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ABSTRACT 

 

Neighborhood effects have recently become a focus of interest in transportation research, 

whereby transportation mode choice is not only affected by an individual’s characteristics and 

the physical conditions of the transportation system, but also by the mode choices of that 

individual’s neighbors. This study supports the neighborhood effects argument, using a spatial 

econometrics approach and data from The Ohio State University’s 2011 Campus Transportation 

Survey. A spatial probit model of commuters’ mode choices (auto versus non-auto) is estimated, 

accounting for spatial autocorrelation. The results reveal that the more non-auto (walking, 

bicycling, and transit) users are residing around an individual, the more attractive these modes 

become for this individual. In addition to these spatial effects, the results indicate that students 

are more likely to commute to campus by non-auto modes, as compared to faculty and staff, and 

that the probability of choosing non-auto modes decreases with distance from campus. Feeling of 

safety, duration of travel, flexibility of departure time, ability to make stops on the way to/from 

campus, and attitudes towards auto use (being a car patron or a captive user), also affect an 

individual’s mode choice. These findings provide campus transportation planners new insights 

on the factors influencing travel mode choices. 
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1. INTRODUCTION 

 

Interest in reducing car use for commuting is increasing across the country. Several universities 

are encouraging alternative modes (e.g. walking, bicycling, ridesharing, and transit) because of 

their social and environmental benefits (1-4).  Discrete choice models have been used to analyze 

individual decision-making in transportation, whereby individuals maximize their utility based 

on their own socioeconomic characteristics. However, the interactions between the decision 

makers in a neighborhood or social network are generally ignored in such models. These 

neighborhood effects (social network or spill-over effects) have been shown to explain a range of 

individual behaviors (5-8). The term “neighborhood effects” is used here, because the spatial 

interactions of decision makers are defined by geography rather than personal social networks 

(i.e. an individual’s mode choice is affected by neighbors living within a certain distance). The 

basic transportation assumption is that the more a commuting mode is used within a 

neighborhood, the more attractive it becomes to all commuters (9-11). Therefore, policies to 

enhance non-auto mode choice should focus not only on improving related infrastructures but 

also on promoting a non-auto-use culture if these neighborhood effects are significant (10, 12). 

 The study area of this research is The Ohio State University (OSU) main campus, located 

in Columbus, Ohio, with an area of about 7 km
2
 and over 80,000 people commuting to campus. 

The Columbus metropolitan area has long been dominated by cars because of low population 

density and a well-connected highway system. The transportation infrastructure on and around 

campus is car oriented, encouraging people to drive cars even within distances suitable for 

walking, bicycling, and transit (1). To reduce car travel on/to campus, the OSU Transportation 

and Parking Services (T&P) office has attempted to improve conditions for non-auto modes. To 

be able to change individuals’ mode choices, it is important to assess the propensity of choosing 

non-auto modes across faculty, students and staff, whether current non-auto infrastructures help 

decrease auto use and finally whether neighborhood effects impact people’s mode choices, 

asides from ordinary socioeconomic factors 

 This study analyzes neighborhood effects, using data from the 2011 OSU Campus 

Transportation Survey. Questions cover respondents’ travel modes, socioeconomic features, 

attitudes toward mode choices, and proximity to non-auto facilities. The survey also records 

respondents’ residential locations, providing the basis for defining spatial relationships. Spatial 

probit models are estimated to account for spatial autocorrelation. The results can be used to 

analyze the direct effects that increase one’s probability of choosing non-auto modes and indirect 

effects that increase such probability for this individual’s neighbors.  

 

2. BACKGROUND 

 

Over the last couple of decades, decision makers in several metropolitan regions have been 

trying to reduce solo driving and promote alternative modes of transportation to reduce traffic 

congestion, noise, and air pollution. Numerous studies have been conducted on the links between 

land-use and built environment features, the impacts of various TDM (Transportation Demand 

Management) strategies, and the resulting travel patterns (13-17). 

The effects of personal characteristics and attitudes towards transportation have also been 

studied by several researchers. For instance, Cao and Mokhtarian (18) state that not only the 

amount of travel but also the individuals’ specific characteristics (attitudes, personality, and 
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lifestyle) influence individuals’ travel choices. Schwanen and Mokhtarian (15) conclude that 

neighborhood characteristics interact with commuters’ beliefs about auto use, and these two 

factors should be considered simultaneously while analyzing commuting modes and residential 

locations. Zhao (19) examines car dependence and reports that higher income, having children, 

and living in the suburbs increase subjective car dependence, whereas higher population density 

decreases this dependence. 

Some studies focus specifically on personal attitudes and auto use. For instance, Graham-

Rowe et al. (20) present a review of the evidence regarding several interventions carried out to 

reduce car use, and conclude that driving habit is one of the most important factors affecting 

future auto use. They find that interventions may be more effective if they target drivers who 

have both a strong driving habit and a strong motivation to reduce car use, or target people who 

have just changed residence and have not established travel habits yet. Eriksson et al. (21) state 

that personal norms, general intentions, and the perceived impacts of different TDM measures 

are important determinants of the resulting car use reductions.  

In addition to studies based on focus groups and general populations, there is a growing 

literature examining travel patterns on college campuses, as the adverse effects of driving 

(congestion, increased parking demand, reduced physical activity) have spread to these campuses. 

As first stated by Balsas (4), campuses differ from other urban areas, with their unique 

population of younger and more active individuals, a continuous movement of people throughout 

the day, and irregular schedules. He argues that the travel behavior and environmental awareness 

adopted by students may spread to the whole nation over time.  Thus, campuses may have a 

unique opportunity to reduce overall auto use.   

In addition to the early work of Balsas, Akar and Clifton (3) and Akar et al. (22) examine 

the factors associated with bicycling choice at the University of Maryland and OSU campuses, 

respectively. Zheng et al. (2) examine the potential demand for car-sharing at the University of 

Wisconsin-Madison. Barata et al. (23) analyze the willingness to pay for reserved parking at the 

University of Coimbra campus. Dorsey (24) studies the impacts of a public transit pass incentive 

program, using case studies from universities in Utah to demonstrate the potential to increase 

transit ridership.  Akar et al. (1) conduct an analysis of the travel patterns of the OSU campus 

community. They use the 2011 Campus Transportation Survey data, which is the source of 

information for the current study as well. Using a multinomial choice model, they report that 

individuals prefer driving alone because of their concern for safety, travel time, flexibility of 

departure time, and the ability to make stops on the way, and suggest that the same level of 

service must be provided by alternative modes to be competitive with car use. However, this 

study does not consider neighborhood effects. In contrast, the present study analyzes the 

commute mode choice while considering these effects and focuses on auto versus non-auto 

choice because increasing the share of alternative modes (walking, bicycle, and transit) are the 

targets of TDM policies on campus. 

Borrowing from a well-established perspective in sociology, recent economic research 

has started focusing on the role of social interactions in economic behavior and decision-making, 

particularly the effect of social interactions taking place within a neighborhood.  Brock and 

Durlauf (5, 7) are among the first researchers to focus on these effects within the context of 

discrete choices.  They formulate a multinomial logit model based on an individual utility 

function that includes a private utility component (individual characteristics), a social utility 

component depending on the decisions of other individuals in the neighborhood (social 
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interactions), and a random utility term.  They analyze the properties of the multiple equilibria 

that would result from the solution of this model under non-cooperative decision making, 

compare these equilibria to the solution that would be obtained if a social planner would set 

choices, and discuss the econometric estimation of the model.  However, this work is essentially 

theoretical, as these logit models are not estimated with real-world data.  Likewise, Paez and 

Scott (6) and Paez et al. (8) also use a multinomial logit model to address the effects of social 

interactions on the discrete decisions of telecommuting adopters and residential location seekers.  

In contrast to (5, 7), this model involves some dynamics, whereby an individual’s decision today 

is a function of her characteristics, her decision in the previous period, and the decisions of the 

other members of the social network in the previous period.  Using hypothetical values for the 

model parameters, the model is numerically solved via Monte Carlo simulation.  While 

conclusions are drawn from the simulation results under different hypotheses, this work remains 

theoretical because the model is “assumed” and not estimated with real-world data. 

Goetzke (9) and Goetzke et al. (10, 11) appear to be the first to empirically estimate such 

models.  They analyze social network effects in transport mode choice, with a focus on walking, 

bicycle, and public transit. The spatial lag term of the dependent variable is estimated with an 

instrumental variable approach to account for the binary mode choices. The more people use a 

particular mode, the more attractive this mode becomes to all other people in a neighborhood. 

The results confirm that increased use of one specific mode in a neighborhood increases the 

likelihood of this mode being chosen by others in the same neighborhood. While a given 

individual may have her own preference for mode choices (own effects), she is also affected by 

her neighbors’ mode choices (neighborhood effects). 

 Goetzke and collaborators use a 2SLS (2-stage least squares) instrumental variable 

method to account for spatial autocorrelation. This method is problematic due to endogeneity, 

since the transportation mode share of neighbors is correlated with the unobserved utility of the 

given individual. Also, their neighborhood structure is defined by a given number of nearest 

neighbors. Although this approach is acceptable when the population distribution is homogenous, 

problems may arise when it is not. For instance, the average distance from an individual to her 

30 nearest neighbors will be smaller in a dense central city neighborhood than in a suburban area. 

In addition, these distances vary, and so do the effects of next door neighbors versus neighbors 

living three blocks away. In some cases, some of these nearest neighbors may be quite far away, 

and therefore their impacts may be very small to non-existent, and treating all these 30 neighbors 

equally is not realistic. The present study adds to the existing literature by defining a distance-

based neighborhood structure, and examining the neighborhood effects using a spatial probit 

model. The spatial weight matrix is based on this neighborhood structure.  

 

 

3. DATA 

3.1. OSU Campus Transportation Survey 

The 2011 OSU Campus Transportation Survey was designed and administered online because of 

the ease of data entry and cost. The email addresses of 20 percent of the campus population were 

acquired from the University’s Human Resources and Registrar offices. In addition, the survey 

link was made available through the T&P website, and was included in university newsletters. 
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Detailed information on the survey procedure can be found in Akar et al. (1). Around 3,000 

individuals participated in the survey, with 2,300 complete responses. 

 Table 1 presents descriptive statistics for the off-campus residents’ mode choices. Most 

of the respondents  (72 %) commute to campus by car (carpool and drive alone). Students are 

more likely to use non-auto modes as compared to faculty and staff. Most respondents living less 

than 1.6 km (1 mile) from campus choose non-auto modes (87%). More than half of the 

respondents living between 1.6 to 8 kilometers (1 to 5 miles) from campus commute by car. The 

percentage of respondents who choose driving increases with distance. 

 Figure 1 presents the spatial distribution of the respondents. Most of the respondents who 

walk, bike or take transit are located within a 20 km buffer from the center of the university 

campus. Moreover, both non-auto users and auto users display several spatial clusters, which 

points to possible spatial autocorrelation.  

 

Table 1 Off-Campus Residents 

 Non-auto users (%) Auto users (%) N 

Status 

Faculty 12.9 87.1 223 

Staff 9.0 91.0 1184 

Graduate 40.4 59.6 463 

Undergraduate 64.5 35.5 578 

Gender 

Female 23.2 76.8 1417 

Male 36.0 64.0 1027 

Location 

Less than a mile 87.4 12.6 381 

1 to 5 miles (1.6 to 8 km) 41.4 58.6 760 

5 to 10 miles (8 to 16 km) 10.4 89.6 451 

Over 10 miles (16 km +) 10.3 89.7 1012 

Total 28.4 71.6 2604 

 



 1 
Figure 1 The Study Region2 



3.2. Attitudes Towards Travel Modes and Principal Component Analysis 

The survey asks respondents about their attitudes towards auto use and the most important 

factors in making commuting mode choices. Table 2 summarizes these responses. Travel time, 

weather, and departure time flexibility are the three most important factors. About 78% of the 

respondents agree with the statement “my lifestyle is dependent on having a car”, 60% actively 

try to reduce their car uses, and 32% have no interest in reducing it. Around 53% of the 

respondents have no other options but to drive to campus, and 42% do not consider other travel 

options.  

 

Table 2 Attitudes Towards Mode Choices 
General attitudes towards mode uses 

 Not 

important % 

Somewhat 

important % 

Important 

% 

Very 

important % 

N 

Travel time 8.1 14.0 29.0 48.9 2570 

More flexible departure time 12.1 15.8 29.6 42.5 2570 

Ability to stop on my way  

     to/from campus 

23.7 24.5 25.1 26.7 2549 

Safety from crime 19.1 20.9 26.5 33.5 2557 

Safety from traffic 15.9 19.8 30.0 34.3 2564 

Weather 9.9 12.8 29.6 47.8 2578 

Cost 12.4 19.4 31.3 36.9 2571 

Concern for the environment 22.4 34.6 28.6 14.4 2548 

Attitudes toward auto use 

 Strongly  

disagree % 

Disagree 

 % 

Agree 

 % 

Strongly 

 agree % 

N 

My lifestyle is dependent on 

having a car 

8.55 13.30 35.18 42.97 2504 

I don't think about my travel 

options 

21.13 36.61 26.61 15.65 2409 

I am actively trying to use my 

car less often 

10.87 30.43 39.32 19.38 2373 

I have no interest in reducing   

my car use 

24.40 43.79 20.63 11.18 2414 

I have no other option but to 

drive to campus 

25.25 23.15 19.28 32.32 2432 

Source: Akar et al. (1). 

 

In order to incorporate these attitudes in mode choice models, Akar et al. (1) have conducted a 

principal components analysis (PCA) of these highly correlated attitudes, resulting in four 

principal components. Individuals are then scored on each of these components. For instance, the 

first component is defined as “concerned for safety and weather”, and individuals who are 

concerned about crime- and traffic-related safety and weather conditions score high on this 

component. The second component is defined as “cost and environment conscious”. People 

concerned about travel time score high on the third component. Flexibility of departure time and 

the ability to make stops on the way to/from campus characterize the fourth component. Details 

regarding these principal components can be found in Akar et al. (1).  
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In the present study, we conduct an additional PCA and create two more components 

explaining respondents’ attitudes towards auto use. The first component is characterized by not 

thinking about travel options, having no interest in reducing car use, and not trying to reduce 

auto use. Individuals who score high on this component are referred to as “auto patron”. 

Individuals who would like to reduce their auto use but think they do not have alternatives score 

high on the second component, referred to as “captive user”. The results, including the 

percentage of explained variance and the loading values for each component, are reported in 

Table 3. 

 

Table 3 Principal Component Analysis – Attitudes towards Auto Use 

 
Components Auto patron Captive uses 

My lifestyle is dependent on having a car 0.452 0.457 

I don't think about my travel options 0.487 -0.093 

I am actively trying to use my car less often -0.435 0.486 

I have no interest in reducing my car use 0.458 -0.420 

I have no other option but to drive to campus 0.401 0.608 

Eigenvalues 2.604 1.007 

% of variance 52 20 

 

4. METHODOLOGY 

 

4.1. Spatial Probit Model for Non-auto Use 

Discrete choice models are used to explain the effects of socio-demographics, travel 

characteristics, and personal attitudes on observed mode choices. It has, however, been argued 

that the more individuals use one specific mode, the more likely this mode is to also be used by 

others in the same geographic location (25, 26). This neighborhood effect can be captured by a 

spatial probit model based on random utility theory. If Alternative 1 is chosen, then this 

alternative (i.e., y = 1) is assumed to carry the highest positive net utility (i.e., U1 > U0). The 

probability of such selection from a choice set is (25): 

 

𝑃(𝑦 = 1|𝑥𝑘) = 𝑃(𝑈1 ≥ 𝑈0) = 𝑃(𝑦∗ ≥ 0) = 𝐹((𝐼 − 𝜌𝑊)−1𝛽𝑘𝑥𝑘)                                       (1) 

 

where y
*
 is the latent or unobserved utility.  It underlies the observed choice outcome (y), which 

follows a truncated multivariate normal distribution (TMVN), with a mean vector and variance-

covariance matrix presented in Eq. (2), where the original variance is set equal to 1 (i.e., σε
2
=1) 

(25). W is the spatial weight matrix used to capture the spatial autocorrelation. 

  

𝑦∗~𝑇𝑀𝑉𝑁{(𝐼 − 𝜌𝑊)−1𝛽𝑋, [(𝐼 − 𝜌𝑊)′(𝐼 − 𝜌𝑊)]−1}                                                           (2) 

 



Wang, Akar and Guldmann    10 

 

 

 

The latent dependent variable is a function of a set of explanatory factors, xk, together with a 

spatial lag term, Wy
*
, and βk and ρ (spatial scale) are parameters (Eq. (3)). The error term 

follows a TMVN distribution. The choice set includes non-auto (walking, biking, taking transit), 

and auto (carpool and drive alone) choices. 

 

𝑦∗ = 𝜌𝑊𝑦∗ + 𝛽𝑘𝑥𝑘 + 𝜀  = (𝐼 − 𝜌𝑊)−1𝛽𝑘𝑥𝑘 + (𝐼 − 𝜌𝑊)−1𝜀                                            (3) 

 

The explanatory variables are:  

1. Status (faculty, staff, graduate, undergraduate); 

2. Gender (1: female; 0: male); 

3. Proximity to bicycle infrastructure and bus stops (1: there is a bike trail/path/lane or a bus 

stop within 0.8 km (0.5 mile) of the residence location; 0: otherwise); 

4. Departure time flexibility (1: flexible; 0: not flexible); 

5. Distance from residence to campus (unit: km); 

6. Attitudes towards general mode choice (Component 1: safety and weather; Component 2:  

environment and cost; Component 3: time concern; Component 4: flexibility); 

7. Attitudes toward auto use (Component 1: auto patron; Component 2: captive user). 

Equation (3) indicates that the utility of choosing non-auto modes is not only affected by the 

above-mentioned variables but also by the neighborhood effects represented by the spatial lag 

term, Wy*, which measures the mode choices of the respondent’s neighbors. It is assumed that 

there is a positive relationship between the mode choice of a given individual and those of her 

neighbors, measured by the spatial scale ρ. The larger the ρ, the stronger the spatial 

autocorrelation. 

 

4.2.Estimation of the Spatial Probit Model 

The Bayesian approach developed by LeSage and Pace (25) is used to estimate the spatial probit 

model. Instead of using the maximum likelihood method, the Bayesian approach estimates the 

parameters from a posterior density function that is the product of the prior distribution of the 

parameters and the likelihood function. When the posterior density function is mathematically 

too complicated to be integrated, a Markov Chain Monte Carlo (MCMC) simulation method is 

used to estimate the parameters, by examining a large random sample from the posterior 

distribution (25). As the parameters β, ρ, y
*
 must be estimated, Gibbs sampler, one of the MCMC 

methods, is used (26). The algorithm begins by drawing from the conditional distribution 

associated with the first parameter, and proceeds sequentially with each parameter until all 

parameters have been drawn. The advantage of this method is that it simulates the continuous 

latent variable, y
*
, and then treats the data like a regular linear regression (26). 
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4.3.Spatial Weight Matrix (W) 

The spatial lag term, Wy
*
, represents the neighborhood effects on each respondent’s choice.  The 

spatial weight matrix, W, must be based on a selected neighborhood structure. There are several 

methods for defining this structure, including adjacency, k-nearest neighbors, and distance-based 

(27). The last method is selected here, because adjacency is generally used for lattice data  

defined by shared borders (e.g., Census tracts) (28), and the k-nearest neighbors method is not 

suitable because of the spatial heterogeneity of respondents’ distribution. 

 Once a neighborhood structure is defined, it can be converted into a spatial weight 

matrix. The standard spatial weight (SSW) has been most often used (27), whereby each entry is 

defined as 1 over the number of neighbors within the row. For instance, if an individual has 5 

neighbors, the entry for each neighbor is 0.2. This method treats every neighbor’s effect equally. 

However, it may be necessary to treat these effects as decreasing with distance. In this case, the 1 

entry in the SSW matrix is divided by distance, or inverse distance weight (IDW). Note that a 

zero entry in the matrix implies lack of neighbors for a given individual. Each non-zero spatial 

weight is then defined as: 

1. Standard spatial weight (SSW): 1/n; 

2. Inverse distance weight (IDW): 1/(n*distance), 

where n is the number of actual neighbors in a given row of the matrix. 

 

4.4. Summary of Spatial Weight Matrices 

Respondents’ locations are points distributed across the region (Figure 1). Individuals within 1 

km around each respondent are considered her neighbors. Table 4 indicates that each respondent 

has an average of 35 neighbors, and the average distance between any pair of neighbors is about 

0.5 kilometers. This neighborhood structure matrix is first converted into a SSW matrix, and then 

into an IDW matrix. 

 

Table 4 Descriptive Statistics for Neighborhood Structure and Spatial Weights 

 Minimum Median Mean Maximum 

Neighborhood structure 

Number of neighbors 0 9 35 182 

Distance between neighbors (meters) 7 651 464 1000 

Spatial weight matrix 

Standard spatial weight (SSW) 0.005 0.009 0.025 1 

Inverse-distance weight (IDW) 0.001 0.008 0.024 1 
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4.5.Marginal Effects 

LeSage et al. (25, 29) propose a method to interpret marginal effects with respect to the 

independent variables in the spatial probit model. They show that these effects can be calculated 

by using the inverse matrix (I-ρW)
-1

 in the following equation: 

 

𝜕𝐸[𝑦|𝑥𝑟] 𝜕⁄ 𝑥𝑟
′ = Φ((𝐼 − 𝜌𝑊)−1𝛽𝑟𝑥𝑟̅̅ ̅) ⊙ (𝐼 − 𝜌𝑊)−1𝛽𝑟                                                     (4) 

 

where  𝑥𝑟̅̅ ̅  is the mean of the r
th

 variable, Φ is a standard normal distribution, and ⊙ is element-

by-element multiplication. Equation (4) can be separated into two parts: direct effects (DE) and 

neighborhood effects (NE). The diagonal elements in Eq. (4) are used for DE, while the others 

are for NE (25). For instance, if respondent i lives farther away from campus, this generates a 

direct impact (DE) on the probability that she chooses a non-auto mode, as well as a 

neighborhood impact (NE) on the choice of neighboring respondent j. 

 

5. RESULTS 

 

5.1. Spatial Probit Model for Choosing Auto versus Non-Auto  

Table 5 presents the descriptive statistics for the variables used for the estimation of the mode 

choice model. Non-auto modes are used by (26%) of the respondents. Staff makes up the largest 

share of respondents (49%). Most respondents are female (59%), reside within 0.8 km from 

bicycle facilities or transit stops (66% and 79%) and have departure time flexibility (64%). The 

average distance between campus and a respondent’s residence is about 10 km. Statistics for the 

principal components characterizing most important factors affecting individuals’ mode choices 

and attitudes towards auto use are also provided.  
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Table 5 Descriptive Statistics of Variables (N=1584) 

 

Dummy variables 

Percent commuting by walking, bicycling and transit 26% 

Status and gender 

Faculty 9% 

Staff 49% 

Graduate 19% 

Undergraduate 23% 

Female 59% 

Proximity to infrastructure and departure flexibility 

Bus stop (within 0.5 miles of a bus stop) 79% 

Bike trail/path (within 0.5 miles of a bicycle trail/path) 66% 

Departure flexibility 64% 

Continuous variables 

 Mean Minimum Maximum Std. Dev. 

Distance (km) 9.83 0.19 46.80 8.42 

General attitudes toward mode choices (PCA) 

Safety and weather -0.017 -3.282 2.084 1.352 

Environment and cost -0.028 -2.573 2.361 1.156 

Time 0.046 -3.381 1.889 1.100 

Flexibility 0.062 -2.684 2.451 1.096 

Attitudes toward auto use (PCA) 

Auto patron -0.100 -3.571 3.433 1.607 

Captive users -0.063 -3.849 2.544 0.993 

 

Table 6 presents the results of (1) a non-spatial logit model and (2) a spatial probit model with 

the IDW matrix.  Auto choice is set up as the base case. In the logit model, undergraduate 

students are more likely to choose non-auto modes than graduate students, faculty and staff. The 

coefficient for faculty is not significant, indicating that faculty members’ choices are not 

different from those of staff members (base case). Overall, there is no significant difference 

between the choices of males and females.  Surprisingly, proximity to bus stops, bicycle trails 

and having departure time flexibility are not significant. However, the distance from residence to 

campus (positive sign) and the squared distance (negative sign) are significant, indicating that the 

probability of choosing a non-auto modes decreases with distance from campus, although at a 

decreasing rate. 

Regarding general attitudes toward mode choices, the higher the concern for safety, travel 

time, and the ability of making stops on the way to/from campus, the smaller the probability of 

choosing non-auto modes. However, the concern for travel time is not significant.  Note that 

safety is not significant in the logit model but significant in the spatial probit model. In contrast, 
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the higher the concern for the environment and cost, the higher the probability of choosing non-

auto modes. 

It is not surprising that the principal component variables representing auto patrons and 

captive drivers have both negative signs. Auto patrons (individuals who think their lifestyles are 

dependent on their cars, and have no interest in reducing their car use) and captive users 

(individuals who would like to reduce their car use, but have no other options) are less likely to 

choose non-auto modes. As expected, the ‘captive user’ coefficient is smaller than the ‘car patron’ 

coefficient in magnitude.  

In the spatial probit model, the coefficients of the above-discussed variables display 

generally smaller values as compared to the logit model, but have the same signs. This is as 

expected, as neighborhood effects are clearly separated from direct effects. The spatial scale ρ is 

significant with a value of 0.24, and therefore supports the assumption of significant 

neighborhood effects. 

 

 

Table 6 Results for Auto versus Non-auto Choice Models (N=1584) 

 Non-Spatial Logit Spatial probit (IDW) 

Variable Coef. Std. Dev. Coef. Std. Dev. 

Cons. -1.776 0.817 -1.171 0.452 

Status (staff is the base case) and gender (male is the base case) 

Faculty 0.170 0.372 0.043 0.206 

Graduate 1.141 0.255 0.529 0.145 

Undergraduate 2.445 0.257 1.227 0.142 

Female -0.224 0.197 -0.122 0.116 

Proximity to non-auto infrastructure, departure flexibility and distance from campus 

Bus stop 0.111 0.624 0.191 0.330 

Bike trail -0.020 0.257 -0.075 0.142 

Departure flexibility 0.240 0.210 0.137 0.114 

Distance -0.308 0.045 -0.096 0.027 

Distance
2 

0.007 0.001 0.002 0.001 

General attitudes toward mode choices (PCA) 

Safety and weather -0.164 0.090 -0.107 0.051 

Environment and cost 0.284 0.103 0.169 0.061 

Time -0.096 0.095 -0.047 0.054 

Flexibility/making stops -0.293 0.101 -0.179 0.055 

Attitudes toward auto use (PCA) 

Auto patron -0.955 0.085 -0.519 0.048 

Captive users -0.693 0.112 -0.356 0.060 

Spatial scale (ρ)   0.239 0.058 

Note: Bolded coefficients are significant at the 95% level 
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5.2. Marginal Effects Analysis 

Table 7 presents the average direct (DE), neighborhood (NE), and total (TE) effects resulting 

from changes in several independent variables. The IDW matrix implies distance-attenuated 

neighborhood effects.  A 1 km increase in a respondent’s residence location away from campus 

will directly reduce her probability of choosing a non-auto mode by 0.66% (own effect), and the 

indirect effect on her neighbors would be a probability decline of 0.2%. A respondent’s 

probability of choosing a non-auto mode will directly decrease as she is more concerned about 

safety and weather (0.01%) and flexibility (0.02%), but will directly increase with more concern 

about environment and cost (0.02%). These changes in travel concerns will also indirectly affect 

her neighbors’ mode choices as well. Similar negative effects can be observed for being auto 

patron and captive user.  The own effect (DE) magnitudes are about three times as the 

neighborhood effects (NE). This is evidence that respondents’ mode choices are certainly 

affected by their neighbors’ mode choices. However, the result also indicates that this choice 

depends more on an individual’s own characteristics than on her neighbors’ choices.  

 

Table 7 Average Marginal Effects 

 

Variable Direct effect (DE) Neighborhood effect (NE) Total effect (TE) 

Distance (km) -0.663 -0.202 -0.865 

Safety and weather -0.014 -0.004 -0.018 

Environment and cost 0.022 0.007 0.029 

Flexibility -0.023 -0.007 -0.030 

Auto patron -0.066 -0.021 -0.087 

Captive users -0.045 -0.014 -0.059 

 

 

6. CONCLUSIONS  

Choosing alternative modes of transportation can certainly reduce transportation expenditures, 

and congestion for the campus community. The estimation of the spatial probit model for auto 

versus non-auto choices shows that spatial autocorrelation exists in commuting mode choices. 

The more non-auto users, the more attractive the non-auto modes become to all commuters. 

Students are more likely to choose these modes as compared to faculty and staff.  Surprisingly, 

proximity to non-auto infrastructure does not seem to influence non-auto mode choices.  

However, distance between residence and campus turns out to be a major factor for choosing 

alternative modes.  The principal component analyses and model results reveal that safety, travel 

cost and ability to make stops on the way to/from campus significantly affect individuals’ mode 

choices. It is also interesting that most respondents (captive users) have an interest in reducing 

car use but have no available alternative modes. Therefore, promoting non-auto modes can be 

achieved by reducing travel time and cost, improving safety and ability of making stops, and 

encouraging a non-auto-user culture based on neighborhood effects. 

Most transportation mode choice models fail to account for neighborhood effects or how 

an individual’s behavior may be affected by her neighbors’ choices. When such models are used 

in forecasting for new transit projects and in providing planning information to decision makers, 
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the results may be biased because of the non-inclusion of these effects in the model (9). This is 

also true for planning for bicycling and pedestrian infrastructure.  

A large share of the university population lives within a couple of miles from campus, 

and the results suggest that students should be the targets for promoting alternative modes, much 

more so than faculty and staff, as they are more likely to choose alternative modes of 

transportation to begin with. While proximity to bicycle infrastructure and bus stops appear to 

have no significant effect on mode choice, further efforts in providing safe, flexible and 

convenient conditions might have such effect. The results also reveal that more research is 

needed to understand the needs of auto patrons and captive auto users. As car orientation is 

deeply embedded in the American culture, understanding and being able to shape neighborhood 

effects may become an extremely helpful lever to change people’s behavior and increase the use 

of alternative modes.  
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