
A Graphical Interface for Real-Time Signal Routing
Jean-Marc Pelletier

International Academy of Media Arts & Sciences
3-94 Ryoke-cho, Ogaki-shi, Gifu

503-0014, Japan
+81-584-75-6600

jmp@iamas.ac.jp

ABSTRACT
This paper describes DspMap, a graphical user interface (GUI)
designed to assist the dynamic routing of signal generators and
modifiers currently being developed at the International Academy
of Media Arts & Sciences. Instead of relying on traditional box-
and-line approaches, DspMap proposes a design paradigm where
connections are determined by the relative positions of the various
elements in a single virtual space.

Keywords
Graphical user interface, real-time performance, map, dynamic
routing

1.INTRODUCTION
The DspMap system described in this paper started out as part of
the DspBox project [1]. The goal of this project was the
development of a stand-alone device that incorporates all
necessary hardware and software components for real-time audio
production in a single unit. As such, the DspBox prototypes are
equipped with a number of tangible elements such as faders and
buttons that interface with the software. The main vector of
interaction, however, is its rather large touch screen.

Figure 1. The DspBox (prototype #1)

The DspBox software allows users to develop their own modules
in the form of Max/MSP [2] patches. Those modules, which can
function either as signal generators or modifiers, are loaded and
connected with each other prior to performance. In its original
form, the DspBox software, owing in part to limitations inherent
to MSP, could not allow objects to be added, removed and

connections to be altered once audio production started.
Furthermore, screen space limited the number of objects that
could be accessible by the GUI.

In order to solve some of those problems, the DspMap system was
proposed to make working with large numbers of audio
generating and processing modules, as well as complex routings
between those modules, simple, intuitive and seamless.

2.CONCEPT
The goals of the DspMap interface were that it should provide:
interaction through simple and intuitive pointer (touch screen,
mouse, etc.) gestures, simple and clear visual feedback, support
for an arbitrarily large number of modules and the potentially
complex connections between those modules.

In order to achieve the goals stated above, we looked at some of
the problems of available GUIs. Perhaps the majority of modular
synthesis software packages implement variations on the box-and-
line approach to visual programing languages (VPL) [3]. Those
include, not exclusively, Max/MSP, pd [4], CPS [5], Audiomulch
[6], Reaktor [7] and Bidule [8]. While this approach to GUI
design may seem natural for modular sound synthesis due to its
analogy to analog modular synthesizers, it is in no way specific to
audio applications, being implemented in data flow programming
packages like LabVIEW [9] and video processing software like
Isadora [10] and EyesWeb [11].

While the box-and-line approach has definite advantages, it is in
our experience only marginally suited for on-the-fly design and
performance. There are two reasons for this: 1) large numbers of
modules and complex routings quickly lead to visual clutter and
2) since connections between modules must be made explicitly
and individually, relatively complex gestures must be used to
modify the structure of a "patch". The second problem was
addressed by M. Kaltenbrunner et al. in their reacTable [12]
whose software modules established connections between each
other autonomously. While this approach does indeed solve part
of the problems, we decided to work from a different paradigm
altogether.

Instead of using the metaphor of electronic signal flow, where
connections between modules must be made explicitly via real or
virtual patch cords, we opted for a design that mirrored the
behavior of sound producing objects in nature. This behavior has
two characteristics that are relevant to us: 1) Mechanical sound
sources are audible by default. The medium of transmission (air)
does not need to be explicitly established between source and
receiver. 2) The acoustic properties of the environment in which a
sound source is placed will affect the signal before it reaches the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Nime’05, May 26-28, , 2005, Vancouver, BC, Canada.
Copyright remains with the author(s).

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

89

receiver. From those two observations, we were able to design a
user interface that effectively met the goals we set above.

As the name implies, audio modules in DspMap are organized in
a "map" rather than a "patch". Here, "map" refers to the virtual
space where objects are arranged. The user can scroll across the
map or zoom in and out using simple gestures. There is no
theoretical limit to the size of a map or to the degree of
magnification, resulting in a seamless integration of macroscopic
and microscopic structures as well as support for potentially large
numbers of modules in limited screen space.

3.GUI OBJECT TYPES
Four types of objects can be placed on a map. They are:

Labels: Text comments that do not affect audio signals in any
way. In the current implementation, they cannot be edited at run-
time, though they can be moved around.

Points: Points correspond to modules that offer some form of
audio output but accept no signal input. Points are thus typically
signal generators. At run-time, points can be dragged freely to a
new location.

Listener: The listener is a unique object of central importance.
The amplitude of each point is scaled according to the distance
from that point to the listener. The farther a point is to the listener,
the weaker its output signal will be. If a point is situated beyond a
certain distance from the listener, it is deemed to be out of
"hearing range" and its signal processing should be temporarily
turned off. This allows a very large number of points to be used in
a single map without overly taxing the CPU. Any point within
hearing range of the listener will be audible. Like points, the
listener object can be dragged to different locations. Unlike
points, it can also jump from any two locations on the map,
allowing for abrupt changes.

Boxes: Boxes correspond to modules that accept signal input and
provide output. They are used for signal modifiers and should not
output any signal without input from a point. Boxes, which appear
as semi-opaque rectangles, can be dragged around the map like
points. Individual edges can also be dragged , allowing the shape
and size of a box to be modified at run-time.

4.RULES FOR CONNECTIONS
The connections between points, boxes and the listener are
determined according to the following rules:

(1) The scaled output of any point that is enclosed by a box is
routed to that box.

(2) In the situation where two or more boxes overlap, the scaled
output of any point situated within an overlapping region is
routed to each of the boxes concerned, in parallel fashion.

Figure 2. Point and box vs. flow chart for rules #1 and #2

(3) Boxes that are connected to one point or more are connected
to the listener, provided at least one point is within hearing
range.

(4) However, the output of any box that is completely enclosed by
another box is routed to the larger box rather than the listener.

Figure 3. Point and box vs. flow
chart for rule #4 and listener

distance

Figure 4. Point and box vs. flow chart for complex routing

5.SYSTEM ARCHITECTURE
The current version of DspMap runs from within Max/MSP and
the graphics are created using OpenGL [13]. The choice of
Max/MSP as a development platform was entirely motivated by a
need for compatibility with existing DspBox modules.

There are two main components to the DspMap system. The first
manages the GUI state, while the second carries out the actual
signal processing. The first component, currently implemented as
an external, passes messages to the second, native, component.
Should DspMap be ported to other environments, the first
component would remain largely unchanged, while the second
would be entirely dependent on the structure of the host system.

The first component is made up of the following parts:

• The map window
The map window is the main performance environment
described above. While, currently, only operations that pertain
to object positioning can be performed within the map
window, we plan to implement all program features as map
window operations.

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

90

Figure 5. The map window

• The edit window
The edit window is a standard tool bar-type of window that is
used to create and delete objects as well as access file
operations. It can only be used when designing maps, being
disabled at run-time. Eventually, its functionality will be
incorporated into the map window.

• File I/O
Maps created with the previous units can be stored in a file
and recalled for later use. The file format is text-based and is
human-readable. This allows the files to be edited manually.
The simple text format also allows files to be created with
software other than DspMap itself, which may be of use for
certain types of algorithmic composition.

• The map manager
This is the main software unit that maintains the current map
state and computes routings. It outputs messages to the host
application for it to update connections.

The second, host-specific component can be thought of having:

• Audio modules
Those are the actual modules that correspond to points and
boxes on the map. In the Max/MSP implementation, they are
abstractions that only require inlets and outlets for boxes and
outlets only for points. Everything else is left to the user to
design. Audio modules show up in the edit window simply by
being placed in folders labeled “points” and “boxes”.

• The router
The router receives three main kinds of messages from the
map manager. The first type of message is construction
commands that instruct the router to create or delete audio
modules. The second type consists of position messages,
which the router must use to scale the outputs of points. The
last type is connection messages, that the router uses to send
data to and from the various modules. The router
implementation is dependent on the host application.

6.PERFORMANCE APPROACHES
The DspMap allows certain types of performance techniques and
strategies that would be difficult on other graphical user
interfaces.

Composition for live performance and improvisation can be
approached through the use of “clusters”. By clustering groups of
points and boxes in certain areas, the performer can easily switch

from different musical sections by moving the listener to and from
various clusters.

On a micro scale, even rather complex routings can be rapidly
made sense of through the overlap and enclosing of boxes.
Visually, boxes being semi-opaque, various combinations will
appear as different colors – effectively mirroring the way various
combinations of signal modifiers will “color” the output of a
sound source differently.

Amplitude effects such as fades and tremolos are easily achieved
by moving either individual points or the listener object. By
adjusting the zooming scale of the map, the user can control the
precision of those effects; by zooming in very close, very minute
modulations can be achieved.

The performance technique most specific to the DspMap is
something we call “rapid routing”. By dragging points across
boxes, or combinations of boxes, the routing of this point's
outputs to various effect can be changed very rapidly. This can be
used to create various interesting effects. Similar results can also
be achieved by moving/resizing boxes themselves to connect or
disconnect several points at more or less the same time.

7.FUTURE WORK
The DspMap is still very much in its infancy and much work
remains to be done to improve usability. It is, however, in its
current state, already a very expressive tool that meets its
objectives. In the future, we plan to improve the DspMap in the
following ways:

Porting the software to various platforms. In its prototypical
form, the DspMap software was written in Javascript to run from
within Max/MSP. However, the program has been rewritten in
C++ to improve efficiency. This rewriting should also allow the
DspMap to be used from within other environments, such as pd or
SuperCollider [14].

Allowing maps to be edited at run-time. Currently, points and
boxes cannot be created or deleted once a performance has
started. This can somewhat be circumvented by moving objects to
and from a “waiting area”. However, performance possibilities
would be improved if the user was able to dynamically create and
delete objects at any time. This may be problematic on platforms
like Max/MSP that do not really allow modification of the DSP
chain at run time, but seems possible in environments like
SuperCollider or ChucK [15].

Improving automation. The current system allows any object to
send messages either to itself or other objects. This feature can be
used to build objects that move by themselves. The general
interface for automation needs to be improved, however, to
maximize its possibilities.

Access to parameter control. This is perhaps the greatest current
limitation of DspMap: object parameters cannot be controlled
from within the map interface. The workaround, bringing up
control panels for individual objects, is rather clumsy. In the
future, we must find a mechanism by which parameter control
information can be accessed and routed intuitively from within the
map interface.

Surround audio. While the distance between points and the
listener is used to modify the output of those points, the relative

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

91

direction has no value. This has proved, in practice, to be a useful
feature. However, because of its topographical aspects, a natural
use of the DspMap would be in the production of surround, or
multi-channel audio. This will likely be implemented as a separate
operation mode, keeping the current model – individual objects
are entirely responsible for their spatial placement – for normal
operation.

Improving visual feedback. The use of different colors to tell
objects apart has limitations when there is a large number of
objects. In future versions, we plan to introduce more elaborate
visual elements, such as icons, and further make use of OpenGL's
3D capabilities.

Multi-user environments. While the DspMap currently supports
only a single listener and user, in subsequent versions it may be
possible for several users to access and modify a single map at the
same time. This may be done over a network, in a fashion similar
to on-line gaming.

8.CONCLUSIONS
We have found the visual interface described in this paper to be
especially well suited for the performance of live computer music.
Even as a rough prototype, the DspMap proved to be an
expressive, intuitive and easy to use system that made new
techniques for musical expression possible. We believe that
DspMap's flexibility and flow fits within a general trend towards
less rigid programming paradigms and may possibly be used to
fully express the possibilities of future research in this domain.

9.ACKNOWLEDGMENTS
I would like to thank members of the DspBox project team,
Masayuki Akamatsu and Shigeru Kobayashi for their support. I
would also like to thank International Academy of Media Arts &
Sciences student Yosuke Hayashi for helping out in the
realization of the DspMap prototype.

10.REFERENCES
[1] Akamatsu, M. DspBox

http://www.iamas.ac.jp/project/dspbox/
[2] Puckette, M. Combining Event and Signal Processing in the

MAX Graphical Programming Environment. Computer
Music Journal 15(3), fall 1991, 68-77

[3] Burnett, M., Baker, M. A Classification System for Visual
Programming Languages. Journal of Visual Languages and
Computing, September 1994, 287-300

[4] Puckette, M. Pure Data: another integrated computer music
environment. In Proceedings, Second Intercollege
Computer Music Concerts, Tachikawa, Japan, 1996, 37-41

[5] CPS http://cps.bonneville.nl/
[6] Bencina, R. Oasis Rose the Composition - Real-Time DSP

with AudioMulch. In Proceedings of the Australasian
Computer Music Conference -ANU, Canberra, Australia,
1998, 85-92

[7] Reaktor
http://www.nativeinstruments.de/index.php?reaktor_us

[8] Bidule http://www.plogue.com/bidule/
[9] Johnson, W. Hanna, P. Millar, R. Advances in Dataflow

Programming Languages. In ACM Computing Surveys, v.36
n.1, March, 2004, 1-34

[10] Farley, K. Digital Dance Theatre: The Marriage of
Computers, Choreography and Techno/Human Reactivity. In
Body, Space and Technology, 3(1), 2002, 39-46

[11] Camurri, A. Hashimoto, S. Ricchetti, M. Ricci, A. Suzuki,
K. Trocca, R. and Volpe, G. EyesWeb: Toward Gesture and
Affect Recognition in Interactive Dance and Music Systems.
In Computer Music Journal, Vol.24 No.1, 2000, 57-69

[12] Kaltenbrunner, M., Geiger, G., Jordà, S. Dynamic Patches
for Live Musical Performance. In Proceedings of the 4th

Conference on New Instruments for Musical Expression
(NIME 04), Hamamatsu, Japan, 2004, 19-22

[13] Renate, K. Frazier, C. OpenGL Reference Manual, 2nd

Edition, Addison-Wesley, 1992
[14] McCartney, J. SuperCollider: a New Real Time Synthesis

Language. In Proceedings of the International Computer
Music Conference 1996 (ICMC96), Hong Kong, 1996, 257-
258

[15] Wang, G., Cook, P. On-the-fly Programming: Using Code as
an Expressive Musical Instrument. In Proceedings of the 4th

Conference on New Instruments for Musical Expression
(NIME 04), Hamamatsu, Japan, 2004, 138-143

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

92

