the processes have a direct mapping with a physical
device or sensor. Instead, the analysis focuses on functions being
executed, with a tradeoff to be found out, between simplicity of
simulation and accuracy of the modeled behavior.

5.2.1 Presentation of the Possible Architectures

Multiple architectures may be used for this example. The simplest
alternative makes each block of the functional architecture become
a concurrent entity. Another possible breakdown is to decompose
the Sobel algorithm into multiple concurrent entities. This architec-
tural alternative is shown Figure 7.

ImageReader “® ImageWriter

Figure 7. Alternative for the logical architecture

The ImageReader is responsible for reading the image from a
file. For each pixel and for each color plane, the ImageReader cre-
ates a list of nine elements containing the different values associ-
ated to a pixel and its neighbors.

For each color plane, two convolution and a sum computations are
required. Each of them are transformed into concurrent entities The
ImageWriter is responsible for creating an image from the values
coming from the sums.

In the rest of the paper, we focus on the second alternative. As there
are several concurrent entities, we need to ensure the communica-
tion and synchronization of these entities. For example, we need
to ensure that the sum is performed on data that concerns the right
pixel.

5.2.2 Implementation using only CSP

The topology described in Figure 7 can be implemented directly
using actors. However, the order of the messages received by the
different actors is not guaranteed.

One possible solution to this issue is to use a highly synchronized

system (rendez-vous based). This ensures that producer and con-
sumer work at the same rate. As no data is produced until the pre-
vious one is not consumed there will be no inversion of data. How-
ever, this imposes strong constraints on the real system. It limits the
number of processes able to run in parallel.

Each ellipse in Figure 7 is implemented as an actor with a com-
putation role. Each arrow is implemented by a CspChannel actor.
Each CspChannel actor handle the rendez-vous between two com-
putation actors as described by CSP. The code of a computation ac-
tor contains instructions to send messages to and receive messages
from CspChannel actors. The only impact on computation actor of
the use of our framework rather than a purely actor based imple-
mentation is the lines of code to handle the communication with
the MoC actors. The modified topology of the application, mod-
eled based on CSP, is shown in Figure 8. The CspChannel actors
that are added are represented in black.

CspChannel

CspChannel

Figure 8. Topology of the application using CSP

The use of Csp prevents an actor from acting on data before the

tasks of the previous actors in the flow are not completed on their
own input data. As a result, the order of the data at the inputs of the
SumActor is kept.
The use of our implementation does not affect the logic of the actors
composing the system but only the way data are exchanged. This
agility only requires that for each sending of data we add code
to receive the acknowledge from the MoC actors. In the case of
receiving data, we have to add code to send a get request to the
MoC actor and the code to wait for its answer.

5.2.3 Alternative using only KPN

In our previous implementation, we used CSP to make the different
actors communicate. It ensures the correct treatment of the pixels
making the input image. CSP puts strong constraints on the system.
As the synchronization between the application actors is obtained
through rendez-vous, the number of actors that are able to work
concurrently is limited. This may reduce the overall performance
of the application.

Be these constraints useful when developing an application, es-
pecially for simplifying the debugging process through offering a
more sequential scheme to the designer, this level of constraints
may not be necessary in the final application. Exploration - as pre-
viously states - remains one of our more critical motivations beyond
this work. The ability to switch between different MoCs is a key
facility to support agility and incremental refinements at no cost
in term of readability and understanding versus final performance
tradeoff.

Another alternative to CSP channels, is to use a FIFO per re-
quired communications between two computation actors. This re-
duces the risks of reading data coming from the same sender twice.
Besides, blocking read operation ensures that the consumer process
will wait for incoming data. This corresponds to the KPN Model of
Computation.

Contrary to CSP, KPN enables a process that produces data to keep
running while the consumer of its data is also running. This allows
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KpnChannel

KpnChannel

Figure 9. Modification of the topology using KPN channels

to have more processes running in parallel than with CSP. However,
there is a lost of control over the communications. It is not possible
to ensure that the system will have enough memory for the differ-
ent FIFOs. We made an implementation of this alternative with our
framework using KpnChannel actors. No modification is required
on the application actors as we defined a common interface for all
implementation of MoCs. The only changes occurs in the descrip-
tion of the topology of the application to obtain the topology shown
in Figure 9. New instances of kind KpnChannel has to be created
to replace instances of CspChannel. We are able to quickly change
the type of communication or synchronization between actors in
the application we would like to prototype.

5.3 Benefits of Smalltalk’s debugger

From our point of view, in these experiments the main advantage
of Smalltalk over Scala is its debugger.

Firstly the Smalltalk’s debugger is integrated in the development
environment. When a fault occurs in an application the debugger is
started. It enables to perform a post-mortem analysis of the appli-
cation. It is possible to check the state of the different components
of the application. On the contrary, Scala only provides a message
corresponding to the exception that occurs in the running program.
The advantage of Smalltalk is the ability to analyze deeply the rea-
son of a failure as all information are available.

Secondly the Smalltalk’s debugger enables to make live modifica-
tion on the code of the running application and on the values of the
different variables. The Scala debugger only to modify the values
of the variables. The Smalltalk’s debugger provides the ability to
make a correction on the application and to continue the execution.
It is an asset when performing fast prototyping as there is no need
to perform the Code - Compile - Run cycle again.

Besides, the Redpill [19] environment reproduces most of the
smalltalk debugger features at a hardware level. This is critical as
only hardware emulation can support scalability, and the medium
term aim is to address massive sensor networks. As Redpill has
been developed using cincom Visualworks, and is Moc oriented -
despite only CSP is supported at this time - it offers a sound path
to integrate our modeling and evaluation framework with hardware
synthesis. Not only extending the set of supported MoCs makes
sense, but it is part of our strategic research plan and is at the heart
of several research projects.

6. Conclusion and Future Work

When programming an application, the source code is the primary
interest of engineers. In the context of developing the software of a
smart sensor, attention must be drawn on sensing, processing data
and networking. Thus the complexity of the software of a smart
sensor is higher than the one of the software of a simple sensor.
Having a higher level of abstraction to consider the programming
of a smart sensor is useful to resolve early problems like these
associated to IPCs. This statement points out the need to define
a generic model for IPC and synchronization mechanisms. These

mechanisms are many, and this model will be the key to flexibility,
evolutivity and ease of domain space exploration.

In this paper we explored the use of different Models of Compu-
tations for modeling smart sensors. We create dedicated actors for
the behavior of the communication described by the MoCs. This
enables to separate the computations from the communications and
synchronizations. Besides, we define a common protocol of data
exchange between the computation actors and the MoC actors. This
enables to have a modular simulation framework for concurrent ap-
plications defined with Models of Computations. This framework
can be used to help to define candidate architecture for concurrent
applications. Future works include realizing hardware emulation of
such smart sensors, with no loss in term of observability and con-
trollability of the execution. This will offer both faster execution
and scalable modeling. This direction takes a direct benefit from
the RedPill framework. Next, system integration will be consid-
ered. Multiple abstraction layers and on-demand refinements will
support addressing (smart) sensor networks. It’s a second dimen-
sion for scalability, with qualitative enhancements in addition to
quantitative scaling. This second direction will benefit from previ-
ous work that we have led on the Cometa and Biniou frameworks.
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