
Type-Theory In Color

Jean-Philippe Bernardy Guilhem Moulin
Chalmers University of Technology and University of Gothenburg

{bernardy,mouling}@chalmers.se

Abstract
Dependent type-theory aims to become the standard way to formal-
ize mathematics at the same time as displacing traditional platforms
for high-assurance programming. However, current implementa-
tions of type theory are still lacking, in the sense that some obvious
truths require explicit proofs, making type-theory awkward to use
for many applications, both in formalization and programming. In
particular, notions of erasure are poorly supported.

In this paper we propose an extension of type-theory with col-
ored terms, color erasure and interpretation of colored types as
predicates. The result is a more powerful type-theory: some defini-
tions and proofs may be omitted as they become trivial, it becomes
easier to program with precise types, and some parametricity re-
sults can be internalized.

Categories and Subject Descriptors F.4.1 [Mathematical logic]:
Lambda calculus and related systems

Keywords type-theory, parametricity, erasure

1. Introduction
Intelligent use of color in a written argument can go a long way into
conveying an idea. But how convincing can it really be? Consider
the case of the computer scientist Philip Wadler, who is fond of
using color in his papers. On multiple occasions, Wadler (2003,
2007, 2012) presents a programming language and its type-system,
and shows that, by erasing the appropriate parts of the type-system,
a logic appears. This is done by a straightforward but clever use of
colors. Typically, in the presentation of a typing rule, the program
parts are written in blue. The corresponding logic rule appears if
one erases that color. As Wadler suggests, one can see the erasure
simply by putting on blue glasses.

f :A→ B u :A

f u :B

f :A→ B u :A

f u :B
Typing rule for application After erasure: modus ponens

The relationship between the programming language and the logic
is deep: for every aspect of the language, there is a “blue part” that
can be erased away to obtain the corresponding logical concept.
For example, a computation step on the programming side yields a
cut-elimination step on the logic side. That is, Wadler does not play
mindlessly with colors, he is consistent; he follows in fact a precise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $15.00

(however unwritten) logic of colors1. In fact, his “proofs by putting
on glasses” are extremely compelling.

In this paper, we set-out to formalize this kind of reasoning with
colors as an extension of dependent type-theory. The result is a
more powerful type-theory: some definitions and proofs may be
omitted as they become trivial; it becomes easier to program with
precise types; and some propositions that were impossible to prove
now become provable.

In Sec. 2 we demonstrate how one can program and reason with
colors via a number of examples, and introduce the fundamental
concepts of type-theory with color at the same time. In Sec. 3,
we describe CCCC (the main technical contribution of this pa-
per), a core calculus of constructions with colors, and prove meta-
theoretical properties (subject-reduction, normalization). In Sec. 4,
we discuss some possible extensions of CCCC. Related work is
discussed in Sec. 5, and we conclude in Sec. 6.

2. Programming And Reasoning With Colors
In this section we explain how we envision a full-featured type-
theory with color (TTC) would be designed, in the form of a short
tutorial. We assume familiarity with a proof assistant based on type-
theory such as AGDA or COQ (Norell 2007; The Coq development
team 2012).

2.1 Colored Lists
We start with an example similar in structure, but significantly
simpler than those presented by Wadler. In the standard inductive
definition of lists, the structure of the list does not depend on the
elements it contains. Hence, it makes sense to color the elements:
erasing that color yields a meaningful definition. In fact, the result
is structurally equal to the usual unary representation of natural
numbers:

N = bList aci
(In this section we assume a color i that we render in blue. Even
though we strongly recommend reading the colored version, we
index an i-tainted typing with i, so readers can make sense of what
follows even if it is printed in black and white.)

data List (a :i ?) : ?
stop : List a
more : (x :i a)→ List a→ List a

data List (a :i ?) : ?
stop : List a
more : (x :i a)→ List a→ List a

As in Wadler’s examples, the relationship between colored objects
and their erasure carries over everywhere. For example, erasing
color from a given list yields its length — and the typing relation is
preserved.

1 A meta-level logic, not to be confused with the object logics studied by
Wadler.

more ′b′ (more ′l′ (more ′u′ stop)) : List Char

more ′b′ (more ′l′ (more ′u′ stop)) : List Char

Concatenation yields addition; assuming a :i ? :

(+) : List a→ List a→ List a
stop + xs = xs
morexxs + ys = morex (xs + ys)

(+) : List a→ List a→ List a
stop + xs = xs
morexxs + ys = morex (xs + ys)

This structural relation is a benefit of abiding to color discipline:
colorless parts shall never refer to tainted ones, and in return one
gets some equalities for free. For example, the length of the con-
catenation is the addition of the lengths. This proposition requires
a proof in AGDA or COQ, but thanks to colors, it holds by defini-
tion. Writing btci for the i-erasure of t:

bxs + ysci = bxsci + bysci
In fact, TTC does not have a special purpose operator for erasure:
the context determines whether variables refer to complete objects
or to their erasures. For example in the following signature, the
annotation i indicates that type of the first argument of < is any
type which yields N after erasing i. (We will say that xs is oblivious
to i in the definition of <.)

(<) : (xs : i N)→ (y : N)→ Bool

Hence, if xs : List a then xs < 5 is a valid expression2; and it tests
whether xs has less than 5 elements. The expression 3 < 5 is also
type-correct, because the erasure is idempotent. In general, it has no
effect on terms which do not mention the erased color (bNci = N).

We note also already that substitution behaves specially on
oblivious arguments. Consider again the expression xs < 5. In
it, one can substitute for xs a concrete list containing information.
The remarkable feature is that in the resulting term, the erased list
will stand for xs. For example:

(xs < 5)[more ′b′ (more ′l′ (more ′u′ stop))/xs]

= more ′b′ (more ′l′ (more ′u′ stop)) < 5

= 3 < 5

2.2 Types as predicates
By using colored types, one effectively specifies structural invari-
ants. For example, the type of the above concatenation operation
constrains the length of its result. In our TTC it is possible to reveal
these invariants explicitly by viewing types as predicates, and terms
as proofs that the predicates are satisfied by the i-erasure. This is
done by modulating the typing judgment. For example, under the
modality i, the type of lists is seen as a predicate over N. To indi-
cate that the judgment is modulated, the typing operator (colon) is
indexed with i.

List (a :i ?) :i (xs : i N)→ ?

Any typing can be so modulated. For example, a list xs : List a
becomes a proof that bxsci satisfies the List a seen as a predicate.

xs :i List a • i xs
(To avoid confusion we write predicate test using the • i operator.
Formally it is just the application corresponding to i-oblivious
abstraction.) Likewise, the concatenation returns a list whose length
is the sum of the lengths of its inputs.

(+) :i (xs : List a)→ (ys : List a)→ List a • i (xs + ys)

2 We take the liberty to use decimal notation for unary naturals.

(To make sense of the above typings, recall that the second ar-
gument to List is a natural after erasing i; in general a variable
xs :i List a • i n stands for a list of size n.)

Additionally, we remark that even though every type becomes
a predicate, the computations (or data) that it represents do not
essentially change. Taking our list example, the union of the types
List a • i n for any n : N is isomorphic to List a seen as a type.
Hence, assuming one has existential quantification, the type A : ?
remains available as a type under the modality i, as ∃x.Ax : ?.
Hence, one can continue to use types as types, even under a colored
typing, referring implicitly to the above existential construction.
We will take advantage of this shortcut in Sec. 2.4 for concision.

2.3 Colored Pairs
Another (dual) way to introduce colors is via pairs. A colored pair
type, whose general form is written (x : A) ×i B, is similar to the
usual type Σ(x : A)B (in particular x may occur in B). The dif-
ference is that B is tainted with the color i; and A is oblivious to
i. Given a : A and b :i B[a/x] one can construct an inhabitant of
the pair type. As usual, colors must match: a,i b : (x : A) ×i B
is valid only if b is tainted and a is oblivious to i. Erasure extracts
the first component of a pair, and interpreting a pair as a predi-
cate yields its second component. The following example illustrates
how colored pairs can be used to prove some parametricity proper-
ties. Assume the following (i-oblivious) context.

f : (a : ?)→ a→ a

b : ?

y : b

We then can define

t : (x : b) ×i (x ≡ y)

t = f ((x : b) ×i (x ≡ y)) (y,i refl)

By definition of erasure:

btci = f b y (1)

The above equation can also be intuited by looking at t under i-
glasses:

f ((x : b) ×i (bxci ≡ y)) (y,i refl)

In an i-modulated typing, one implicitly refers to the colored com-
ponent of pairs, and therefore we have: t :i btci ≡ y. By (1) we
obtain

t :i f b y ≡ y
This result is normally obtained by a logical relation argument out-
side the theory, while it is internalized here — albeit via a judgment
with an extra color. (A fully formal version of this example is pre-
sented in Sec. 4.) It may be worth stressing that, if one were to use a
regular pair type, then, because f is abstract, the first component of
t would not compute. In contrast, erasure is defined even on neutral
terms.

2.4 Multiple Colors
We propose to support arbitrarily many colors. This feature is
important for compositionality: it ensures that one can always mark
a binding as tainted without corrupting interactions with the rest of
the program. Indeed the other parts of the programs will use other,
orthogonal colors. For example, the List a type described above is
sufficient, there is no need to define a version without color. If one
needs to access the elements of the list in a function, one simply
taints its typing with the color. For example, a summation function
may be given the type sum :i ListN → N. The taint will be
transitively inherited by all functions using sum (and they can use
other colors at will).

In fact, it is advisable to use colors even more effectively, and
instead define sum by erasure. Assume the following definition of
concat, where the nested lists use a different color j for the type
a of elements, which we render in red. (In the type of concat, a
occurs in an i-tainted context, so it is tainted both with i and j. We
have a :ij ?, and we render it with the combination of blue and red:
magenta).

concat :i List (List a)→ List a
concat stop = stop
concat (morexxs) = x+ concatxs

Then one can obtain sum by erasing j from concat: (sum =
bconcatcj). This would be impossible with a single color: attempt-
ing to erase the elements of the inner lists would erase the whole
function.

Another use for multiple colors is to nest pairs. One cannot
nest pairs which differentiate on the same given color, because
this would break the rule that either side of an i-colored pair must
respectively be oblivious to i or be tainted with it. However one can
nest pairs which use different colors. The general form of j-colored
pairs nested inside an i-colored one is the following:

(x : (w : A) ×j B[w]) ×i ((z : C[x]) ×j D[x, z])

C can only refer to the j-oblivious part of x. C may not refer to the
j-tainted part of w, since it does not carry that color itself. Looking
at the above type successively with i and j glasses3:

(x : (w : A) ×j B[w]) ×i ((z : C[x]) ×j D[x, z])
(x : (w : A) ×j B[w]) ×i ((z : C[x]) ×j D[x, z])

Using nested pairs is syntactically inconvenient, hence in the rest
of the section we use a record-like syntax. Using record syntax, the
above pair would be written

{w : ij A; y : i B[w]; z : j C[w]; D((w,j y) , z)}

The following example illustrates how multiple colors can be
used to program with relations. Assume a definition of streams
Stream : ? → ?. Stream is a functor as witnessed by map : (a :
?)→ (b : ?)→ (a→ b)→ Stream a→ Stream b, with standard
definitions. Assume furthermore the following abstract context:

l : (a : ?)→ Stream a→ N→ a

a : ?

b : ?

f : a→ b

xs : Stream a

p : N

We define:

r : ?

r = {x : i a; y : j b; f x ≡ y}
u : a→ r

u = λz.{x =z; y =f z; refl}
t : r

t = l r (mapuxs) p

= l {x : i a; y : j b; f x ≡ y} (map (λz.{x =z; y =f z; refl})xs) p

3 The analogy to perceptual colors still holds here: magenta both appears
blue under blue glasses and red under red glasses. (i.e. it fades into the
background in both cases.) The analogy breaks only when one uses too
many colors: most humans can only perceive three primary colors, while
we allow an unbounded number of colors in TTC.

Erasing colors from t yields:

btci = l a (map ida xs) p

btcj = l b (map f xs) p

Indeed, looking at t respectively under i-colored and j-colored
glasses:

l {x : i a; y : j b; f x ≡ y} (map (λz.{x =z; y =f z; refl})xs) p
l {x : i a; y : j b; f x ≡ y} (map (λz.{x =z; y =f z; refl})xs) p

t : r

t :i r btci
t :i,j r btci btcj
t :i,j f btci ≡ btcj
t :i,j f(l a (map ida xs) p) ≡ l b (map f xs) p

Together with map ida xs ≡ xs, we obtain the expected law:
f(l a xs p) ≡ l b (map f xs) p

2.5 Conclusion
A motto of programming with dependent types is to use more and
more types to express one’s intentions more and more precisely.
However, there is a drawback to precise types: hard work to con-
vince a type-checker that programs inhabit them. We observe that
the use of colors is a way to specify invariants in types which does
not complicate user code. For instance we have seen that it is just as
easy to program with colored lists as with regular ones, and length
invariants are captured. Furthermore, the system can automatically
discover equations which would require a proof without the use of
colors.

One cannot “go wrong” by using more colors in a library. In the
worst case, colors can simply be ignored by the users of the library.
In the best case, they serve to specify invariants concisely, facilitate
reasoning, and provide a variant of the library to the user for each
possible erasure combination.

We have implemented a prototype of TTC as an extension of
the AGDA system. The prototype, in its current version at the
time of writing, features colored bindings and abstraction over
colors, but is still lacking erasure, oblivious bindings and col-
ored pairs. The prototype, together with a short tutorial for it, can
be obtained online: http://www.cse.chalmers.se/~mouling/
Parametricity/TCC.html.

3. CCCC: A Core Calculus of Colored
Constructions

In this section we present CCCC (the Core Calculus of Colored
Constructions) which is the formal core of the TTC we envision.
Technically, CCCC is an extension of CC (the plain Calculus of
Constructions (Coquand and Huet 1986)) with the notion of color
informally introduced in the previous section. Even though we use
CC as a base, we do not rely on its specifics. Along the lines
presented here, it is conceivable to construct a variant of any type-
system with colors, including intuitionistic type-theory (Martin-
Löf 1984).

The rest of the section describes the main features of CCCC in
pedagogical order. A summary is shown in appendix for reference.
We emphasize that we describe only on the core features of TTC.
Some features used in the previous section will not be included
here, even though it is conceivable to integrate them with limited
effort.

Even though we continue to render some expressions in color
as a visual aid, the formal system does not rely on them in any way.
This section can be read in black and white without any loss in
precision.

3.1 CC as a PTS
We use CC as a base, so we recall briefly its definition, using a pure
type system (Barendregt 1992) presentation. The typing rules are
as follows:

CONV
Γ ` a : A A =β A

′

Γ ` a : A′

AXIOM
` Γ

Γ ` ? : �

VAR
` Γ x : A ∈ Γ

Γ ` x : A

PROD
Γ, x : A ` B : s

Γ ` (x : A)→ B : s

ABS
Γ, x : A ` b : B

Γ ` λx : A.b : (x : A)→ B

APP
Γ ` F : (x : A)→ B Γ ` u : A

Γ ` F • u : B[u/x]

To limit clutter we omit the well-formedness conditions of types A
and B in the rule ABS. The product (x : A) → B may be also
written A→ B when x does not occur free in B, and we generally
omit the application operator •. The metasyntactic variable s ranges
over the sorts ? and �. The context-lookup relation (x : A ∈ Γ) is
straightforward, and the context-formation rules are:

EMPTY

` –

BIND
` Γ Γ ` A : s

` Γ, x : A

Traditional presentations of PTSs, including that of Barendregt
(1992), use another formulation, which integrates the context-
lookup, context-formation and typing rules. Instead of the VAR
rule, one has the following WEAKENING and START rules, and
axioms can only be used in the empty context.

START
Γ ` A : s

Γ, x : A ` x : A

WEAKENING
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B

While the presentation of Barendregt economizes a couple deriva-
tion rules, it has the disadvantage to conflate separate concepts in
a single definition. Consequently, is it harder to extend, and mod-
ern presentations tend to use separate context-lookup and context-
formation relations.

3.2 Colors, Taints and Modalities
We assume an infinite supply of color names; the metasyntactic
variables i and j stand for them in the remainder. We call a set
of such color names a taint and use θ or ι to range over taints. A
color may be introduced in the context by its name. After such a
mention, terms may contain i-tainted parts, but also non i-tainted
parts. In contrast, before the mention of i, terms are i-oblivious:
they cannot depend on i in any way.

Our typing judgment Γ ` A :θ B is indexed by a taint θ, which
must be a subset of the colors present in Γ. The presence of a given
color i in θ indicates how i can be used in A and B.

• i 6∈ θ indicates that A is not tainted with i. A term A typed
in such a taint may still mention the color i. For example
λ(x :i T)→ a is allowed. However, the usage of i-tainted vari-
ables is forbidden in the target (a) of the term. For example
λ(x :i T)→x is forbidden.
• i ∈ θ indicates that the term A is tainted with i. In such a

judgment, using i-tainted variables is allowed in the targets of
terms and types. Remark: It does not make sense to erase i from
a judgment using this taint; conceptually the whole typing is
tainted, so it would be entirely removed.

For each taint θ we have two sorts ?θ and �θ , with the axiom
?θ : �θ . The conversion rule merely preserves taints.

CONV
Γ ` a :θ A A =β A

′

Γ ` a :θ A
′

AXIOM
` Γ

Γ ` ?θ :θ �θ

A variable binding x :ψ A does not only carry a taint, but also a
modality. (ψ and ϕ range over modalities.) A modality is composed
of two disjoint sets of colors (say ψ = (θ, ι) with θ ∩ ι = ∅) that
constrain what kind of a term u can be substituted for x. The first
set θ is the taint of u. The second set ι is an “anti-taint”: a set of col-
ors which u must be oblivious to. We often use the compact nota-
tion i1 . . . in, j1 . . . jn for the modality ({i1 . . . in}, {j1 . . . jn}).
Similarly we will write j ∈ ψ to mean that j is found in the second
set. Using this notation, the following two contexts are equivalent
(one can substitute one for another without changing the provability
of a judgment):

Γ, x : A, i,∆

Γ, i, x : i A,∆

That is, declaring a variable before i, or declaring it i-oblivious
explicitly are equivalent. The product and abstraction rules can
change the modality of the type quantified over; the application
rule behaves correspondingly.

PROD
Γ, x :ψ A ` B :θ s

Γ ` (x :ψ A)→ B :θ s

ABS
Γ, x :ψ A ` b :θ B

Γ ` (λx :ψ A.b) :θ (x :ψ A)→ B

APP
Γ ` F :θ (x :ψ A)→ B Γ ` u :ψ A

Γ ` F •ψ u :θ B[u/x]

(where the metasyntactic variable s now ranges over the sorts ?ι or
�ι, for any ι.) To be able to merely forward modalities, we need
to extend the judgment to support arbitrary modalities ϕ, not just
taints θ, as we do at the beginning of the next section.

We generally omit the modality annotation on applications,
because they are easily inferred from the context. One can embed
any derivation from CC into CCCC simply by using the empty taint
everywhere.

3.3 Obliviousness and variable lookup
We extend the typing judgment to support any modality ψ (not just
a taint) as follows:

Definition 1 (Oblivious judgment).

If ψ = (θ, ι) then Γ ` A :ψ B
4
= bΓcι ` A :θ B

This captures the intuition that A and B are oblivious to every
color in ι. Indeed, the erasure removes all mentions of i from the
context Γ for every i ∈ ι (a complete definition and justification of
erasure is given in the following section). In particular, if x : A ∈
Γ, then Γ ` x : i bAci; in words, referencing a variable from an
i-oblivious judgment yields only a witness of the i-erased type.

Hence, variable lookup requires equality of taints, not merely
inclusion:

VAR
` Γ x :θ A ∈ Γ

Γ ` x :θ A

There are two ways to access an i-oblivious variable x. First, it is
accessible in an i-oblivious judgment, as can be seen by expanding
Def. 1:

Γ, x : i A,∆ ` x : i A
4
= bΓci, x : A, b∆ci ` x : A

Second, it can be accessed from an i-aware judgment, as formalized
in the context-lookup rules:

START

x :θ A ∈ Γ, x :(θ,ι) A

COL. WK
x :θ A ∈ Γ i 6∈ θ

x :θ A ∈ Γ, i

WK
x :θ A ∈ Γ

x :θ A ∈ Γ, y :ψ B

The COL. WK rule ensures that x is accessible from an i-aware
context (but not an i-tainted one), even if it is declared before the
introduction the color i. The START rule plays a similar role: x can
be explicitly oblivious to any set of colors, it does not change its
accessibility.

Consider as an example the following definition, a variant of
Leibniz equality.

x ≡ia y
4
= (P :i (z : i a)→ ?i)→P x→P y

One can verify that it is a well-colored type as follows. Let ∆ =
a : ?, x : a, y : a:

...
∆ ` y : a

Def. 1
∆, i, . . . ` y : i a

APP
∆, i, P :i (z : i a)→ ?i, q :i P x ` P y : ?i

PROD
∆, i ` x ≡ia y :i ?i

With refli
4
= λ(P :i ?).λ(q :i P).q, one can also derive a : ?, x :

a, i ` refli :i x ≡ia x.
In order to use ≡ as an equality, we need to access oblivious

variables from non-oblivious contexts, as we explain in this para-
graph. The key difference between ≡ as defined above and the
usual Leibniz equality here is that we use propositions P of type
(x : i a)→ ?i; that is, the parameter of P is i-oblivious.

Thanks to the context lookup rules, a variable x : i Bool may be
used even in an i-aware context, so one can construct a proposition
Qi of the right type which returns truth if the Boolean is true and
falsity otherwise. Then one can obtain falsity from true ≡Bool false
by substitutingQi for P . Assuming a definition Test :i Bool→ ?i
which does the adequate case analysis on booleans, one has:

...

x : Bool ∈ i, x : i Bool
VAR

i, x : i Bool ` x : Bool
APP

i, x : i Bool ` Testx :i ?i
ABS

i ` λ(x : i Bool).Testx :i (x : i Bool)→ ?i
Def.

i ` Qi :i (x : i Bool)→ ?i

3.4 Erasure
Color erasure is defined by structural induction on terms. The effect
on each modality is the following. Applying i-erasure on an i-
tainted binding removes it. The i-erasure of a non i-tainted binding
is the binding of the erasure. Erasing i from an i-oblivious binding
has no effect besides removing the mention of i .

Erasure of product, abstraction and application follows directly
from the behavior on bindings. Erasure preserves all variable occur-
rences, as well as sorts. In the following table we sum up all cases.
The erasure of terms which do not mention a modality are show in
the first column. For terms which mention a modality, we show the
various cases in various columns. The first column shows the case
where the color occurs nowhere in the modality. The second one
shows the case where i occurs as a taint. The third one shows the

case where the i occurs as an anti-taint.
i 6∈ ψ i ∈ ψ ψ = ϕ, i

bxci = x
bsci = s

b(x :ψ A)→ Bci = (x :ψ bAci)→ bBci bBci (x :ϕ A)→ bBci
bλx :ψ A.bci = λx :ψ bAci.bbci bbci λx :ϕ A.bbci
bF •ψ aci = (bF ci) •ψ baci bF ci (bF ci) •ϕ a

bΓ, x :ψ Aci = bΓci, x :ψ bAci bΓci bΓci, x :ϕ A
bΓ, jci = bΓci, j
bΓ, ici = Γ

Lemma 1 (Erasure preserves typing). If Γ ` A :θ B and i 6∈ θ
then bΓci ` bAci :θ bBci.

Proof. By induction on the derivation. The proof relies on the color-
discipline enforced by the typing rules.

This lemma means that erasure makes sense as a meta-level
definition. The precondition is important: erasing i makes no sense
on an i-tainted term; conceptually the whole term would be erased
in that case. This justifies for example the case for sorts in the
definition: the precondition guarantees that erasure will not be
applied to a sort ?i. In the system, we use erasure only in situations
where this precondition is satisfied.

Erasure is used in the definition of substitution (whose full
definition is given in Sec. 6): when substituting in an oblivious
argument, or in the type of an oblivious parameter, one needs to
erase the substitutee. For example:

(f • i u)[t/x] = f [t/x] • i u[btci/x]

Note that if x is i-tainted, the type-system prevents any occurrence
of x in u, ensuring that the precondition of Lem. 1 is respected.

We have not yet defined how to reduce terms in CCCC, but it
is worth mentioning already that erasure preserves computation. A
proof is given later in Lem. 3.

if A −→? B, then bAci −→? bBci, for any color i.

3.5 Types as Predicates
By modulating a judgment with a color i, a type B becomes a
predicate over bBci 4. The erasure of a term A of type B satisfies
the type B seen as a predicate.

Theorem 1 (Parametricity of closed terms). if ` A :θ B, then

` JAK :θ,i JBK • i bAci

Proof. The proof uses the standard techniques of logical relations,
extended to dependent types by Bernardy et al. (2010), which we
also refer the reader to for the definition of the construction of the
parametric interpretation J·K.

We wish however not to be limited to closed terms, and want
parametricity even on open terms. The presence of colors allows5

to add the following rule, which internalizes the reinterpretation of
terms as predicates and proofs.

PARAM
Γ ` A :θ B i 6∈ θ

Γ ` A :θ,i B •θ, i bAci

4 With the exception of terms which are sorted in under that color. For
example, ?i :i �i and not ?i :i ?i → �i. This feature prevents an “infinite
descent” into deeper and deeper predicates.
5 The issues that one faces when attempting to internalize parametricity in
a theory without colors are detailed by Bernardy and Moulin (2012).

This rule is a generalization of Th. 1 and it allows to deduce,
within the calculus, theorems which could only be obtained meta-
theoretically without it. However, in this paper, the treatment of
logical relations differs from the usual one: a type is not interpreted
as a predicate (via a transformation of terms J·K), but is directly
used as such in an i-modulated judgment.

In order to use T as a predicate we extend reduction rules as
follows, where we recall that s ranges over sorts, while t ranges
over terms.

sθ •ϕ t −→ (z :ϕ t)→ sθ∪ι (1)

where ϕ = (θ, ι)

((x :ψ A)→ B) •ϕ t −→ (x :ψ A)→ (B •ϕ t) (2)

if ∃i such that i ∈ ψ and i ∈ ϕ
((x :ψ A)→ B) •ϕ t −→ (x :ψ A)→ (B •ϕ (t •ψ x)) (3)

otherwise
(λx :ψ A.b) •ψ t −→ b[t/x] (4)

• (1): Since a type becomes a predicate, a type of types (a sort)
becomes a type of predicates. The target sort of the predicate
type is adjusted, in order to obtain a type (and not again a
predicate — see footnote 4).
• (2) and (3): A function t satisfies the predicate of a function type

if an argument x (which implicitly satisfies the predicate of the
domain A) is mapped by the function t to a value satisfying
the codomain B. In the case of (2), the modality ϕ mandates
erasure of the domainA, therefore x is not given as an argument
to t.
• (4): The β-reduction is trivially amended to account for colors.

The rules (1,2,3) do not interfere with β, because they concern
other syntactic forms.

The cases (1,2,3) agree with the standard interpretation of types
as predicates. Bernardy and Moulin (2012); Bernardy et al. (2012)
give a detailed account of logical relations in the presence of depen-
dent types. As an example, one can check that reduction behaves as
expected for the list concatenation type:

((xs : List a)→ (ys : List a)→ List a) • i c
−→ (xs : List a)→ ((ys : List a)→ List a) • i (c xs)
−→ (xs : List a)→ (ys : List a)→ List a • i (c xs ys)

3.6 Example
Assume the colors i and j as well as the context

Listi : (a :i ?i)→ ?

Listj : (b :j ?j)→ ?

fold : (a :i ?i)→ (b : ?)→
(a→ b→ b)→ b→ Listi a→ b

One can define a variant of the ubiquitousmap function as follows:

map : (a :i ?i)→ (b :j ?j)→
(f :j (x :i a)→ b)→ Listi a→ Listj b

map = λf.fold a (Listj b) (λxxs.more (f x)xs) stop

This version of map is versatile. After erasing j, the f argument
disappears and map becomes a function returning the length of
its input. After erasing i, f becomes a constant of type b, the
input “list” becomes a natural number (n), and map returns a list
containing n copies of f .

3.7 Analysis
In this section we state and prove a number of standard meta-
theoretical results for our calculus.

Lemma 2 (Substitution). For any term A, u, and v and variables
x 6= y such that x is not free in v,

A[u/x][v/y] = A[v/y][u[v/y]/x]

Proof. By structural induction on the raw term A. CCCC does not
support abstraction over colors, therefore we can ignore the case
where x or y are color variables, and the proof below follows
exactly the structure of the usual proof of substitution lemma for
PTSs. We show only the variable and abstraction cases; other cases
are similar.

Variable z As usual, we have the three following cases:
• z = x:

x[u/x][v/y] = u[v/y] = x[u[v/y]/x] = x[v/y][u[v/y]/x]

• z = y: y[u/x][v/y] = v = y[v/y][u[v/y]/x]
• otherwise: z[u/x][v/y] = z = z[v/y][u[v/y]/x]

Abstraction λz :ψ A.b

(λz :ψ A.b)[u/x][v/y]
= (λz :ψ A[u{ψ}/x].b[u/x])[v/y]
= λz :ψ A[u{ψ}/x][v{ψ}/y].b[u/x][v/y]
by IH
= λz :ψ A[v{ψ}/y][u{ψ}[v{ψ}/y]/x].

b[v/y][u[v/y]/x]
= (λz :ψ A.b)[v/y][u[v/y]/x]

We proceed to show the confluence of the reduction relation. To
do this, we use the Tait/Martin-Löf technique of parallel reduction.

Definition 2 (Parallel nested reduction).

REFL
A . A

β
b . b′ a . a′

(λz :ψ A.b) •ψ a . b′[a′/z]

APPSORT
t . t′ ϕ = (θ, ι)

sθ •ϕ t . (z :ϕ t
′)→ sθ∪ι

APPALL1

∃i such that i ∈ ψ and i ∈ ϕ
A . A′ B . B′ t . t

((z :ψ A)→ B) •ϕ t . (z :ψ A
′)→ (B′ •ϕ t′)

APPALL2

@i such that i ∈ ψ and i ∈ ϕ
A . A′ B . B′ t . t′

((z :ψ A)→ B) •ϕ t . (z :ψ A
′)→ (B′ •ϕ (t′z))

APP-CONG
F . F ′ a . a′

F •ψ a . F ′ •ψ a′

ABS-CONG
A . A′ b . b′

λz :ψ A.b . λz :ψ A
′.b′

ALL-CONG
A . A′ B . B′

(z :ψ A)→ B . (z :ψ A
′)→ B′

Since one needs to erase the substitutee when substituting under
an oblivious binding (see Def. 10), we use the fact that erasure
preserves parallel reduction.

Lemma 3. For each A,A′ such that A. A′, we have bAci . bA′ci
for all i.

Proof. By induction on the derivation A . A′.

We can now prove that substitution preserves parallel reduction.

Lemma 4. For each A,A′ and u,u′ such that A . A′ and u . u′,
we have A[u/x] . A′[u′/x].

Proof. By induction on the derivation A . A′. The proof is almost
completely standard, except for the use of Lem. 3. In addition of the
β case which uses it, we show the REFL case for reference. Other
cases are similar or standard.

REFL: A. A. We get A[u/x] . A[u′/x] by structural induction on
A.

β : (λz :ψ A.b) •ψ a . b′[a′/z].

((λz :ψ A.b) •ψ a)[u/x]
= (λz :ψ A[u{ψ}/x].b[u/x]) •ψ a[u{ψ}/x]
by IH and Lem. 3
. b[u′/x][a′[u′{ψ}/x]/z]
= b′[u′/x][a′[u′/x]/z]
by Lem. 2
= b′[a′/z][u′/x]

Theorem 2 (Diamond). The rewriting system (.) has the diamond
property. That is, for each A,B,B′ such that B / A . B′, there
exists C such that B . C / B′

Proof. By induction on the derivations.

• If one of the derivations ends with REFL , one has eitherA = B,
or A = B′. We pick C = B′ in the former case and C = B in
the latter.
• If one of the derivations ends with APP-CONG , the other one

has to end with APP-CONG , β , APPSORT , APPALL1 , or with
APPALL2 . The first case is straightforward. In the other cases,
the diverging reductions meet as shown below:

(λz :ψ A.b) •ψ a

(λz :ψ A
′.b′) •ψ a′ b′′[a′′/x]

b′′′[a′′′/x]

ABS-
CONG

a
′ /
a

b
′ /
b

βb .
b ′′

a
.
a ′′

β

b ′
.
b ′′′

a ′
.
a ′′′

Lem
. 4b

′′′
/
b
′′

a
′′′ /

a
′′

sθ •ϕ t

sθ •ϕ t′ (z :ϕ t′′)→ sθ∪ι

(z :ϕ t′′′)→ sθ∪ι

t /
t
′

A
PPSORT

t .
t ′′

A
PPSORT

t ′
.
t ′′′

ALL-C
ONG

t
′′′
/
t
′′

((z :ψ A)→ B) •ϕ t

((z :ψ A
′)→ B′) •ϕ t′ (z :ψ A

′′)→ (B′′ •ϕ t′′)

(z :ψ A
′′′)→ (B′′′ •ϕ t′′′)

ALL-C
ONG

t /
t
′

. . .

A
PPA

LL
1

t .
t ′′. . .

A
PPSORT

. . .t ′
.
t ′′′

ALL-C
ONG. . .

t
′′′
/
t
′′

(The case of APPALL2 is similar.)
• If both derivations end with the same rule β , APPSORT ,

APPALL1 , or with APPALL2 , the result is a straightforward
use of the induction hypothesis (using Lem. 4 in the case of β).
• If one of the derivations ends with ABS-CONG or ALL-CONG ,

the other one has to end with the same rule, and the result is a
straightforward use of the induction hypothesis.

Corollary 1 (Confluence). CCCC has the confluence property.

Proof. A direct consequence of Th. 2 and −→?= .?.

Lemma 5 (Thinning). Let Γ and ∆ be legal contexts such that
Γ ⊆ ∆. Then Γ ` A :θ B =⇒ ∆ ` A :θ B.

Proof. As in (Barendregt 1992, lem. 5.2.12).

The generation lemma for PTS can be extended to colored
bindings. The only difficulty is the following. In (Barendregt 1992),
the generation lemma includes a case for applications. This case is
difficult to extend to our calculus, since application can be done
not only on lambda abstractions, but also on types, when they are
used as predicates. Fortunately, that case is not used in the subject
reduction lemma, and therefore we can omit it from our version of
the generation lemma.

Lemma 6 (Generation). The statement is similar to that of (Baren-
dregt 1992, lem. 5.2.13). Points 1. to 4. (constant, variable, prod-
uct, abstraction) are adapted in a straightforward manner to col-
ored binding. Point 5. (application) is removed. The following two
points are added.

• If Γ ` (sθ,i •θ, i t) :θ,i C, then

Γ ` t :θ, i sθ and C ≡β s′θ with (s, s′) ∈ A
• If Γ ` ((x :ϕ A)→ B) •θ, i t :θ,i C, then

Γ ` t :θ, i b(x :ϕ A)→ Bci and C ≡β s′θ with
Γ ` (x :ϕ A)→ B :θ sθ

Proof. As in (Barendregt 1992): we follow the derivations until
sθ,i (resp. (x :ϕ A) → B) is introduced. It can only be done
by the PARAM rule, and the conclusion follows from a use of the
Thinning Lemma. (An example of such derivations can be found in
Fig. 1.)

Theorem 3 (Subject reduction). If A−→A′ and Γ ` A : T , then
Γ ` A′ : T .

Proof. Most of the technicalities of the proof of subject reduc-
tion for PTSs (Barendregt 1992) concern β-reduction, and are not
changed by the addition of colors.

Hence we discuss here only the handling of reduction rules (1)
to (3). We treat first the case of sorts (1):

sθ •ϕ t −→ (z :ϕ t)→ sθ∪ι (1)

where ϕ = (θ, ι)

` ΓAX
Γ ` ? : �PARAM

Γ ` ? :i � • i ?
CONV

Γ ` ? :i (x : i ?)→ �i Γ ` t : i ?
APP

Γ ` ? • i t :i �i

=⇒

` Γ Γ ` t : i ?
BIND ` Γ, x : i t

AX
Γ, x : i t ` ?i :i �i

PROD
Γ ` (x : i t)→ ?i :i �i

Γ, x : A ` B : ?
PROD

Γ ` (x : A)→ B : ?
PARAM

Γ ` (x : A)→ B :i ? • i b(x : A)→ Bci
CONV

Γ ` (x : A)→ B :i b(x : A)→ Bci → ?i Γ ` t : i b(x : A)→ Bci
APP

Γ ` ((x : A)→ B) • i t :i ?i

=⇒

Γ, x : A ` B : ?
PARAM

Γ, x : A ` B :i bBci → ?i

Γ ` t : i b(x : A)→ Bci
APP

Γ, x : A ` t x : i B
APP

Γ, x : A ` B • i (t x) :i ?i
PROD

Γ ` (x : A)→ B • i (t x) :i ?i

Figure 1. Proof-reduction templates corresponding to the term-reductions (1) and (3). The sorts and taint annotations are specialized to the
simplest case to reduce clutter; generalization to arbitrary taints and sorts is straightforward.

In this case, the Generation Lemma indicates that the derivation
tree must end with an APP rule and contain a chain PARAM-AX
on the left-hand side of the derivation. A template for such a tree
is shown in Fig. 1. One can then construct a typing derivation for
the reduct, which ends with the PROD rule, and does not mention
PARAM nor APP. The template for typing the reduct is also shown
in Fig. 1.

Second we treat the case of products (2) and (3).

((x :ψ A)→ B) •ϕ t −→ (x :ψ A)→ (B •ϕ t) (2)

if ∃i such that i ∈ ψ and i ∈ ϕ
((x :ψ A)→ B) •ϕ t −→ (x :ψ A)→ (B •ϕ (t •ψ x)) (3)

otherwise

Again we can use the Generation Lemma to obtain the shape of a
derivation tree of the reducible expression, and obtain a valid typing
for the reduct (also shown in Fig. 1. In this case the typing of the
source involves the chain of rules PARAM-PROD on the left-hand
side of APP. The typing of the reduct ends with PROD.

We have taken the view in our presentation that the reduction
rules are untyped, and therefore subject reduction must recover
typings using the Generation Lemma. An alternative would be to
have a typed reduction relation (this relation usually goes by the
name of “judgmental equality”). In this case the reduction of proof
trees shown in Fig. 1 would be part of the definition of reduction.
The two approaches have been proved equivalent for arbitrary PTSs
by Siles (2010).

Theorem 4 (Normalization). CCCC is strongly normalizing: every
sequence of reductions eventually terminates.

Proof. The new reduction rules, involving PARAM, are much easier
to handle than β-reduction (rule 4). Indeed, the argument to the
application is not duplicated by these reduction rules.

Hence, one can adapt the proofs of termination of CC to CCCC.
At a high-level, the argument goes as follows. Consider reduction
rules (1) to (3), that we collectively call PARAM-reductions be-
low. Their effect is to make the left-hand-side of the •ψ operator
smaller. This can also be seen by examining the corresponding typ-
ing derivations: the reductions strictly decrease the size of the tree
above the PARAM rule involved.

Consequently, between each β-reduction step, there can be only
a finite number of PARAM-reductions. The question is now: do
these PARAM-reductions create β-redexes? The reductions (1) and
(2) do not, but (3) does. However, the new redex is harmless: it
lies in an i-oblivious context, and therefore there is no risk of an
(i-aware) PARAM-reduction to be created by that redex.

The situation is then that, by importing the proof techniques
developed for CC, one can bound the chains of β-reductions, and
use the above argument to finitely-bound the PARAM-reductions
occurring between β-reduction steps.

The above proof is an alternative to that done in earlier work
(Bernardy and Moulin 2012), which works by construction a model
by translation into CC. Even though the earlier proof can be adapted
to the present system, we find the above proof more modular, and
thus easier to grasp.

3.8 Type-Checking With Colors
The rules PARAM and the definition of and oblivious judgment
Def. 1 are not syntax-directed, therefore it may be non-obvious
how they should be used in type-checking. In this subsection we
sketch a possible type-checking algorithm and briefly argue for
its soundness. A full description of the algorithm, together with
a completeness proof, is left for future work.

We assume that the user supplies a term t, a type T , a modality
ϕ and a context Γ. The task is to reconstruct a derivation of Γ `
t :ϕ T .

Most of the implementation of the new rules is realized at the
point of checking a variable (t = x). Let us assume that looking up
x in the context Γ yields x :ψ A.

For each color i ∈ Γ we have to take into account its status in ϕ
and ψ. For simplicity we assume that ϕ and ψ contain at most one
color; a full implementation will do the same task for each color
independently.

1. i ∈ ϕ. If i is not mentioned in ψ, then the derivation is the
following.

x : A ∈ Γ
VAR

Γ ` x : ALem. 1 bΓci ` x : bAci
Def. 1

Γ ` x : i bAci

Hence we simply check that T = bAci. For i ∈ ψ, then x is
not accessible and type-checking reports failure. For i ∈ ψ one
needs only to check T = A.

2. If the judgment is i-aware (ϕ = ∅), we have three cases.
If i ∈ ψ, then x is not accessible and type-checking reports
failure. Otherwise, then modalities match and we only need
to check T = A. Notably, if i ∈ ψ, x is more oblivious
than required, but this is accepted by the START rule, which
allows arbitrary extra anti-taints in the binding of the looked-up
variable.

3. If i ∈ ϕ, we have two cases. If i ∈ ψ, then one simply checks
T = A. Otherwise, one must take into account PARAM, that is,
check T = A • i x instead of T = A.

Lastly, when checking a type used as a predicate, that is a term
t of the form (∆ → B) •ψ u (for any telescope ∆) or s •ψ u ,
we reduce the term t before checking it. The number of reduction
steps is at most |∆|+ 1 in the first case or 1 in the second case: the
performance hit is minimal.

As usual in type-checking algorithms, all the equality-tests men-
tioned above have to be performed up-to the reduction relation,
in order to take into account the CONV rule. This is done using
standard means, for example normalizing terms before comparison,
which is possible thanks to Th. 4.

4. Extensions
4.1 Inductive Definitions
The definitions presented in the previous section can be extended to
work on inductive types in a straightforward manner, merely recur-
sively applying the definitions on the types of each component of
the inductive type, as we have done in the examples in Sec. 2. The
extension of a similar system to inductive definitions is described in
full detail by Bernardy et al. (2012). We conjecture that the addition
of inductive definitions does not compromise any meta-theoretical
property.

4.2 Colored Pairs
In this section we formally introduce colored pairs, and formalize
a example presented in Sec. 2: inhabitants of the type (a : ?) →
a→ a must be the identity function.

The formation and introduction rules (SUM, PAIR) are similar
to the usual rules for dependent pairs, with the difference that the
modalities track that the first component is oblivious to the color
while the second component is tainted.

SUM
Γ, x : i A ` B :i s

Γ ` (x : A) ×i B : s

PAIR
Γ ` a : i A Γ ` b :i B[a/x]

Γ ` a,i b : (x : A) ×i B

We do not provide special elimination rules for colored pairs. In-
stead, erasure and PARAM play this role. The erasure of a pair
yields its first component if colors match, otherwise it acts struc-
turally.

b(x : A) ×i Bci = A

b(x : A) ×j Bci = (x : bAci) ×j bBci
ba,i bci = a

ba,j bci = baci,j bbci

We remark that the property that erasure preserves typing is con-
served. In particular:

if Γ ` p : (x : A) ×i B then bΓci ` bpci : A

Interpreting a pair as a predicate yields the second component if
colors match, otherwise it acts structurally:

((x : A) ×i B) •ψ, i t = B[t/x]

((x : A) ×j B) •ψ t = (x : A •ψ btcj) ×j (B •ψ t)

We can now explain fully formally how one can derive that any
function of type (a : ?) → a → a is indeed an identity function.
Let

Γ
4
= f : (a : ?)→ a→ a, b : ?, y : b

x ≡a y
4
= (P : a→ ?)→ P x→ P y

t
4
= f ((x : b) ×i (x ≡b y)) (y,i refli)

Where ≡ refers to the definition of the previous section. We first
check that (x : b) ×i (x ≡b y) is well-colored (and well-sorted):

Γ ` b : ?Erasure Def. bΓ, ici ` b : ?
Def. 1

Γ, i ` b : i ?

Γ, i, x : i b ` x : i b

Γ, i, x : i b ` (x ≡b y) :i ?i
SUM

Γ, i ` (x : b) ×i (x ≡b y) : ?

And proceed with the main result:

...

Γ ` y : b Γ, i ` refli :i (y ≡b y)
PAIR

Γ, i ` (y,i refli) : (x : b) ×i (x ≡b y)
APP

Γ, i ` f ((x : b) ×i (x ≡b y)) (y,i refli) : ((x : b) ×i (x ≡b y))
Def.

Γ, i ` t : (x : b) ×i (x ≡b y)
PARAM

Γ, i ` t :i (btci ≡b y)
Erasure Def.

Γ, i ` t :i f b y ≡b y

An essential component of the trick is that f is i-oblivious.
Hence it cannot distinguish in any way between i-tainted and non
i-tainted terms, thus we can pass it a colored pair as its type
argument.

The trick generalizes: one is able to derive useful properties
about a polymorphic term q of type A by construction of an ad-
equate term p of type (x : A) ×i B such that bpci = q. The con-
struction of q involves specializing a type parameter to a colored
pair type involving the property of interest.

In fact, by pairing a type A with a predicate B[x], colored pair
type allows to override the default predicate interpretation of the
type A with B[x], for a given specific color.

4.3 Abstraction Over Colors
So far we have assumed that colors were available in the context.
In a complete TTC, a mechanism to abstract over colors should be
provided. At this stage we have thought of colors only as a first-
order concept, that is, we propose only first-order quantification
over colors.

As such, color abstraction is a relatively modest, straightforward
addition. We need new syntax for abstraction, quantification, and
application, as well as a constant color (written 0 in the following)
used for erasure. A notable feature is that one cannot abstract over
a color which is present in the modality; otherwise the color would
escape the scope where it is introduced. Using k to range over color
names or 0, the typing rules are as follows:

COL. ABS
Γ, i ` A :θ B i 6∈ θ

Γ ` λi.A :θ ∀i.B

COL. APP
Γ ` A :θ ∀i.B

Γ ` Ak :θ B[k/i]

and the reduction rules:

(∀i.T) •ψ t −→ ∀i.T •ψ (t i)

(λi.t) 0 −→ btci
(λi.t) j −→ t[j/i]

Erasure must be extended as well to substitute occurrences of colors
as arguments:

bt ici = btci 0

bt icj = btcj i
bt 0ci = btci 0

bλi. tcj = λi.btcj
With this extension, the subject reduction property depends on
Lem. 1.

5. Discussion and Related Work
COQ-style erasure Thanks to Paulin-Mohring (1989), COQ fea-
tures program extraction, which is an erasure of proofs to obtain
programs. Such programs are external entities, that is, they cannot
be referred to as an erasure from the COQ script they originate.
This shortcoming is remedied in TTC. For the purpose of extrac-
tion, COQ separates types from propositions, using different sorts
for each, and allows types to depend on the existence of proofs (but
not their structure). In contrast, in the system we present here, un-
tainted terms cannot even depend on the existence of a tainted term.
It is likely that the two notions of erasure can be combined in a sin-
gle system, but we leave the study of that combination to future
work.

AGDA-style erasure A number of systems with modalities for
erasure have been proposed (Pfenning 2001; Mishra-Linger and
Sheard 2008; Abel and Scherer 2012), with the interpretation of
irrelevance: types marked with a special modality (usually written
x ÷ A) are understood as proofs, whose inhabitants are irrelevant
for the execution of the programs.

The system presented here bears some similarity to such sys-
tems, but also presents important differences:

• Our binding form x :i A corresponds to the irrelevant binding
x÷A.
• We have, in addition to irrelevant bindings, the complementary

notion (written x : i A). This allows us to mix erased terms
with non-erased ones, and choose arbitrarily which version we
mean. In contrast, systems with erasure usually fix a specific
view on which parts of a term is accessible.
• We support an arbitrary number of colors instead of a single

one, which is essential for compositionality and to support n-
ary parametricity.
• We focus on erasure instead of irrelevance. Previous authors

usually allow the use of the ex falso quod libet principle on
irrelevant assumptions, while we forbid any use of a tainted
variable in a non-tainted context.

Types for language-based security Our notion of taint is rem-
iniscent of that used in language-based security. More precisely,
our tainted variables would correspond to variables at high security
levels: tainted variables may be used only in tainted contexts. The
present work can be seen as a generalization of (Abadi et al. 1999)
to dependent types. A difference is that we use modalities instead
of a different type former for security levels. As a consequence, we
do not need a monad to relate security levels. To our knowledge,
the combination of dependent types and security-levels in a type-
system has not been realized before.

Ornaments Relating variants of dependently-typed programs
have been a concern for a long time. The idea of ornamenting
inductive structures have been proposed to remedy this problem
(Dagand and McBride 2012). Here, we instead focus on erasure
(let the user specify an ornamented type and recover the relation
with its erasure) instead of specifying ornamentation of already ex-
isting types. This is not much of a difference in practice, because
ornaments typically can only be applied to a single type. An advan-
tage of colors over ornaments is that colors integrate natively with
existing type-theories, while ornamentation relies on encodings;
additionally we get free equalities when working with erasures,
and colored pairs reveal parametricity properties. The chief ad-
vantage of ornaments is that any algebra can be used to ornament
datatypes, while we are limited to structural relations.

Ko and Gibbons (2013) have shown how to compose ornaments.
Composition is lacking from the system presented here, but we plan
to support it in future extensions of TTC. Indeed, if two termsA and
B share an erasure (for example C = bAci = bBcj), it means that
A and B are to versions of C ornamented differently. Under the
same assumption, it is possible to automatically construct a term
D such that bDcj = A, bDci = B, and bDcij = C. That is, D
contains both the ornamentations coming from A and B.

Parametricity Bernardy and Moulin (2012) have described a cal-
culus which internalizes parametricity, and have shown that higher
dimensions are necessary to nest parametricity. The present work
has the same model as the previous one (colors are dimensions un-
der another name). Besides re-framing dimensions as colors, which
we find allows an easier grasp of intuitions, the present system fea-
tures a number of technical simplifications:

1. In the system of Bernardy and Moulin (2012), one has to be ex-
plicit about the number of dimensions that a term has. In con-
trast, here, the dimensionality of a term is implicit. Indeed, con-
texts can be extended with an arbitrary number of dimensions.
This means that a term can always be used in a context which
has more (distinct) colors, whereas previously an explicit con-
version had to take place. In other words, terms can be seen as
infinitely-dimensional; but if they do not mention a dimension
explicitly they behave uniformly over it. In particular, usual λ-
terms are uniform, and parametricity is a consequence of this
uniformity.

2. In this paper, we name dimensions, whereas they are numbered
in (Bernardy and Moulin 2012). The situation is analogous to
the issue of the representation of variables in lambda-calculi.
One can either use explicit names or De Brujin indices, and
using names is usually more convenient.

It is worth underlining that the notion of erasure we employ here
is not the same as that of (Bernardy and Lasson 2011). Here, we
erase the colored component; whereas Bernardy and Lasson (2011)
erase the oblivious components.

Parametricity has more “standard consequences” such as the
deduction of induction principles. Unfortunately, many of these
consequence also require extensionality (Wadler (2007) gives a
complete development). Since extensionality is not well integrated
to type-theory (let alone TTC) at the moment, we cannot derive
such constructions, at least not without postulating extensionality.

Higher-dimensional Equality Recent work on the interpreta-
tion of the equality-type in intensional type theory suggests that
it should be modeled using higher-dimensional structures (Licata
and Harper 2012). In the present work we support the definition
of higher-dimensional structures via dependencies on colors. In fu-
ture work we wish to investigate whether the presence of colors can
help encoding the higher-dimensional structure of equality.

A potential difficulty is that the structure of equality is simplec-
tic, while we have here a cubic structure (colors are orthogonal). A
simplex is however easily embedded in a cube, so there are grounds
to believe that the two aspects can eventually be integrated.

6. Conlusion and Future Work
We have described an extension of type-theory with colored terms,
a notion of color erasure, and a way to interpret colored types as
predicates. We have shown how that extension provides a new kind
of genericity, and how the coloring discipline enforces invariants
when writing programs. We also shown how to reveal these invari-
ants (by typing the judgment in another modality) and internalize
some parametricity results.

We detailed extensively a core version of that colored type-
theory, namely CCCC. In particular, we proved fundamental prop-
erties for that system, such as Church-Rosser’s, subject-reduction,
and strong normalization. We also implemented some features of
CCCC in a prototype we aim to merge into the main stream AGDA
proof assistant.

Future work chiefly involves unifying colors as presented here
with previous similar notions. On the implementation side, we
aim to complete our prototype with all the features presented in
this paper. Besides, we would like to investigate the feasibility of
inference of color annotations before merging our implementation
of TTC into the main branch of AGDA. We will then be able to
assess the practical power of TTC. A first step in this direction is
the retrofitting of the AGDA standard library to use colors.

Acknowledgments
Many ideas underlying this paper have germinated and matured in
discussions with Thierry Coquand, Simon Huber and Patrik Jans-
son. We thank Peter Dybjer, Cezar Ionescu, Nicolas Pouillard and
Philip Wadler as well as anonymous reviewers for useful feedback.

References
M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of

dependency. In POPL’99, pages 147–160. ACM, 1999.

A. Abel and G. Scherer. On irrelevance and algorithmic equality in pred-
icative type theory. Logical Methods in Comp. Sci., 8(1):1–36, 2012.
TYPES’10 special issue.

H. P. Barendregt. Lambda calculi with types. Handbook of logic in
computer science, 2:117–309, 1992.

J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure type
systems. In M. Hofmann, editor, FoSSaCS, volume 6604 of LNCS, pages
108–122. Springer, 2011.

J.-P. Bernardy and G. Moulin. A computational interpretation of para-
metricity. In Proc. of the Symposium on Logic in Comp. Sci. IEEE, 2012.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent
types. In Proc. of ICFP 2010, pages 345–356. ACM, 2010.

J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free — parametricity
for dependent types. J. Funct. Program., 22(02):107–152, 2012.

T. Coquand and G. Huet. The calculus of constructions. Technical report,
INRIA, 1986.

P.-E. Dagand and C. McBride. Transporting functions across ornaments. In
Proc. of ICFP 2012, ICFP ’12. ACM, 2012.

D. Licata and R. Harper. Canonicity for 2-dimensional type theory. In Proc.
of POPL 2012. ACM, 2012.

P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

N. Mishra-Linger and T. Sheard. Erasure and polymorphism in pure type
systems. In FoSSaCS 2008, pages 350–364. Springer-Verlag, 2008.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers Tekniska Högskola, 2007.

C. Paulin-Mohring. Extracting Fω’s programs from proofs in the calculus
of constructions. In POPL’89, pages 89–104. ACM, 1989.

F. Pfenning. Intensionality, extensionality, and proof irrelevance in modal
type theory. In Proc. 16th Annual IEEE Symposium on Logic in Comp.
Sci., pages 221–230. IEEE, 2001.

V. Siles. Investigation on the typing of equality in type systems. Phd thesis,
École Polytechnique, 2010.

The Coq development team. The Coq proof assistant, 2012.
P. Wadler. Call-by-value is dual to call-by-name. In Proc. of ICFP 2003,

ICFP ’03, pages 189–201. ACM, 2003.
P. Wadler. The Girard–Reynolds isomorphism (second edition). Theor.

Comp. Sci., 375(1–3):201–226, 2007.
P. Wadler. Propositions as sessions. In Proc. of ICFP 2012, ICFP ’12, pages

273–286. ACM, 2012.

Appendix: Definition of CCCC
Definition 3 (Syntax).

Variable 3 x, y, z
Color 3 i, j
Sort 3 s ::= ?θ | �θ
Taint 3 θ, ι ::= ∅ empty

| θ, i tainted
Modality 3 ψ,ϕ ::= (θ, ι)
Term 3 A, . . . , Z ::= x variable

a, b, c, t, u | s sort
| (x :ψ A)→ B product
| λx :ψ A.b abstraction
| F •ψ a application

Context 3 Γ,∆ ::= – empty
| Γ, x :ψ A binding
| Γ, i color

Definition 4 (Typing rules Γ ` A :θ B).
Γ ` A :θ B is well-formed only if i ∈ Γ for each i ∈ θ.

CONV
Γ ` a :θ A A =β A

′

Γ ` a :θ A
′

AXIOM
` Γ

Γ ` ?θ :θ �θ

VAR
` Γ x :θ A ∈ Γ

Γ ` x :θ A

PROD
Γ, x :ψ A ` B :θ s

Γ ` (x :ψ A)→ B :θ s

ABS
Γ, x :ψ A ` b :θ B

Γ ` (λx :ψ A.b) :θ (x :ψ A)→ B

APP
Γ ` F :θ (x :ψ A)→ B Γ ` u :ψ A

Γ ` F •ψ u :θ B[u/x]

PARAM
Γ ` A :θ B i 6∈ θ

Γ ` A :θ,i B •θ, i bAci

(To limit clutter we omit the well-sorted conditions of types A and
B in the rule ABS.) We also have

If ψ = (θ, ι) then Γ ` A :ψ B
4
= bΓcι ` A :θ B

Definition 5 (Accessible variable x :θ A ∈ Γ).

START

x :θ A ∈ Γ, x :(θ,ι) A

COL. WK
x :θ A ∈ Γ i 6∈ θ

x :θ A ∈ Γ, i

WK
x :θ A ∈ Γ

x :θ A ∈ Γ, y :ψ B

Definition 6 (Well-formed contexts ` Γ).

EMPTY

` –

COLOR
` Γ

` Γ, i

BIND
` Γ Γ ` A :ψ s

` Γ, x :ψ A

Definition 7 (erasure bT ci). The definition of erasure depends
on the actual modality used. We write all the cases on the same

line; the condition is written above each column.
i 6∈ ψ i ∈ ψ ψ = ϕ, i

bxci = x
bsci = s

b(x :ψ A)→ Bci = (x :ψ bAci)→ bBci bBci (x :ϕ A)→ bBci
bλx :ψ A.bci = λx :ψ bAci.bbci bbci λx :ϕ A.bbci
bF •ψ aci = (bF ci) •ψ baci bF ci (bF ci) •ϕ a

bΓ, x :ψ Aci = bΓci, x :ψ bAci bΓci bΓci, x :ϕ A
bΓ, jci = bΓci, j
bΓ, ici = Γ

Erasure is extended to taints as follows:

Definition 8 (erasure bT cι).

bT c∅ = T

bT cι,i = bbT cicι

Definition 9 (Reduction t −→ u).

sθ •ϕ t −→ (z :ϕ t)→ sθ∪ι (1)

where ϕ = (θ, ι)

((x :ψ A)→ B) •ϕ t −→ (x :ψ A)→ (B •ϕ t) (2)

if ∃i such that i ∈ ψ and i ∈ ϕ
((x :ψ A)→ B) •ϕ t −→ (x :ψ A)→ (B •ϕ (t •ψ x)) (3)

otherwise

(λx :ψ A.b) •ψ t −→ b[t/x] (4)

and congruences.

Definition 10 (Substitution). The substitution of variables in i-
oblivious contexts erases i from the substitutees.

(F •ψ a)[u/x] = F [u/x] •ψ a[u{ψ}/x]

((y :ψ A)→ B)[u/x] = (y :ψ A[u{ψ}/x])→ B[u/x]

(λy :ψ A.b)[u/x] = λy :ψ A[u{ψ}/x].b[u/x]

Where

u{(θ, ι)} = bucι

