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Abstract—We analyze Magnetic Resonance Spectroscopic sig-
nals by the continuous wavelet transform. Instead of the standard
(Morlet) wavelet, we introduce a new class of wavelets, derived
from the metabolite data themselves, using the properly normal-
ized autocorrelation function of each signal. This allows to detect
without ambiguity the presence of a given metabolite in a signal
consisting of many different components.

I. INTRODUCTION

Magnetic Resonance Spectroscopy (MRS) is a unique non-
invasive tool for detecting metabolites and quantifying their
concentrations through the amplitude of these contributions in
the time domain. However, the MRS signal acquired at short
echo-time contains contributions not only from metabolites,
but also from water and macromolecules and lipids. In this
paper, we apply the wavelet analysis to the MRS signals, with
the aim of detecting the presence of specific metabolites in
an arbitrary superposition. Analyzing in the time and scale
domains simultaneously can provide more useful information
than the Fourier transform, which gives only spectral infor-
mation. In addition, a small perturbation of a signal which
may occur during the data acquisition will result only in a
small, local modification of the wavelet transform. Among
several types of wavelet transforms, the continuous wavelet
transform (CWT) technique [1], [2] can estimate the frequency
and amplitude of the spectral line directly from the phase and
modulus of the wavelet transform. A review of this approach
may be found in [3].

However, the formalism developed in that paper used ex-
clusively the Morlet wavelet transform to analyze the MRS
signals. Now it is a well-known rule of the thumb that the more
a priori information on the signal is used, the more efficient
the CWT becomes. In this paper, we push that rationale to
the extreme, namely, we construct dedicated wavelets directly
from the MRS data themselves. The idea is to define the
wavelet by the autocorrelation function of the signal, properly
averaged to zero. We will proceed in two stages. In a first step,
we start from a model FID signal, for instance a truncated
Lorentzian (i.e. put to zero for times t < 0) and evaluate
its performance. Then, in a second step, we start from real
metabolite data. Here we face the additional problem that data
are by necessity discrete, and thus also their autocorrelation

function. Therefore an extra step, based on interpolation, is
needed for using such discrete wavelets for a continuous
wavelet transform. The outcome is that these wavelets look
promising for the analysis of MRS signals. In particular, they
are able to detect without ambiguity the presence of a given
metabolite in a superposition of several metabolites and/or
lipids.

II. AUTOCORRELATION WAVELETS

As we said before, the idea is to start from the autocorre-
lation function of a given model signal and use it as adapted
wavelet after proper normalization. The autocorrelation func-
tion estimator Rxx(t) of an ergodic process time series x(τ)
is defined by

Rxx(t) =
∫ ∞

−∞
x(τ)x(τ − t) dτ (1)

where the overline denotes the complex conjugate [4]. After
subtracting the mean,

ψx(t) = Rxx(t)− E{Rxx}, (2)

we obtain an admissible wavelet ψ(t) (provided the mean
E{Rxx} is finite).

Now we apply this technique to a modified Lorentzian
spectral line

x1(t) = Ae−Dteiω0t θ(t), D > 0, (3)

where θ(t) is the Heaviside function (or step function). This
model allows us to find an autocorrelation function, whereas
the “pure” Lorentzian spectral line cannot have an analytical
autocorrelation function. Also this model looks more like the
FID signals obtained in vitro than a pure Lorentzian one. Now,
computing the autocorrelation function of x1 by (1), we obtain
the adapted wavelet

ψ(t) =
A

2D
e−D|t|+iω0t, −∞ < t <∞, (4)

with Fourier transform

Ψ(ω) =
A2

D2 + (ω − ω0)2
. (5)
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Fig. 1: ψ(t), for A = 1, D = 1 and ω0 = 32 rad/s: real part
(line) and imaginary part (dash).

Strictly speaking, one ought to introduce an additive correction
term for making this wavelet admissible. However, as for
the Morlet wavelet, too, the correction term is numerically
negligible for realistic values of the parameters here, so we
will omit it. We show in Fig. 1 the real part (continuous line)
and the imaginary part (dashed line) of ψ(t), respectively, for
A = 1, D = 1 and ω1 = 32 rad/s.

The next step is to calculate the CWT of a signal s with
the wavelet ψ, that is,

S(b, a) =
1√
a

∫ ∞

−∞
ψ

(
t− b

a

)
s(t) dt (6)

=
1
2π
√
a

∫ ∞

−∞
Ψ(aω)S(ω) eiωb dω . (7)

Here S(ω) is the Fourier transform of s(t), whereas a > 0 and
b ∈ R are the scaling and translation variables, respectively.

Applying these formulas to the x1 signal itself, one finds
that the CWT diverges as a → 1 (the match between the
wavelet and the signal is too perfect!). This behavior changes,
however, if we analyze numerically a signal limited in time,
like Ae−Dteiω0t, 0 6 t 6 T0, for some finite T0. For the
discretized signal, we take:

x1[n] =
{

0, 0 6 n 6 N
2 − 1,

A e−D(n−N
2 )ts eiω0(n−N

2 )ts , N
2 6 n 6 N − 1,

where ts is the sampling period in seconds. Then we compute
its CWT using the discretized version of (5). The result, shown
in Fig. 2, exhibits a strong horizontal ridge (line of local
maxima) for a = 1. The occurrence of this local maximum
indicates that the component x1 is present in the signal. This
feature will be the crucial ingredient for detecting a given
signal (pure metabolite) in an unknown superposition, as we
will discuss in the next section.

This method can be further generalized to multipeak signals,
that would be well adapted for identifying doublets or triplets,
for instance, from complicated MRS spectra.

III. METABOLITE-BASED WAVELETS

Now we turn to real life signals and apply the method
developed above. We derive our metabolite-based wavelets

CWT1D 
Wavelet: Lorentz1d ( k

0
=0.125, D=0.0039063)
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Fig. 2: (a)|CWTx1[n]| for A = 1, D = 1, ω0 = 32 rad/s,
n = [1, 4096] and a = [0.5, 1.5] using the wavelet ψ.

from metabolite profiles, which could have been acquired by
MRS measurements of phantoms filled with single metabolites
or by simulation in jMRUI [6]. Each of those wavelets is sup-
posed to be sensitive to one metabolite. It is thus necessary to
construct mother wavelets with spectral characteristics similar
to the ones of a certain metabolite. Therefore, we calculate the
autocorrelation function of the metabolite profile φi(t):

Ri(t) =

∞∫
−∞

φi(τ)φi(τ − t) dτ . (8)

In this formula, the overline indicates the complex conjugate
and i = 1, . . . ,K refers to the index of a certain metabolite
profile out of a number of K profiles.

As the metabolite profile φi in MRS is a mixture of
decaying, complex oscillations, its autocorrelation values are
complex, too. The magnitude increases from zero to the
maximum before it decreases again. After subtracting the
mean,

ψi(t) = Ri(t)− E{Ri}, (9)

we obtain an admissible wavelet ψi(t) (provided the mean
E{Ri} is finite). Fig. 3 shows an example wavelet. It has
been derived from an in vitro Creatine (Cre) profile (Fig. 3a).
The resulting Cre-based wavelet shows also two characteristic
peaks like the original Creatine profile in the frequency
domain (Fig. 3b). In the time domain, however, the function
is symmetrical with zero mean (Fig. 3c) as required for an
admissible wavelet. Next, we perform the same operation for
eight metabolites and two lipids contained in the data base
obtained at ESAT, K.U.Leuven. These metabolite signals have
been quantum mechanically simulated with NMRSCOPE [7]
using a PRESS sequence, an echo time of 30 ms, and a
field strength of 1.5T. Among these signals, we will present
here three representative cases, N-Acetyl Aspartate (NAA),
Creatine (Cre) and Lactate (Lac).

Now we face a problem. Indeed, the outcome of measure-
ments consists only of discrete data sets for the metabolite
profiles.

In order to perform the continuous wavelet transform, we
need to dilate our constructed wavelets. To do that we used an
Upsampler - Downsampler digital system presented in [8]. In
this system, we first expand the signal by an integer factor
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Fig. 3: Wavelet constructed from Creatine (Cre) in vitro
profile: (a) Modulus of the Cre profile spectrum; (b) Cre-based
wavelet spectrum; and (c) Real part of the Cre-based wavelet
in time domain.
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Fig. 4: Cre-based wavelet at (a) scale a = 0.8 and (b) a = 1.2.

L by inserting L − 1 zeros between the original samples
and then interpolating these values by a low-pass digital filter
with cutoff frequency of π/L rad, implemented by a Bartlett
window of length 2L − 1. Next we reduce the signal by
an integer factor M , filtering it by a low-pass filter with
cutoff frequeny of π/M , in order to avoid aliasing and then,
decimating it, i.e., keeping one sample of M samples). The
filter used here was a 128 tap FIR filter designed using the
MATLAB c© function FIR1. With this procedure, our possible
scales will be a = L/M . For our previous example of the
Cre-based wavelet, we look at two different scales to show
the effect. The time domain version at scale a = 0.8 and
a = 1.2 can be seen in Figs. 4a and 4b, respectively.

In order to estimate the efficiency of the method, we will
use a synthetic signal, shown in Fig. 5a, composed of all
metabolites and lipids available from the data base. On the
other hand, Fig. 5b shows exactly the same signal, but with the
Lactate removed. The difference between the two spectra can
be hardly seen. So, it is interesting to see what the metabolite-
based wavelets can find in these signals. We will test the
three metabolite-based wavelets, namely, the NAA-, Cre- and
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Fig. 5: Example of a composed in vivo MRS signal: (a)
including all metabolites from the data base; (b) the same as
(a), but with the Lac contribution removed.
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Fig. 6: CWT using the NAA-wavelet on (a) a pure NAA
reference signal; (b) on the composed signal from Fig. 5a;
and (c) on the composed signal from Fig. 5b. The presence of
NAA is indicated by the local maxima at scale a = 1.

Lac-wavelets on the pure metabolite signals and on the two
composed signals of Fig. 5. The upper panel of each figure
shows the CWT coefficients in a time-scale representation.
The lower panel shows the horizontal ridges as an indicator
of local maxima of the coefficients along the time axis.

Let us begin with NAA. The CWT using the NAA-based
wavelet on the pure NAA-reference signal (Fig. 6a) shows
a clear line of maxima at scale a = 1. We find a similar
line when we look at the wavelet transform using the NAA-
based wavelet on the composed signal (Fig. 6b). While we see
some effects on lower scales, we have clear maxima values at
scale a = 1 again, which indicate the presence of NAA in the
analysed signal. Exactly the same behavior is observed on the
composed signal without Lac (Fig. 6c).

Next, we do the same analysis with Cre. So, we apply the
Cre-based wavelet on a Cre reference signal. The result is
shown in Fig. 7a. The outcome is not a straight line as with
NAA before. However, it still shows significant local maxima
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Fig. 7: CWT using the Cre-wavelet on (a) a pure Cre reference
signal; (b) on the composed signal from Fig. 5a; and (c) the
same without Lac. The presence of Cre is indicated by the
local maxima at scale a = 1.

at scale a = 1, which are characteristic for this metabolite. We
find that structure again at scale a = 1 if we apply the Cre-
based wavelet on our composed signal (see Fig. 7b). Although
we see again local maxima arising at other scales, too, we still
can tell from that image that Cre is present in the signal. Again
the same result is obtained on the composed signal without
Lac, there are only some minor differences in the amplitudes
of the maximum CWT magnitude (Fig. 7c).

Finally we turn to the Lac-wavelet. The Lac-based wavelet
shows for both the Lac reference signal and the composed
signal a wavelet transform with a significant structure at scale
a = 1 (Figs. 8a and 8b). Again, this is how the presence of
Lac in the composed signal is indicated. When we analyze the
composed signal without Lac, however, that structure at scale
a = 1 disappears as it should, since the metabolite is absent
(Fig. 8c).

IV. CONCLUSION

The conclusion of the preceding analysis is that these
metabolite-based wavelets are able to identify without ambi-
guity the presence of the corresponding metabolite in a com-
posed signal, simply by viewing local maxima in the wavelet
transform. In addition, using an approximate expression for the
wavelet spectrum of a composed signal, these wavelets allow
us also to estimate the amplitude of each metabolite contained
in the mixture. This aspect, however, requires further work, as
well as designing a fully automated algorithm based on the
present technique.
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Fig. 8: CWT using the Lac-wavelet on (a) a pure Lac reference
signal and (b) on the composed signal from Fig. 5a. The
presence of Lac is indicated by the local maxima at scale
a = 1 both in (a) and in (b), but not in (c), since Lac is not
included in this composed signal.
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