Jean-Yves Masson

Jean-Yves Masson
Laval University | ULAVAL · Department of Molecular Biology, Medical Biochemistry and Pathology

PhD

About

266
Publications
38,906
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,827
Citations

Publications

Publications (266)
Article
Full-text available
To identify candidate variants in RAD51C and RAD51D ovarian cancer (OC) predisposing genes by investigating French Canadians (FC) exhibiting unique genetic architecture. Candidates were identified by whole exome sequencing analysis of 17 OC families and 53 early-onset OC cases. Carrier frequencies were determined by the genetic analysis of 100 OC o...
Article
Purpose: The BRCA2 p.K3326* variant is considered a low-penetrance variant for breast cancer. Aldehydes that accumulate in cells under insufficient aldehyde oxidation were most recently shown to trigger carcinogenesis by promoting depletion of BRCA2 protein. Allele T of the common variant rs10744777 in the ALDH2 gene was associated with reduced ex...
Article
Full-text available
Significance Stress response pathways, such as the DNA damage response and the UPR, are critical in the etiology and treatment of cancer and other chronic diseases. Knowledge of an interplay between ER stress and genome damage repair is emerging, but evidence linking defective DNA repair and impaired ER stress response is lacking. Here, we show tha...
Article
Full-text available
Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand anneali...
Preprint
Helix-destabilizing DNA lesions induced by environmental mutagens such as UV light cause genomic instability by strongly blocking the progression of DNA replication forks (RF). At blocked RF, single-stranded DNA (ssDNA) accumulates and is rapidly bound by Replication Protein A (RPA) complexes. Such stretches of RPA-ssDNA constitute platforms for re...
Article
Full-text available
Cockayne syndrome group B (CSB) protein has been implicated in the repair of a variety of DNA lesions that induce replication stress. However, little is known about its role at stalled replication forks. Here, we report that CSB is recruited to stalled forks in a manner dependent upon its T1031 phosphorylation by CDK. While dispensable for MRE11 as...
Article
Full-text available
Background Familial ovarian cancer (OC) cases not harbouring pathogenic variants in either of the BRCA1 and BRCA2 OC-predisposing genes, which function in homologous recombination (HR) of DNA, could involve pathogenic variants in other DNA repair pathway genes. Methods Whole exome sequencing was used to identify rare variants in HR genes in a BRCA...
Article
Full-text available
Background Non-small cell lung carcinoma (NSCLC) is a leading cause of cancer-related death and represents a major health burden worldwide. Current therapies for NSCLC include chemotherapy, immunotherapy, and targeted molecular agents such as tyrosine kinase inhibitors and epigenetic drugs such as DNA methyltransferase inhibitors. However, survival...
Article
Full-text available
Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington’s disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-n...
Article
Full-text available
Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalia...
Article
Full-text available
Topoisomerase 2 (TOP2) inhibitors are drugs widely used in the treatment of different types of cancer. Processing of their induced-lesions create double-strand breaks (DSBs) in the DNA, which is the main toxic mechanism of topoisomerase inhibitors to kill cancer cells. It was established that the Nucleotide Excision Repair pathway respond to TOP2-i...
Article
Full-text available
Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway...
Article
Full-text available
RAD51 is the central protein in DNA repair by homologous recombination (HR), involved in several steps of this process. It is shown that overexpression of the RAD51 protein is correlated with increased survival of cancer cells to cancer treatments. For the past decade, RAD51 overexpression-mediated resistance has justified the development of target...
Article
Full-text available
RAS proteins are GTPases that lie upstream of a signaling network impacting cell fate determination. How cells integrate RAS activity to balance proliferation and cellular senescence is still incompletely characterized. Here, we identify ZNF768 as a phosphoprotein destabilized upon RAS activation. We report that ZNF768 depletion impairs proliferati...
Article
FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea induced stalled forks. The mechanisms of the fork protection are not well studied. Here, we purified FANCD2 to study how FANCD2 regulates DNA resection at stalled forks. In vitro...
Conference Paper
The potentially pathogenic variant (PPV), FANCI c.1813C>T; p.L605F, in a new candidate ovarian cancer (OC) predisposing gene was discovered by whole exome sequencing (WES) of familial OC cases from the founder French Canadian (FC) population for discovering new OC predisposing genes. Modeling this variant in cellulo suggested this variant encodes a...
Article
Full-text available
Early detection of breast cancer through screening reduces breast cancer mortality. The benefits of screening must also be considered within the context of potential harms (e.g., false positives, overdiagnosis). Furthermore, while breast cancer risk is highly variable within the population, most screening programs use age to determine eligibility....
Method
The study of the DNA damage response (DDR) is a complex and essential field, which has only become more important due to the use of DDR-targeting drugs for cancer treatment. These targets are poly(ADP-ribose) polymerases (PARPs), which initiate various forms of DNA repair. Inhibiting these enzymes using PARP inhibitors (PARPi) achieves synthetic le...
Preprint
Full-text available
FAN1 nuclease is a modifier of repeat expansion diseases, including Huntington's disease (HD), fragile X syndrome, and autism. The age of HD onset correlates with ongoing 'inchworm-like' repeat expansions (1-3 CAG units/event) in HD brains, and is regulated by three modifiers: The first two, repeat tract length and purity exert their effects by enh...
Article
Full-text available
Gene therapies for genetic diseases have been sought for decades, and the relatively recent development of the CRISPR/Cas9 gene-editing system has encouraged a new wave of interest in the field. There have nonetheless been significant setbacks to gene therapy, including unintended biological consequences, ethical scandals, and death. The major focu...
Preprint
Alkylating agents damage DNA and proteins and are widely used in cancer chemotherapy. While the cellular responses to alkylation-induced DNA damage have been explored, knowledge of how alkylation damage affects global cellular stress responses is still sparse. Here, we examined the effects of the alkylating agent methylmethane sulfonate (MMS) on ge...
Article
Zinc finger (ZnF) proteins represent one of the largest families of human proteins, although most remain uncharacterized. Given that numerous ZnF proteins are able to interact with DNA and poly(ADP ribose), there is growing interest in understanding their mechanism of action in the maintenance of genome integrity. We now report that the ZnF protein...
Article
Full-text available
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion dis...
Article
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafi...
Article
Full-text available
Double-strand breaks and stalled replication forks are a significant threat to genomic stability that can lead to chromosomal rearrangements or cell death. The protein CtIP promotes DNA end resection, an early step in homologous recombination repair, and has been found to protect perturbed forks from excessive nucleolytic degradation. However, it r...
Article
Full-text available
The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN r...
Article
Full-text available
Background Poly(ADP-ribose) polymerase inhibitors (PARPis) specifically target homologous recombination deficiency (HRD) cells and display good therapeutic effect in women with advanced-stage BRCA1/2-mutated breast and epithelial ovarian cancer (EOC). However, about 50% of high grade serous ovarian cancers (HGSOC) present with HRD due to epigenetic...
Article
Full-text available
R-loops are three-stranded structures consisting of a DNA/RNA hybrid and a displaced DNA strand. The regulatory factors required to process this fundamental genetic structure near double-strand DNA breaks (DSBs) are not well understood. We previously reported that cellular depletion of the ATP-dependent DEAD box RNA helicase DDX5 increases R-loops...
Article
Full-text available
DDX5, XRN2, and PRMT5 have been shown to resolve DNA/RNA hybrids (R-loops) at RNA polymerase II transcription termination sites at few genomic loci. Herein, we perform genome-wide R-loop mapping using classical DNA/RNA immunoprecipitation and high-throughput sequencing (DRIP-seq) of loci regulated by DDX5, XRN2, and PRMT5. We observed hundreds to t...
Article
DNA double-strand break (DSB) resection, once thought to be a simple enzymatic process, is emerging as a highly complex series of coordinated activities required to maintain genome integrity. Progress in cell biology, biochemistry, and genetics has deciphered the precise resecting activities, the regulatory components, and their ability to properly...
Preprint
Full-text available
Some familial ovarian cancer (OC) could be due to rare risk alleles in genes that each account for a relatively small proportion of cases not due to BRCA1 and BRCA2, major risk genes in the homologous recombination (HR) DNA repair pathway. We report a new candidate OC risk allele, FANCI c.1813C>T in a Fanconi anemia (FA) gene that plays a role upst...
Preprint
Full-text available
Unrepaired O6-methylguanine lesions induced by the alkylating chemotherapy agent temozolomide lead to replication-associated single-ended DNA double-strand breaks (seDSBs) that are repaired predominantly through RAD51-mediated homologous recombination (HR). Here, we show that loss of the pre-mRNA splicing and DNA repair protein XAB2 leads to increa...
Article
Full-text available
The PALB2 protein is essential to RAD51-mediated homologous recombination (HR) repair. Germline monoallelic PALB2 pathogenic variants confer significant risks for breast cancer. However, the majority of PALB2 variants remain classified as variants of unknown significance (VUS). We aim to functionally and mechanistically evaluate three novel PALB2 V...
Article
Full-text available
Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing varia...
Article
Full-text available
In many repeat diseases, such as Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyr...
Article
Germline DNA tests to identify pathogenic variants in genes linked to hereditary breast and ovarian cancer susceptibility have become widely available. However, the clinical utility of genetic testing depends on reliable evidence-based classification of sequence variants. Determination of pathogenicity traditionally relies on painstaking pedigree-b...
Article
Full-text available
Heterozygous carriers of germ-line loss-of-function variants in the DNA repair gene PALB2 are at a highly increased lifetime risk for developing breast cancer. While truncating variants in PALB2 are known to increase cancer risk, the interpretation of missense variants of uncertain significance (VUS) is in its infancy. Here we describe the developm...
Article
Full-text available
Inherited pathogenic variants in PALB2 are associated with increased risk of breast and pancreatic cancer. However, the functional and clinical relevance of many missense variants of uncertain significance (VUS) identified through clinical genetic testing is unclear. The ability of patient-derived germline missense VUS to disrupt PALB2 function was...
Article
Full-text available
While biallelic mutations in the PALB2 tumor suppressor cause Fanconi anemia subtype FA-N, monoallelic mutations predispose to breast and familial pancreatic cancer. Although hundreds of missense variants in PALB2 have been identified in patients to date, only a few have clear functional and clinical relevance. Herein, we investigate the effects of...
Preprint
Full-text available
The selection of the DNA double-strand breaks (DSBs) repair pathway is decisive for genetic stability/instability. We proposed that it acts according to two successive steps: 1-canonical non-homologous end-joining (C-NHEJ) versus single-strand DNA (ssDNA) resection; 2- on ssDNA, gene conversion (GC) versus non-conservative single-strand annealing (...
Article
Full-text available
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH...
Article
Full-text available
CSB, a member of the SWI2/SNF2 superfamily, has been implicated in evicting histones to promote the DSB pathway choice towards homologous recombination (HR) repair. However, how CSB promotes HR repair remains poorly characterized. Here we demonstrate that CSB interacts with both MRE11/RAD50/NBS1 (MRN) and BRCA1 in a cell cycle regulated manner, wit...
Article
Rad51 is a key protein in DNA repair by homologous recombination and an important target for development of drugs in cancer therapy. 4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) has been used in clinic during the past 30 years as an inhibitor of anion transporters and channels. Recently DIDS has been demonstrated to affect Rad51-mediated h...
Article
Full-text available
Aberrant transcription-associated RNA:DNA hybrid (R-loop) formation often causes catastrophic conflicts during replication, resulting in DNA double-strand breaks and genomic instability. Preventing such conflicts requires hybrid dissolution by helicases and/or RNase H. Little is known about how such helicases are regulated. Herein, we identify DDX5...
Article
Full-text available
PARP-1 is rapidly recruited and activated by DNA double-strand breaks (DSBs). Upon activation, PARP-1 synthesizes a structurally complex polymer composed of ADP-ribose units that facilitates local chromatin relaxation and the recruitment of DNA repair factors. Here, we identify a function for PARP-1 in DNA DSB resection. Remarkably, inhibition of P...
Article
Full-text available
Fanconi Anemia (FA) clinical phenotypes are heterogenous and rely on a mutation in one of the 22 FANC genes (FANCA-W) involved in a common interstrand DNA crosslink-repair pathway. A critical step in the activation of FA pathway is the monoubiquitination of FANCD2 and its binding partner FANCI. To better address the clinical phenotype associated wi...
Article
Full-text available
Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process rema...
Article
Full-text available
BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumor suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In additi...
Article
Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanism...
Article
Full-text available
Protein ADP-ribosylation is essential for the regulation of several cellular pathways, enabling dynamic responses to diverse pathophysiological conditions. It is modulated through a dynamic interplay between ADP-ribose readers, writers and erasers. While ADP-ribose synthesis has been studied and reviewed extensively, ADP-ribose processing by erasin...
Article
Full-text available
Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasio...
Article
Protein arginine methyltransferases (PRMTs) are a family of enzymes that modify proteins by methylating the guanidino nitrogen atoms of arginine residues to regulate cellular processes such as chromatin remodeling, pre-mRNA splicing, and signal transduction. PRMT7 is the single type III PRMT solely capable of arginine monomethylation. To date, othe...
Preprint
Full-text available
Breast cancer associated proteins 1 and 2 (BRCA1, -2) and partner and localizer of BRCA2 (PALB2) protein are tumor suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. They stimulate RAD51 recombinase during homology-directed repair (HDR). Along with being a hub for a protein interaction network, PALB2 inter...