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Abstract

This short paper introduces the extensive and ridomas of a game and discusses
Nash, subgame perfect, and perfect Bayesian eqailibillustrates these concepts with
typical games such as Chicken, Selten’s HorseDtiar Auction, and the Prisoner’s
Dilemma in both its one-shot and its repeated vessi
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The Concepts of Game Theory

The Extensive Form

Formally, a game is a structure made up of fivedigpes of objects: players, states
(also called nodes), moves (also called choiceB)rmation sets, and payoffs (also
called utilities). Some additional concepts sucklance moves and discounting appear
in more advanced game structures.

There needs to be at least two players in a gainteast one turn of play represented by a
node or an information set, and at least two clsiSeme moves end the game and are
called “final” while others yield to a next turninal moves must yield “outcomes” in the
form of payoffs to all the players involved in thame. Payoffs are real numbers. The
more a player prefers an outcome, the higher thefpto that player.

Figure 1 was produced with tké&amePlan software and shows what is arguably the
simplest possible game in its so-called “extenfiven.”

Node,
<Start>

Figure 1: The Simplest Game

Simple games such as this one are organized rmea form” with a well defined root
(here Node 1) where the game is assumed to &ariePlan uses color coding to
recognize easily how objects are associated. Plajiere is coded in blue as illustrated
by the little blue icon outlining a human form. Eytling colored in blue in the picture
thus belongs to Player 1. Since Node 1 is blugjgPla owns it and therefore has the first
turn. Player 2 is in red and owns Node 2. The asrmpresent the moves available to the
player who has the turn. At Node 1, Player 1 cavosk “up” or “down” since these are
blue and clearly originate from Node 1. “up” endghva pair of real numbers written in
standard scientific notation. Again, the color say® gets what if that move is chosen.
0.00000E+00 (in blue) is a complicated way of wgtthat the payoff to Player 1 is 0
(and similarly to Player 2). The choice of “downy Blayer 1 ends in Node 2 at which
Player 2 has the turn since the node is red. PRigaavailable moves are “left” and
“right” and are both final, each ending in a pdipayoffs. The game of Figure 1 has no



information set, meaning that the players know #yachere they are in the game tree
when it is their turn to play.

Figure 2 was also produced wiBamePlan and shows the simplest possible structure
with an information set. With the given payoffsistgame is known as Chicken.

Chicken

Figure 2: A Game with an Information Set

Now, Player 2 has two nodes instead of one andaheyoined by a thick red broken line
that denotes an information set@GamePlan. This means that Player 2 doesn’t know
whether he is at Node 2 or Node 3 when his turnesorRut another way, Player 2 cannot
observe Player 1's choice at Node 1, whereas hie aafer it in Figure 1. This also

means that the exact same choices (left or righBtine available at both nodes of the
information set. Otherwise, Player 2 would know vehlee is according to what choices
are available. For all strategic purposes, it ig bsth sides make their choices
simultaneously in Figure 2. So, the presence ceratesof an information set can
translate into a timing constraint.

p=0.500000

Figure 3



Information sets do not just indicate timing issuégure 3 shows what is usually called
an “incomplete information” game.

First, there is an additional gray node labele@f3tand two gray moves (called soft and
hard) with “p=0.500000" written above their nameagnodes indicate Chance (or
Nature) turns and the moves issuing from them magé some fixed probability
distribution. Nature igot a player in the game since she has no objectpagso(fs) and
does not decide the probability she uses to doothtisat. But she influences decisively
the unfolding of the game. Before any of the acplayers have a turn, Chance flips a
fair coin and decides whether the game will folline upper or the lower branch. The
blue and red information sets then mean that nesiide knows which of the two
branches they are in. But the information setsatandicate simultaneous play here.
Indeed, Player 2 only has a say if Player 1 doesigbse “up” at her turn. So he can
infer what Player 1 ditiefore making his choice.

Games must have at least two real players (Natgerdt count) but often have more.
GamePlan allows up to three players. Figure 4 shows a $gslgame.

T Selten's Horse i

Figure 4: Selten’s Horse

This is known as Selten’s horse (from the nameadéll Laureate Reinhart Selten). The
interesting feature here is that 3 doesn’t knowtiwiiel or 2 played when he does, and
he may never play at all if 1 chooses up and 2 seeteft, although he will know what
happened when handed his payoff of 1.0.

In general, each player has several turns in a gpending on prior developments. In
fact, the number of turns may even be subjectdgthayers’ decisions or to Chance. An
interesting “real life” example that is a favordegame theorists is the so-called Dollar
Auction. There are variations on the theme butlll @ascribe a simple version that can
be illustrated inGamePlan: a professor starts her class by announcing teatl

auction a $10 bill to the highest bidder. The tAdter gets the $10 bill for whatever he
or she bid last. However, there is a twist: thetstexast bidder also pays whatever he or
she bid last but gets nothing.



In general the bids can be any multiple of a ddilatrto simplify let us assume that they
can only be exactly one dollar at a time. To sifgmven further, let us assume that the
professor picks (only) two students who will beoaléd to bid, with Student 1 going first.
Student 1 can either stop, getting nothing, in Wiiase we assume that the professor
keeps the $10 bill. Or he can bid $1 and let Studatecide what to do next. If Student 2
chooses to stop, Student 1 gets $10 minus the $idHer a net of $9. If Student 2 bids
another $1, it is Student 1's turn to choose adgaiom then on, each time a student bids
he adds $1 to what the professor gets for her $tl@ra adds $2 to his own previous bid.
The game is pictured in Figure 5.

Sant choose
¥ oromseor . >

Doillar Auction

1o

e

e ~1.00000401

Figure 5: A Simplified Dollar Auction

This game structure illustrates two important fafitst, a game is not necessarily played
on a tree since Figure 5 involves a loop that aawisited any number of times. Second,
non-final moves (the bid moves) can involve paytdfshe players. Such “transient”
payoffs simply accumulate according to developmantd the game ends.

The Normal Form

All four above examples use the extensive form ghme. But game theory was initially
popularized in the social sciences using the slegtdhormal’ (also called “strategic”)
form. It begins with the concept of “strategy” whits simply a gameplan for a player. In
the games where each player has a single nodéoomiaition set, as in the first four
above examples, it is easy to confuse the condegptadiegy with that of move. In Figure
1, Player 1 can choose only up or down and thesberpossiblgure strategies as well.
In Figure 2, Player 2 also has only two pure sgiate(left or right) although these
involve four possible moves depending on what Rlaydoes. In Figure 3 the situation is
similar with again two pure strategies per playtraugh each player technically owns
four moves. Figure 4 is hardly different from tipaint of view. But Figure 5 can be
misleading: in reality there are infinitely manytgotial moves for each player. So, a
player could for instance plan to bid for up toefivmes and then stop if he ever gets
there. But he could also decide to bid up to onedhed times. The number of pure
strategies for the game of Figure 5 is therefofiaiie.



Traditionally, the normal form is presented asldgaTable 1 is the normal form of the
game of Figure 1.

Table 1: The Normal Form of Figure 1

Thestrategy “up” (by opposition to thenove “up”) now yields the payoff 0 to each side
regardless of what Player 2 chooses. The upperstioxBable 1 therefore list the same

pair of payoffs of zero. And since the strategywd® makes Player 2’s choice relevant,
the lower two boxes show different payoffs.

The normal form corresponding to Figure 2 is shawhable 2.

0Q.000002+00 -1.000002+00

Table 2: The Normal Form of Figure 2

The normal form corresponding to Figure 3 is repnésd in Table 3.

1o 1 e

Table 3: The Normal Form of Figure 3.



It requires a bit more thinking. Now the playerBbes can yields different results
depending on Nature’s move. “up” gives each sidedither case and that is the payoff
of “up” in the upper boxes of Table 3. Also, “dowaiid “left” yield 1 to player 1 in

either case as reflected in the lower left box. iBuyields -1 in the soft case and -2 in the
hard case to Player 2, each with probability Ote fesulting expected red payoff -1.5 is
therefore entered in the lower left box. The lowght box follows the same logic.

The normal form of the game of Figure 4 cannotdpasented by a two-dimensional
table. Instead, it is the three dimensional tahlstrated in Table 4.

Selfen's Horse

__________________________________

2

Table 4: The Normal Form of Selten’s Horse

It shows only the payoffs when 3 uses “front”. Agar table (the broken lines) must be
filled in when 3 uses “back”.

The normal form of Figure 5 would of course invoiménitely many rows and columns
and therefore cannot be represented.

Solution Concepts

The origins of formal game theory can be tracekbadugustin Cournot in the 19
century. A more recent origin is John von Neumamna 1928 seminal article on zero-
sum games (what one side wins is what the othes)o8ut the main figure is
undoubtedly John Nash who, in a 1950 seminal ariittoduced the modern concept of
(Nash) equilibrium: a choice of one strategy paypl such that no one can benefit by
deviating unilaterally (in an expected payoff s§ndost importantly, Nash proved the
existence of such equilibria in all games, provitteglrandomization of strategies is
allowed. Usually, randomization of strategy is egignt to the randomization of the
corresponding movesAn equilibrium without any randomization is callgglire” and

one that involves probabilities is called “mixed”.

! This is true when the extensive form has the propertgearfect recall”. Loosely speaking, this means
that a player’s information sets are such that he never fanjetmation previously held.



Although existence is ensured, uniqueness is ¢an the norm. The game of Figure 1
has in fact numerous Nash equilibria. They candseiibed in both extensive and
normal forms. For instance

Figure 6: A Nash Equilibrium

In GamePlan an equilibrium is shown by giving the probabildiyeach move in the form
“p="above the name of the move. Moves with probigbzero are pictured with a doted
rather than solid line. In Figure 6, both “down’ddteft” have probability p=1. Each
node also has a pair of numbers beginning with “8et’ expected payoff). At Node 2,
for instance, “E=1.00000E+00” in blue is a compiethway of saying that Player 1
expects a final payoff of 1 by choosing “down” ietexpectation that Player 2 will
choose “left”. Of course, this is better for Plajeaihan choosing “up” which yield the
actual payoff of 0. In turn, Player 2 finds it bestthoose “left” for a red payoff of -1
rather than “right” that yields the red -2. Indethet expected payoffs for the entire
equilibrium are shown with “E=" under the start ro€learly, neither side would benefit
from any deviation from this gameplan.

The same equilibrium can be viewed in the normanhfof Table 5. Here again the
probability p=1 is attached to the strategies “doamd “left” and the other two (“up”
and “right”) are grayed to indicate zero probabilifthe expected payoffs are clearly
1(for blue) and -1 (for red) in the bottom-left box

% BEpEr i

p=1.000000 p= 01000000

0.00000E+00 0.00000E+00

= 0000000

daen Q0000E+00 -E000E+00
= 1.000000

Table 5: A Nash Equilibrium

But GamePlan actually shows two other equilibria in the norrfwain. Here is one:
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p= 0000003 p= 1000000

o= 1.000000

= 0000000

Table 6: Another Nash Equilibrium

Here, “p=1" is attached to “up” and “right”. Indedélayer 1 would lose by unilaterally
switching to “down” since that would yield the blpayoff -2 instead of 0 in the bottom-
right box. Player 2 would not lose but would nohéf#t either by switching unilaterally
from “right” to “left” since this would yield theasme red payoff of zero in either top
boxes. The Nash equilibrium concept only requined there be no benefit from
switching. It doesn’t require that there be an alckoss for either side.

The equilibrium of Table 6 can also be seen iretktensive form in Figure 7. Here again
“up” and “right” have probability “p=1" and the e&pted payoffs under the start node are
both “E=0". But there is something a little odd ¢éxeat Node 2 Player 2 is planning to
choose “right” although, if he ever found himséléte, he should plan on choosing “up”
which yields a strictly greater red payoff of -stead of -2. The fact is that he is not
planning to ever reach Node 2 in this Nash equilibrium. \Bleatever he plans for Node 2
has no effect on his own expected payoff at Nodgui it does have an effect on Player
1's expected payoff: indeed, by planning “right™Ndde 2 he creates the blue
expectation “E=-2" at Node 2 and therefore justifiee superior blue choice of “up” at
Node 1. It is a bit as if Player 2 is deterringylal from choosing “down” by an implicit
threat of choosing “right”.

p=1.000000

p=0.000000

Figure 7: The Nash Equilibrium of Figure 6



But that threat is flimsy! There is no way Playaer@uldrationally choose “right” if
Player 1 decided to call the bluff by choosing “adwThe Nash equilibrium can make
perfect sense in the normal form tleedses completely all timing issues but it is not
always convincing in the extensive form. This aringyfeature led to refining the
concept of Nash into that of “perfect” equilibriim the later work of Selten and
Harsanyi). These ideas will be discussed in thel thection of these notes. The
equilibrium of Figure 6 is (subgame) perfect whiat of Figure 7 is not. In fact there is
a continuum of Nash but non-perfect equilibriaha ibove game where Player 1
chooses “up” and player 2 chooses “right” with @bttty at least 0.5.

The game of Figure 2 (and Table 2) is known as ¢kdm” and has exactly three Nash
equilibria. Two are pure and as follows: “up arghtf yielding the payoffs -1 for blue
and 1 for red, and “down and left” yielding 1 fdub and -1 for red. There is also a
mixed equilibrium with each side using a 0.5 praligton each strategy.

The game of Figure 3 (and Table 3) also has seMasth equilibria: “down and left” and
a continuum from “up and right” to “up together ieft or right with 50% chances”.

The situation is similar in Figure 4 (and Tablemth Nash equilibria such as “up, left
and back”, “down, left and front” and “down, frortnd 50% chances of right or left” as
well as many other combinations. The second oileistrated in Figure 8. It suffers
from the same credibility problems identified irg&ie 7: the choice of “left” by 2 would
not be rational at Node Y if play ever reache®iit the flimsy threat of “left” makes 1
choose “down” in Nash equilibrium.

t L
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Figure 8: A Non-Perfect Nash Equilibrium

Finally, GamePlan finds three equilibria in the game of Figure 5ot@f which are pure
and one that involves probabilistic moves. This ¢ta is shown in Figure 9.

10



p=1.000000 b= 1.000000 p=0.000000
Choose = shop
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Solution # 3 p=1000000

p=0:500000

Figure 9: An Equilibrium of the Dollar Auction

In this case, Student 1 bids with certainty affingd turn and both sides continue bidding
up with 80% chance turn after turn. The rationaletliis behavior is easy to explain by
looking at the picture: note that red’s expectegbffaat the green “2’s turn” node is E=2.
But by bidding from node “1’s turn” red pays $2raflected in the -2 red payoff under
that move. So, red is expecting -2+2=0 from malkireg bid. But that is exactly his
actual payoff from stop. So, red is indifferentaeen “bid” and “stop” and can choose
either with the given probabilities. In turn, thedrexpected E=2 at node “2’s turn” is
easily explained: green chooses “stop” that yidg@sred payoff 10 with probability 0.2
and “bid” that yields red an expected 0+0=0 witbhability 0.8 for an expected total of
E=2. The situation is entirely symmetric for greBerhaps this equilibrium explains the
empirical observation that students engaged igémee often bid up beyond the very
value ($10) of the prize. It also illustrates omgportant fact: equilibria are always
forward looking. As the game unfolds in Figure 9 the twiies accumulate losses as they
bid repeatedly. But their rational behavior remalnisen by their expectation of the
future. The past costs asank and do not influence their gameplan for the future

Homework

1. The game of Figure 2 was interpreted as one oflsameous play. So, the two
players’ turns should be interchangeable withoaseguences. Construct an
extensive form equivalent to Figure 2 and Tableh2ne Player 2 has the start
node.

2. Modify the game of Figure 3 so that there is na@bhformation set. Then write
its normal form (hint: Player 1 now has four stggs).

3. Write the normal form of the game of Figure 3 viltle probabilities of “soft” and
“hard” changed to 0.4 and 0.6 respectively.

4. Replace the $10 bill by a $20 bill in the game igfuFe 5. Verify (without using
GamePlan) that the repeated bids with probability p=0.9vican equilibrium.

Advanced Game Structures and Solution Concepts

It is significant that the first Nobel Prize awatldgn 1994) to game theorists went to
John Nash, John Harsanyi, and Reinhart Selten. dastioped the very concept of

11



game equilibrium while Harsanyi and Selten refiitedd remedy some of its weaknesses:
Selten developed the idea of “subgame perfect’libguim and Harsanyi that of
“Bayesian” equilibrium, two modern standards in gatimeory?

Subgame Perfect Equilibrium (SPE)

Some limitations of the Nash equilibrium conceptevalready outlined in Figure 7: the
planned move “right” at Node 2 is not credible hesmit would not be optimal if Player
1 chose “down”. Selten observed that the strudteggnning at Node 2 with the two
moves “left” and “right” actually forms an extremngedimple game all by itself: although
Player 1 doesn’'t have a move there she does reaguagoff. That structure is called a
“subgame” of the entire game beginning at Noderid this subgame has a trivial Nash
equilibrium where Player 2 chooses “left”. So, 8elproposes to consider the set of all
possible subgames of a game (including the whaieegsself).

Formally, if a Nash equilibrium of the whole gamartslates into a Nash equilibrium in
every subgame it is called “subgame perfect”.

The equilibrium of Figure 7 fails that test butttb&Figure 6 passes it with flying colors.

Clearly, the SPE concept is only applicable to msitee form game3But does it always
resolve the credibility problems of the Nash edpailim? Selten himself game a counter-
example that answers the question negatively.titeésggame of Figure 4. The trouble is
that it admits no subgame other than itself: indeae might be tempted to say that the
“game” beginning at Node Y is a subgame. But the@erfoom Y to W yields to part of
the information set {Z,W} which cannot be brokenthdut changing the nature of the
game. In other words, a “subgame” must be a seifatoed game all by itself. One
cannot cut out any part that doesn't strictly pdec. So, the inconsistency pointed out
in Figure 8 is not resolved by the SPE concept.

The game of Figure 3 offers a similar hurdle: thysubgame is the entire game itself
so that any Nash equilibrium is trivially a SPE.

But how does this SPE concept apply to Figure 5®fijure is in fact misleading from

the subgame viewpoint: a more adequate, althougimplete, picture would be Figure
10. The structure repeats indefinitely, as suggédsyethe red dotted line at the bottom.
But one can see that there is a subgame startangyatode of the entire tree. So, the SPE
concept applies and should resolve any credibggye. In fact, the equilibrium of Figure
9 translates without any change to Figure 10. Iy bas the unusual property that
equilibrium play at any node (but the first twokisvays to bid with 80% probability. In
other words, the prior developments don’t mattel ame can just as well look at the
graph of Figure 9 and decide that only two stateke@game need be considered:
whether it is red’s or green’s turn to play.

2 The second Nobel Prize given (in 2005) to game theorists i Robert Aumann and Thomas Schelling.
Aumann has been a main figure in the developments of “repeatext’faimile Schelling has applied game
theoretic concepts and methods to the analysis of conflictleterrence.

% Selten also developed a “trembling hand” equilibrium conaepthe normal form.

12



Figure 10: A Tree Form of Figure 3

An equilibrium where all kinds of prior developmsrre subsumed into a few states is
called “Markov perfect”. A Markov perfect equililbmn (MPE) in such a repeating game
is always an SPE with a simple structure.

Perfect Bayesian Equilibrium (PBE)

Incomplete information games such as that of Fi@uaee mostly ill suited to the SPE
concept. In essence, they arise when the playensidknow whether they are playing
one game or another, something that is decidedhvagae at the start. So, any “cut”
would presumably cut an information set, somethmiagallowed.

Harsanyi is at the origin of the Bayesian apprdadhis kind of problems. It is well
illustrated with the following variation on the the of Figure 3.

p=0.400000 U.00000E+00

Figure 11: One-Sided Incomplete Information
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Here, Player knows what game she is playing but Player 2 doesn’thabinformation

is called “one-sided.” The standard interpretattothat Player 1 has two “types” (here
labeled “soft” and “hard”) and that the outcomeld# two sides’ choices will depend on
what type Player 2 was actually playing againstalgys in such cases, the initial
probabilities (60% soft, 40% hard) called “priofib&s” are known to both sides.

Again, there is no (proper) subgame but the whalagitself. The normal form will
involve four strategies for Player 1 and two faay®&r 2 and yield numerous Nash
equilibria.

Harsanyi’'s insight is that Player 2 would not oabtt according to the initial chances that
he would be playing in the upper or the lower pathe tree. He would also interpret
Player 1's move as indicative of her type and contdlify hisbeliefs about who he is
really facing accordingly. The concept of belief§armalized as a probability
distribution over the nodes of each information*s&t his turn, Player 2 should decide
rationally whether to choose “left” or “right” antlis depends on where (Node 2 or 4) he
believes to be. If, for instance, he believes tatiode 2 with 60% chances as the prior
beliefs would indicate he should choose “quit” weirtainty, a choice with an expected
payoff of -1.4 rather than -1.6 for “fight”. But Rlayer 2 chooses “quit” with certainty
Player 1 is strictly better off choosing “move” thlygelds an expected payoff of 1 rather
than “stay” that only yields O for either type. &ig 12 shows this equilibrium.

P=0.000000 p=1.000000

Figure 12: An Equilibrium

The notation “b=0.6" above Node 2 shows Playemh2kef (also known to Player 1) that
he is there at his turn of play. But could he d@atardifferent beliefs and therefore make
different choices? Figure 13 shows precisely sucasa.

* A node that is not part of any multi-node informatsmt is also called a “singleton” information set and
must always have belief 1.

14



p=0.500000
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Figure 13: Another Equilibrium

Now, Player 2 believes to be at Node 2 with onlyé5€hances. As a result he is
indifferent between “quit” and “fight” and can pléyem with 50% probabilities. The
effect is that theoft Player 1 becomes indifferent between “stay” andveai at Node 1
and can play them with 1/3-2/3 probabilities. Bawhdid the beliefs change from the
prior 60% on soft to the “posterior’ 50%7? This re@sely Harsanyi’s insight: Player 2
applies Bayes Law of conditional probabilities akofws:

P(soft|2’s turn)P(2’s turn)=P(2’s turn|soft)P(seR(move|soft)P(soft)
Observing that P(2's turn)=P(move|soft)P(soft)+R{ajbard)P(hard), this yields the
standard Bayesian updating formula

b (at Node 2)= P(soft|2’s turn)
= P(move|soft)P(soft)/( P(move|soft)P(soft)+P(mbae])P(hard))

Since P(move|soft)=2/3, while P(move|hard)=1, atiogrto Figure 13, one gets
b=(2/3)(0.6)/((2/3)(0.6)+(1)(0.4))=0.5

GamePlan does these calculations automatically but it isonant to understand the
underlying logic. Both figures 12 and 13 show pefrigayesian equilibria (PBE) that are
clearly far from unique. IndeeGamePlan provides three other PBEs, one of which is
pictured in Figure 14.

Note that Player 2 believes to be at Node 4 wittag&y (if his turn comes) and chooses
“fight” accordingly. This deters both types of Pyl to move and prevents Player 2
from making any actual decision. Bayesian updatiege plays no role whatsoever
because the red information set is never reacheduitibrium play. In that case, any

15



distribution of beliefs on the red nodes is allowe&BE. One says that the red
information set is “off the equilibrium pati3”.

p=1.000000 p=0L000000

p=1.000000

-1.00000E+00

p=1.000000

p=0.000000

“A.00000E+00
< =2 0000NE+DD

Figure 14: Yet Another PBE

Formally, a PBE is made up of one strategy per &mk(common) beliefs at all
information sets such that the beliefs are consistéth the strategies by Bayes law (and
arbitrary off the equilibrium path) and the stragsgprescribe optimal choices at each
turn given the beliefs (they are sequentially irzid.

The Shadow of the Future

The game of Figure 5, or its infinite tree formHigure 10, is an example of a more
general class of “repeated games”. Such gamesitteem stop when the players decide to
or they can stop as a result of a chance move hyrélaRepeated games have been
studied extensively and are a main source of acdchgame models together with the
incomplete information onésAumann gave an extensive survey of theoreticailten
1981.

A major brand of repeated games uses the concégisobunting” of the future. For
instance, in the repeated game of Figure 5, fuiideosts and prospects of eventually
winning the auction could be weighed less thangmesnes. An alternative way of
thinking is that Nature may interrupt the gamerat time with some probability. For
instance, the professor could use a random dewidedide whether the auction will go
through another turn.

® The arbitrariness of beliefs off the equilibrium path cartiticized as allowing the non-credible threat of
“fight” in Figure 14.
® It is possible to work with repeated games of incompletination but they are usually hard to solve.
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Figure 15 shows how discounting worksGamePlan: in the upper game fragment “bid”
leads to a chance move with probability p=0.01 thatgame ends with the red player
winning the bid. The game therefore continues rthbability p=0.99. But that means
that all developments beyond turn #N are vieweth Vess likelihood and therefore less
impact on rational calculations.

-
L

1.00000E:+00

Figure 15: Two Ways of Looking at Discounting

Equivalently, the chance node can be removed dhegand the “bid” move can be
assigned the discount factor d=0.99. But the teartgpayoff must be adjusted
accordingly: the 0.01 chance of winning $10 amotm&n expectethstant win of $0.1
that must be added to the -$2 bid for a -$1.9 daaoid similarly for the other players).
Modifying the game of Figure 5 along these lines &a interesting effect on the mixed
solution: the probability of bidding rises! (seent@work 4 below).

Repeating a standard “one-shot” game with discagrdan have surprising effects on the
solution. The most well known example of this fiscthe famous Prisoner’s Dilemma,
usually introduced in the normal form of Table 7.

Table 7: The Classic Prisoner’s Dilemma

As a one-shot game, the solution is trivial: battes find that “defect” is best regardless
of what the other side does. This is called a “d@mt” strategy. The single Nash
equilibrium “defect-defect” thus yields the payeffto each side. The paradox arises
from the fact that both would be strictly bettef ibthey could “trust” each other and
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play “cooperate”. Unfortunately, in a simultane@lsy situation, this is a recipe for
getting exploited by unilateral defection (payofihstead of O for the unilateral defector).
The Prisoner’s Dilemma has been used as a metdphoountless situations where
individualistic behavior leads to an inferior sd@atcome.

Is there a way to incite cooperation with the thdduture retaliation? This requires that
the game be played more than once. Repeatingdhig gfinite number of times makes
strictly no difference in the logic of defectiom the last iteration, both sides will defect
expecting no future. Thus, they will do so on tleatrto last turn since defection is a
foregone conclusion for the last turn, and so ackko the very first turn.

However, repeating the game with sopnebability has dramatic consequences. Now
future retaliation is always a possibility and @k it is ground for cooperation. Writing
the extensive form version of Table 1 should by m@relementary (simply edit Figure 2
for payoffs and move names). But writing an extem$orm for therepeated version is
slightly more challenging. It all depends on hownmnaossible developments one wants
to distinguish as representative of prior historfestandard approach is to distinguish
four states according to the four possible outcoofiemch turn. The resulting extensive
form therefore distinguishes four replicas of tine-ghot extensive form of Table 7, each
corresponding to a possible prior play of the gafngure 16 shows a particularly
interesting SPE in the resulting picture.
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Figure 16:The Grim Trigger in the Repeated Prissr@ilemma
Blue Node RCC is reached anytime both players ctaxsep” (for cooperate) on the

previous turn. Similarly RCD is reached when bloeperates and red defects (“dfct”),
RDC is reached when blue defects and red coopeeatdsRDD results from defection
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by both. All red moves have a transient payoffra$able 7 and bear a d=0.9 discount
factor. All blue moves have a d=1 discount sin@alinting occurs only when moving
to the next turn, and that results from a red méWedoted moves have probability zero
and solid ones therefore have probability one. SRE& of Figure 16 is known as the
“Grim Trigger”: any defection by either side leadgerpetual defection. But
simultaneous cooperation, if unbroken, will perpéggutself in the upper left loop.

In general, cooperation can be sustained by triggeemes provided the discount factor
is close enough to 1. The higher the discount fatihe more relevant the future is in
rational calculations. This effect is known as ‘tsleadow of the future”.

Homework

1. Explain why the Nash equilibrium of Figure 8 is moPBE (hint: express the
beliefs of the green player and argue that secpleationality fails).

2. Change the prior beliefs to P(soft)=0.6 in Figu2e dolve using GamePlan (with
the Perfect|Explore solve option), and justify plosterior beliefs in each solution.

3. A game of “perfect information” is one that lackstrivial information set.
Explain why SPE and PBE must be equivalent in gjaches.

4. Modify the game of Figure 5 so that the repeated™imoves are discounted by
factor d=0.99 and adjust the repeated bid payafia &igure 15. Solve the
resulting game witlamePlan and interpret the fact that the probability of
bidding increases to p=0.808081 (from p=0.8) a=salt.

5. Solve the game of Figure 16 in Explore|Nash modkidentify “Tit-for-tat”
among the solutions. According to the biblical fGit-tat, one should retaliate in
kind for defection and reciprocate cooperation. Whthat not a SPE?

6. Adjust all discount factors on the red moves t0.480n the game of Figure 16.
Solve with GamePlan in Pure|Explore mode. Do yilfisid the Grim Trigger?
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The GamePlan Software

Please see tHeamePlan manual. The software can be downloaded free at
http://www.gametheorysoftware.net

Examples of Game Modeling
Please see Jean-Pierre Langlois’ home page on Ghewogy.
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