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Abstract
Glucose arguably is the most important energy carrier, carbon source for metabolites and building block for biopolymers in all
kingdoms of life. The proper function of animal organs and tissues depends on the continuous supply of glucose from the
bloodstream.Most animals can resorb only a small number of monosaccharides, mostly glucose, galactose and fructose, while all
other sugars oligosaccharides and dietary fibers are degraded and metabolized by the microbiota of the lower intestine. Bacteria,
in contrast, are omnivorous. They can import and metabolize structurally different sugars and, as a consortium of different
species, utilize almost any sugar, sugar derivative and oligosaccharide occurring in nature. Bacteria have membrane transport
systems for the uptake of sugars against steep concentration gradients energized by ATP, the proton motive force and the high
energy glycolytic intermediate phosphoenolpyruvate (PEP). Different uptake mechanisms and the broad range of overlapping
substrate specificities allow bacteria to quickly adapt to and colonize changing environments. Here, we review the structures and
mechanisms of bacterial representatives of (i) ATP-dependent cassette (ABC) transporters, (ii) major facilitator (MFS) super-
family proton symporters, (iii) sodium solute symporters (SSS) and (iv) enzyme II integral membrane subunits of the bacterial
PEP-dependent phosphotransferase system (PTS). We give a short overview on the distribution of transporter genes and their
phylogenetic relationship in different bacterial species. Some sugar transporters are hijacked for import of bacteriophage DNA
and antibacterial toxins (bacteriocins) and they facilitate the penetration of polar antibiotics. Finally, we describe how the
expression and activity of certain sugar transporters are controlled in response to the availability of sugars and how the presence
and uptake of sugars may affect pathogenicity and host-microbiota interactions.
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Introduction

Glucose (Glc) is the primary product of photosynthetic CO2

assimilation by marine algae, cyanobacteria and terrestrial
plants. An estimated 2.6·1011 tons of CO2 is converted annu-
ally corresponding to the production of 1.7·1011 tons of Glc.
Glc and N-acetyl-D-glucosamine (GlcNAc) are the building
blocks of cellulose and of chitin, the most abundant and

second most abundant biopolymers, respectively. Cellulose
is the basic component of the plant cell wall. Chitin is the
major component of fungal cell walls and the organic matrix
of the exoskeleton of arthropods (crustaceans and insects). A
variety of bacteria and fungi secrete enzymes that degrade
insoluble cellulose and chitin to soluble tri- and disaccharides
(cellobiose, N,N′-diacetylchitobiose) [5, 88, 105, 161]. The
latter are taken up by bacteria through membrane transport
proteins, intracellularly hydrolysed or phosphorolysed to
monosaccharides, and converted to Glc and glycolytic inter-
mediates for energy (ATP) production by fermentation and
oxidative phosphorylation (Fig. 1). The intermediates of Glc
breakdown provide the carbon scaffolds for the biosynthesis
of amino acids, fatty acids and secondary metabolites.

Glucose and other carbohydrates are the most important
nutrients for the majority of heterotrophic bacteria. Not sur-
prisingly, bacteria are equipped with numerous transporters
with different and often overlapping sugar specificities for
mono-, di and trisaccharides [79]. They can accumulate sugars
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against steep concentration gradients, utilizing ATP (by ATP
binding cassette, ABC transporters), ion gradients (by major
facilitator superfamily, MFS transporters) and phosphoenol-
pyruvate (by PEP-dependent phosphotransferase system, PTS
transporters) as energy sources. E. coli for instance has six
different Glc transporters employing all three different energy
sources (MglABC (ABC2); GalP (MFS); IICBGlc, IICIIDMan,
IICBAGlcNac and MalX (PTS) see below) and two for xylose
(XylE (MFS); XylFGH (ABC2)) [53, 54] (Table 1 and below:
Structure and mechanism of primary ATP binding cassette
(ABC) transporters). A sugar transporter usually is expressed
only when the sugar substrate is available. In this case, the
sugar or an early metabolite of it acts as inducer, by either
activating a transcription activator or inactivating a repressor
of the sugar-specific operon. These operons contain the genes
encoding the transporter (subunits) and frequently also the
enzymes that convert the transported sugar into a glycolytic
intermediate. In nutrient-rich environments, not all available
sugars are taken up simultaneously, but sequentially, the eas-
iest metabolizable (usually Glc) first and the others only after
Glc is exhausted [47, 100, 131]. The phenomenon of hierar-
chical use of sugars is termed carbon catabolite repression
(CCR [191]).

Sugar uptake is different in bacteria and animals [152].
Bacteria are equipped with sugar transporters of great

diversity with respect to structure, mechanism and substrate
specificity. Animals in contrast have only a few types, but a
much larger number of tissue-specific paralogs [30]. In ani-
mals, oligosaccharides (e.g. lactose), glycogen and proteogly-
cans are cleaved in the small intestine by hydrolases on the
surface of the brush border membrane. Only monosaccha-
rides, Glc, galactose and possibly xylose are taken up against
a concentration gradient across the apical membrane of endo-
thelial cells by the sodium Glc cotransporter 1 (SGLT-1) and
released into the capillary bloodstream by diffusion across the
basolateral membrane facilitated by the Glc-transporter 2
(GLUT2) [200]. Fructose is taken up by facilitated diffusion
(GLUT5). Once in the bloodstream Glc enters tissue cells by
facilitated diffusion (GLUT2 or GLUT4), down the concen-
tration gradient. Blood Glc concentration is kept constant by
the combined activity of several pancreatic hormones. Excess
Glc is converted to glycogen in muscle and liver fromwhere it
can be mobilized when needed. Bacteria also can store energy
in the form of glycogen and polyphosphate [148, 198], but the
storage capacity is limited and bacteria just stop growing
when nutrients are exhausted. Polysaccharides and glycopep-
tides not digested, and sugars not resorbed in the small intes-
tine pass into the large intestine where they are degraded by
enzymes of the gut microbiota. “Glycophagic” Bacteroides
ferment sugars to short chain fatty acids (SCFA, e.g.

Fig. 1 Transport and metabolism of sugars in bacteria: facilitative (black
and magenta), secondary active (cyan), primary active (pink), group
translocation (green, and violet), outer membrane porins (white). The
abbreviations refer to representative transporters of E. coli and
eukaryotic homologs (italics). Indicated in parentheses are the number
of transmembrane helices (TM) and their domain organization. Imported
sugars (S) are first transformed to phosphorylated glycolytic intermedi-
ates (by kinases) and then metabolized to phosphoenolpyruvate (PEP),
pyruvate and short chain fatty acids (SCFA). ATP and PEP serve as
energy sources for the uptake of sugars. Sugar uptake by transporters of

the PEP-dependent phosphotransferase system (PTS) is coupled with
sugar phosphorylation (Fig. 4b). Cytoplasmic Glc can be phosphorylated
by IICBGlc(dotted green). The properties of the proteins are summarized
in Table 1. IIABMan is required for mannose uptake and phosphorylation
but not for penetration of bacteriophage lambda DNA and bacteriocins.
Porins (OmpA, OmpC, LamB) are trimeric beta-barrel proteins in the
outer membrane. LamB is a porin for maltose and maltodextrins
(maltoporin). LamB serves as the outer membrane receptor for bacterio-
phage lambda
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Table 1 Proteins and properties referred to in this review

Protein/complex Length and oligomeric
struct.a

Propertiesb UniProt
Entryc

PDB codesd TCDB Nr.e Gene

ATP-Binding Cassette (ABC) 3.A

* MalEFGK2 396 + 514 + 296 + (371)2 Maltose TP; MalE, Mal binding protein;
MalFG, transport units; MalK, ATP
binding

P0AEX9,
P02916,
P68183
P68187

4KHZ, 3RLF 3.A.1.1.1 malEFGK

MalT 901 Transcription activator of mal operons.
Inactivated by binding/sequestration to
MalK

P06993 1HZ4 malT

LamB (446)3 Maltoporin, bacteriophage lambda outer
membrane receptor

P02943 1MPO 1.B.3.1.1 lamB

MglABC 332 + (336)2 + 506 Glucose/galactose TP P0AEE5,
P0AAG8,
P23200

3.A.1.2.3 mglBCA

XylFGH 320 + (393)2 + 513 Xylose TP P37387,
P37388,
PP0AGI4

3.A.1.2.4 xylFGH

Major Facilitator Superfamily (MFS) 2.A.1

* XylE 491 D-xylose:H+ TP P0AGF4 4QIQ, 4GBY 2.A.1.1.3 xylE

LacY 417 Lactose:H+ TP P02920 5GXB 2.A.1.5.1 lacY

GLUT1/SLC2A1 492 facilitative glucose TP, Homo sapiens P11166 4PYP 2.A.1.1.28 SLC2A1

GLUT2/SLC2A2 524 facilitative glucose TP, Homo sapiens P11168 2.A.1.1.29 SLC2A2

GLUT3/SLC2A3 496 facilitative glucose TP, Homo sapiens P11169 4ZW9 2.A.1.1.91 SLC2A3

GLUT4/SLC2A4 509 facilitative glucose TP, Homo sapiens P14672 2.A.1.1.80 SLC2A4

GLUT5/SLC2A5 501 facilitative fructose TP, Bos taurus P58353 4YB9 2.A.1.1.133 SLC2A5

GalP (464)3 glucose/galactose :H+ TP P0AEP1 2.A.1.1.1 galP

Solute sodium symporter (SSS) 2.A.2

* vSGLT 543 Galactose:Na+ TP Vibrio haemolyticus P96169 3DH4 2.A.21.3.2 sglT

LeuT 513 Leucine:Na+ TP, Aquifex aeolicus O67854 2A65 2.A.22.4.2 snf

hSGLT1/SLC5A1 664 Glucose/galactose:Na+ TP, Homo sapiens P13866 2.A.21.3.1 SLC5A1

Sweet family 2.A.123

* semiSWEET 892 sugar transport by facilitated diffusion P0DMV3 4X5M, 4X5N
4QNC
4QND

2.A.123.2.7
2.A.123.2.6

2.A.123.-
3.1

G925_
04926

The Major Intrinsic Protein (MIP) Family 1.A.8

GlpF (281)4 glycerol transport by facilitated diffusion P0AER0 1FX8 1.A.8.1.1 glpF

Phosphotransferase System (PTS) 4.A

ecIICBGlc (385-92)2 Glucose TP, phosphorylated at C421 of
B-domain

P69786 4.A.1.1.1 ptsG

* bcIICBMal (456-89)2 B. cereus maltose TP, phosphorylated at
C489 of B-domain

Q63GK8 6BVG, 5IWS,*
C-domain

4.A.1.1.17 malT

bcIICChb (433)2 B. cereus chitobiose TP Q72XQ0 3QNQ 4.A.3.2.8 celB

MalX
(ecIICBMal)

Glucose/maltose TP P19642 4.A.1.1.3 malX

* ecIIAGlc 169 PTS subunit, reversibly associated with
IICBGlc; allosteric activator of Cya and
GlpK, inhibitor of MalEFGK2 and LacY

P69783 1ggr, 1GLA 4.A.1.1.1 crr

Cya 848 Adenylate(cAMP)cyclase P00936 cyaA

Crp 210 cAMP dependent global transcription
activator of PTS and metabolic operons

P0ACJ8 2GZW crp

GlpK (502)4 Glycerol kinase P0A6F3 1GLA glpK

EI (575)2 Enzyme I, transfers P from PEP to HPr,
phosphorylated at H189

P08839 2HWG, 3eza ptsI

HPr 85 Heat-stable protein, transfers P from EI to
IIASugar, phosphorylated at H15

P0AA04 3eza, 1ggr ptsH
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propionate, butyrate and acetate), which are secreted and in
turn serve as vital nutrients for colon epithelial cells [19, 52,
167, 201]. Peptides released from glycopeptides are metabo-
lized by bacteria of the genus Firmicutes. Sugar malabsorp-
tion in the small intestine leads to an increased concentration
of “unusual” sugars in the large intestine, inducing changes in
the metabolism and composition of the microbiota. Such al-
terations of the microbiota composition cause unpleasant gas-
trointestinal symptoms and occur associated with disease
(bowl inflammation, breach of immunetolerance) [70].

In this review, we will present facts and figures on (i) the
distribution and composition of bacterial sugar transporters,
(ii) ten structures of four different prototypical transporters
and their mechanism of action (where known), (iii) regulation
of sugar transporter activity, (iv) the role of sugar transporters
in uptake of macromolecules and drugs and (v) the role of
transporters in pathogenicity.

Since Escherichia coliwas and still is the model and work-
horse bacterium [123, 168], and since Glc transport is the topic
of this Special Issue, E. coli and Glc-specific transporters will
serve for illustration, where appropriate. A large number of
high-resolution structures of bacterial sugar transporters have
been determined in the past 17 years. They now serve as
models for their eukaryotic counterparts of which with a few

exceptions, no high-resolution structures are yet available—
but coming soon.

Distribution, composition and general
mechanism of bacterial sugar transporters

Bacteria utilize different transport mechanism for the uptake of
sugars against a concentration gradient (Fig. 1): (i) ATP-
dependent transporters (primary active transporters), which
consist of several different subunits [103, 156]. (ii) Ion-
symporters and antiporters (secondary active transporters),
which utilize proton and sodium ion-gradients maintained by
the respiratory chain and/or membrane (FoF1) ATPases [14].
Primary and secondary transporters are ubiquitous in bacteria,
animals and plants. (iii) Existing only in many but not all bac-
teria and in a few archaebacteria are phosphoenolpyruvate
(PEP)-dependent transporters. They transport sugars and sugar
alcohols by a mechanism that couples translocation with phos-
phorylation of the substrate [81, 82]. Translocation coupled
with chemical modification of the substrate is termed group
translocation [119]. (iv) Transporters for facilitated diffusion
of sugars (and water) along a concentration gradient occur in
bacteria and eukaryotes. Some like the Glc transporter GLUT2

Table 1 (continued)

Protein/complex Length and oligomeric
struct.a

Propertiesb UniProt
Entryc

PDB codesd TCDB Nr.e Gene

Mlc (406)2 Transcription inhibitor of ptsG and
manXYZ genes. Inactivated by
binding/sequestration to ecIICBGlc

P50456 3BP8
(Mlc::IIB),
1Z6R

4.A.1 mlc

SgrR 551 Glc6P dependent transcription activator of
sgrST operon

P33595 sgrR

SgrT 43 Allosteric inhibitor of ecIICBGlc C1P5Z7 sgrT

SgrS small RNA complementary to ptsG mRNA
(IICBGlc)

sgrS

*ecIICIIDMan (212 + 219)3 Mannose TP; penetration of phage DNA
and bacteriocin

P69801,
P69805

6K1H
(cryoEM)

4.A.6.1.1 manYZ

ecIIABMan (155-168)2 PTS subunit, associated with IICIIDMan,
phosphorylated at H10 and H175

P69797 1vsq 4.A.6.1.1 manX

DicB 62 in complex with MinC allosteric inhibitor
of ecIICIIDMan

P09557 dicB

DicF small RNA complementary to manXYZ
mRNA

dicF

DhaKLM (356)2 + 210 + (472)2 PEP dependent dihydroxyacetone kinase P76015,
P76014,
P37349

1OI2, 2BTD,
3CR3 (LM
complex;
L. lactis)

dhaKLM

* Representative transporters characterized in text and Fig. 3
a Length of subunits in complex (+), of domains in multidomain protein (−). Subscripts indicate oligomeric form (2 dimer, 3 trimer)
b Of proteins of E. coli K12 (ec) if not otherwise indicated
c https://www.uniprot.org/.
d https://www.rcsb.org/. X-ray structures upper case. NMR structures of binary complexes, lower case
e http://www.tcdb.org/superfamily.php of transporters (TP)
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are structurally related to the secondary transporters, others like
the glycerol transporter GlpF and the aquaporins, the SWEET
of eukaryotes and semiSWEET of bacteria are structurally dif-
ferent [35]. (v) Porins are channel-forming β-barrel proteins
occurring in the outer membrane of Gram-negative bacteria,
mitochondria and chloroplasts of animals and plants. They per-
mit passage to sugars and other solutes of molecular mass <
6000 Da [92, 209]. The Transporter Classification Database
(TCDB; http://www.tcdb.org) provides a functional and
phylogenetic classification of membrane transport proteins
from all kingdoms of life [165]. It comprises more than
10,000 non-redundant transport systems hierarchically classi-
fied into classes, subclasses, families and subfamilies.

Bacterial genomes contain between 500 and 8000 protein
encoding open reading frames. One third encodes membrane
proteins such as transporters, signal receptors, cell adhesion pro-
teins, protein secretion systems, motor proteins and membrane
quality control proteases. A total of 3–20% encode transporters
including solute transporters, ion channels and respiratory chain
electron/proton transporters (Table 2). Milton Saier and col-
leagues [137, 153, 162] grouped the bacterial transport proteins
on the basis of amino acid sequence similarity into 76 phyloge-
netic families (the number of structural families, however, may
be smaller). Half of these families also occur in eukaryotes, the
other half are bacteria-specific. The bacterial genomes encode
between 20 and 300 different transport proteins. Of the primary
transporters, the ATP binding cassette (ABC) transporters ac-
count for 25–65 % of all transport proteins and for 4 out of the
76 families. Of the secondary transporters, the major facilitator
superfamily (MFS) and the amino acid-polyamine-organocation
(APC) transporters also account for 20–68% of the transport
proteins and for 54 out of the 76 families. The number of
ABC and MFS transporters are inversely correlated.
Anaerobic bacteria that depend mainly on substrate level phos-
phorylation for energy generation (ATP production by glycoly-
sis) have a higher proportion of ATP-dependent ABC trans-
porters. Conversely, aerobic bacteria that rely on a respiratory
chain for energy production (membrane proton motive force)
have a higher proportion of MFS secondary transporters [137].

Some of the genes encoding sugar transporters may be cryp-
tic, that is they are expressed only after a mutation has occurred
in their promoter region (e.g. inversion of the promoter region,
insertion of promoter carrying transposon) [69, 155]. Most of
the 300 different transport proteins are expressed only if the
cognate substrate is present in the environment (induction).

Organisms with a larger genome size generally encode a
greater number of transporters [152] because: (i) the number
of distinct transporter families (ABC, MFS, ion channels) is
increased and (ii) the number of paralogous transport proteins
within one family is increased (paralogous genes are genes in
one and the same genome, generated by gene duplication and
encoding proteins of similar sequence but different function,
e.g. substrate specificity). In bacteria, there is an approximately

linear relationship between genome size, the number of trans-
porter families and the average number of paralogs. But the
increase in the number of different families per organism is
approximately eight times larger than the increase in the number
of paralogs per family. In animals and plants, the increase in the
number of transporters is due to an enormous increase in the
number of paralogswithin a given family, while the number of
different families remains more limited, independently of ge-
nome size. In multicellular organisms, the closely related
paralogous transporters are expressed only in specific tissues,
cell types and subcellular localizations, and only during limited
periods of development and differentiation [152].

Also increasing with the genome size of bacteria is the
range of substrate specificities. Parasitic bacteria with a
strongly reduced genome size express few transporters pre-
dominantly for amino acids. Free living bacteria which have
to adapt to a rapidly changing environment often have several
transporters (ABC, MFS, SSS, PTS) for the same substrate.
E. coli for instance has at least seven different transporters
with overlapping substrate specificities including Glc [137].
Note that Gram-negative E. coli and Gram-positive B. subtilis
[137, 163] the work horses of microbiologists are atypical
with respect to their more than average large number and
diversity of transport proteins (Table 2).

ABC and other active transporters work by an alternating
access mechanism, which was proposed by Jardetzky already
in 1966 [80]. Four types of alternating-access mechanisms are
described according to how two domains of an integral mem-
brane protein move relative to each other (Fig. 2) [14]. These
domains are the transport domain (TD) which contains the
substrate binding site, and the scaffold domain (SD) which
anchors the protein in the lipid bilayer and/or forms the
intersubunit contacts. The basic movements (Fig. 2) are (a)
Rocker switch: a symmetrical rocking motion of TD and SD
around the substrate binding site provides alternate access to
the substrate from either side of the membrane. (b) Rocking
bundle: the TD (bundle domain) is rocking (like a chopping
knife) against the static SD. (c) Elevator type: the TD glides
along a SD, carrying its cargo from one side to the other of the
membrane. (d) Rotation/toppling type [182]: the TD (domain
or protein subunit) rotates from outward to inside against the
SD. The substrates may be either a sugar or a “sugar plus
sodium/proton”. The direction of transport is determined by
the combined direction and strength of substrate concentration
and electrical potential gradients.

Structure and mechanism of primary ATP
binding cassette transporters

ABC transporters utilize ATP to energize the uptake and ex-
port of solutes. They occur in all kingdoms of life. In eukary-
otes, they function as exporters (efflux pumps), e.g. the cystic
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fibrosis transmembrane conductance regulator (CFTR), the
MHC peptide-antigen transporters (TAP) of T-cells and
drug/toxin efflux-pumps that clean the membrane bilayer of
apolar compounds. Bacteria have both, systems for the uptake
of nutrients, ions and vitamins and systems for the expulsion
of antibiotics, toxic metabolites and metal ions [33, 62].

Oligomeric structure of the transporter unitABC transporters
share a common building plan. They consist of four protein

subunits: (i) two identical, or homologous, or structurally dif-
ferent transmembrane domains/subunits (TMD) building the
pore-forming core and (ii) two identical cytoplasmic ATP
binding domains (NBD). All NBDs have a similar fold and
are of monophyletic origin. The TMDs, in contrast, are of
three different phylogenetic origins and have been grouped
into three structurally distinct (super)families: ABC1, ABC2
and ABC3 [126, 156, 194]. ABC1 comprises eukaryotic and
bacterial exporters with six transmembrane helices (TM) per

Table 2 Distribution of transport proteins encoded in 18 bacterial genomes and in E. coli

18 bacterial genomesa E. colib

Number % Number % Representative examples and comments

Genome size (kbp) 500–9000 4640

Protein orfs 500–7500 100 4140

Membrane proteins ~ 30 ~ 30

Transport proteins 22–304 3–20 304 7.3

Transport proteins per 100 kbp genome seq. 2.5–6.6 6.6

Transport proteins 22 – 304 100 304 100

Phylogenetically distinct families 76 76

with homologs occurring in eukaryotes ~ 50

occurring only in prokaryotes ~ 50

Primary ABC transporters (4 families) 8–67c,d 24–65 67 22 Maltose transporter (MalEFGK2) predominant in
anaerobes with substrate level phosphorylationb

Secondary MFS transporters (54 families) 66–0c 68–20 66 22 Lactose transporter (LacY), xylose transporter (XylE),
galactose/glucose transporter (GalP); predominant in

aerobes with respiration chainb

Secondary APCe transporters 0–22 0–10 22 7

PTS transporters (6 families) 0 – 22 0–10 22 7 Glucose transporter (IIAGlc/IICBGlc)
Mannose/glucose transporter (IIABMan/IICMan/IIDMan)

Facilitators (aquaporin) 0–7 7 2.3 Glycerol transporter (GlpF), aquaporin

Sugar specific transporters (ABC, MFS, PTS) 0–27 5.9-9.8

Amino acid specific transporters (ABC, MFS) 2–40 7.7-9.7

Amine, amide and peptides (ABC, MFS) 0–19 2.4-3.1

Drug exporters (ABC, MFS) 6–19 3.7-5.3

a 7 Gram-negative, 4 Gram-positive, 2 spirochetes, 1 cyanobacterium, 4 archaea [137]
b For a detailed comparative genome analysis of 9 different E. coli and S. typhimurium strains see [38]
c Numbers are anticorrelated (aerobic/anaerobic life style)
d Numbers refer to open reading frames. The number of ABC transporters is smaller because each consists of 3–5 different subunits (open reading
frames)
e Amino acid-polyamine-organocation (APC) superfamily [165]

Fig. 2 Different alternating-access mechanisms of solute transport across
the inner (cytoplasmic) membrane. a Rocker switch, b rocking bundle, c
elevator, d rotation. Scaffold and transport domains (SD and TD) are

coloured in blue and orange, respectively. Note that a functional transport
unit may consist of one or several subunits (monomeric or
(hetero)dimeric)
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TMD (consisting of 3 × 2 hairpin repeats). ABC2 comprises
bacterial uptake systems and bacterial as well as eukaryotic
exporters with six TM per TMD (2 × 3 TM bundle repeats).
Bacterial ABC2 importers are further divided into type I and
type II. Type I import small substrates (sugars, amino acids)
have a smaller number of TM, and ATP binding and hydroly-
sis is driven by substrate binding. Type II import larger sub-
strate (vitamin B12) has a larger number of TM, and substrate

is bound in the nucleotide-free state [24, 51]. ABC3 are bac-
terial exporters with eight TM per TMD (2 × 4 TM repeats).
Extra helices can be fused to the 6- and 8-TM cores, such that
the total number of TM per TMD can be as high as 20. For
instance, the MalF subunit (but not MalG) of the maltose
transporter (MalEFGK2) has two extra helices at the N-
terminus (Fig. 3a). Two extra helices can be inserted between
the two 4-TM repeats of ABC3 transporters. In bacteria, the

Fig. 3 Structures of six bacterial sugar transporters and their sugar binding
sites. Membrane topologies (a1–f1); structural models of the inward (a2–f2)
and outward (a3–e3)) oriented conformation, with cylinder representation of
helices. The models are color coded to highlight helical folds, domains and
subunits. Of homooligomeric transporters, only one protomer is colored, the
others are shown in grey (c, e, f). Periplasmic and cytoplasmic subunits of
the ABC transporter are shown as grey, spacefilling models (a2, a3). aABC
transporter, MalEFKGK2 in complex with IIA

Glc (brown); bMFS transport-
er, XylE; c SSS transporter, vSGLT; d semiSWEET, homodimer (both sub-
units coloured); e group translocator/PTS-transporter of the GFL-family,
homodimeric bcIICMal; f group translocator/PTS-transporter of the man-
nose-family, trimeric IICIIDMan, a trimer of three IICIID heterodimers. a4–
f4 Substrate binding sites in the same orientation as in a2–f2.Amino acids in

≤ 3.8 Å distance to the sugar are displayed as sticks, colour coded according
to the topology. c3 and f3 vSGLTand IICIIDMan viewed from the outside. f5
Structural alignment of the transport domains (yellow, ocher) and of the
scaffold domains (cyan, blue) of IICMan and IIDMan, respectively (same
orientation as in f2). Note that the complexation of IIAGlc (brown) to the
MalEFGK2 structure (a2) was modeled according to the MalFGK2::IIA

Glc

complex structure (PDB 4JBW). Colour code: N-terminal domains/repeats,
blue/ocher; C-terminal domains/repeats, cyan/yellow.Mobile transport (sub-
strate binding domain (TD) ocher/yellow; static scaffold domain (SD)
blue/cyan. Acessory TM (variable between transporters of the same super-
family), red. Reentrant loops (e1, f1), yellow. Cartoons were prepared using
PyMol (Version 2.3.0, Schrödinger). The structural alignment f6 was pre-
pared with TMalign [210]
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NBD and TMD usually occur as separate subunits, in eukary-
otic transporters as fusion proteins in diverse combinations
(e.g. TMD-NBD-TMD-NBD or (NBD-TMD)2).

Bacterial ABC2 uptake transporters contain an extra
substrate-binding subunit/domain (SBD, receptor). In Gram-
negative bacteria, the SBD is a soluble subunit in the periplas-
mic space (substrate binding protein, SBP or periplasmic
binding protein, PBP). In Gram-positive bacteria, the substrate
binding domain is either fused with a TMD subunit or other-
wise membrane anchored. SBD consist of two α/β domains
that fold up to capture the substrate at their interface (Venus
flytrap mechanism). They confer the high micromolar sub-
strate binding affinity, whereas the TMD have much lower
(mM) or no affinity. Some SBDs of Gram-negative bacteria
also function as chemotactic receptors. They bind to the mem-
brane spanning chemotaxis receptors (Tar and Trg; MCP,
methyl accepting chemotaxis proteins) where they trigger a

chemotactic response [104, 211]. The same two domain archi-
tecture and ligand binding mechanism also occur in other
proteins throughout prokaryotes and eukaryotes, e.g. in the
inducer-binding domain of the LacI transcription repressor
[49].

To add diversity, there is a fourth structural/functional fam-
ily of ABC bacterial uptake systems for vitamins and transi-
tion metals termed energy-coupling factor (ECF) transporters.
It is a phylogenetically different subfamily of the ABC2 su-
perfamily. Members consist of two identical or very similar
NBD subunits (A,A′) and two structurally completely differ-
ent TMD subunits, the T subunit (our scaffold domain, SD)
and the S subunit (our transport domain, TD), but no SBD
(Fig. 2d). The T subunit (SD) and the two A domains consti-
tute the energy-coupling module, the S subunit (TD) the sub-
strate binding unit. Different S subunits (TDs) of different
substrate specificity can reversibly associate with one and

Fig. 3 continued
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the same AA’T module. For solute translocation the S subunit
(TD) rotates (Fig. 2d, orange colored) from outward oriented
(with helices membrane-spanning) to inside oriented (with
helices parallel to the membrane) [151, 182]

ABC sugar transporters: the prototypical maltose
transporter MalEFGK2

E. coli has ABC2 transporters for the uptake of arabinose,
galactose/glucose, allose, xylose, maltose and as yet unidenti-
fied substrates [55, 74]. Themaltose transporter (Fig. 3a) is the
best characterized receiving over 500 titles in the PubMed
database (for reviews [33, 111]). The most recent review by
Machtel et al. [111] with 167 references and the original paper
describing the oligomeric structure [129, 130] serve as the
basis for the subsequent overview.

Structure The maltose transporter consists of two transmem-
brane protein subunits (TMDs) MalF and MalG, two identical
copies of the cytoplasmic ATP binding proteins (NBD) MalK
and one copy of the periplasmic maltose binding protein
(SBP) MalE (Fig. 3a1–4, Table 1). The core structures of
MalF (helices 3–8) and MalG (helices 1–6) are similar (23%
identity, 50% similarity) each consisting of 2 transmembrane
3-helix bundles. MalF has a 180 amino acids long periplasmic
domain (P2) inserted between core helix 3 and 4 and two
additional transmembrane helices (1 and 2, 70 amino acids)
preceeding core helix 3. The periplasmic domain assumes an
immuno-globulin (Ig)-like fold. Helices 5 and 7 ofMalF and 3
and 5 of MalG surround the solute translocation channel, a
cavity large enough to accommodate maltoheptaose
(1.15 kDa). MalK consists of an N-terminal RecA-like ATP-
binding domain and a C-terminal regulatory/dimerization do-
main (RD). The MalK subunits are oriented head to tail, and
the two ATP binding sites are located at the interface between
the RecA-like domain. A helical subdomain (HD) separating
Walker A and B motives forms a deep cleft, which captures
the helical EAA loop of MalF and MalG, respectively. MalE,
the periplasmic binding protein, binds with its two lobes to
MalF and MalG, respectively. The Ig-like periplasmic domain
(loop P2) of MalF grasps the MalE N-terminal domain, and a
short periplasmic loop (the “scoop loop”) between helices 3
and 4 of MalG inserts into the sugar binding cleft [21, 130].
Loop P2, a unique feature of MalF, is missing in other ABC2
sugar transporters.

Transport mechanism Maltose is imported by an alternating
access mechanism in which the TMD alternate between an
inward and outward open state (Fig. 2). Over a dozen X-ray
structures of the complex in different conformational states
and complementary measurements of intracomplex dis-
tances by single molecule fluorescence resonance energy

transfer (smFRET) and electron paramagnetic resonance
(EPR) provide a detailed picture of the sequence of
conformational transitions occurring between solute up-
take in the periplasm and release into the cytoplasm [11,
13, 20, 203]. To describe them all goes beyond the
constraints of this review. A coarse grained model dis-
cerns the following steps. (i) Resting state: the MalF/
MalG sugar binding cavity is inward open, the MalK
dimer is in the nucleotide free or ADP complexed form
and expanded. The periplasmic MalE without sugar may
be weakly or not complexed with MalF/MalG. (iia)
MalE free floating or attached to MalF/MalG captures
(oligo)maltose, whereupon the two lobes close (Venus
fly trap), and the interaction with MalF/MalG is stabi-
lized. (iib) Two ADP are exchanged for two ATP at the
MalK dimer interface, resulting in the closure of the
dimer. The contraction of MalK effects the closing of
the inward open binding cavity of MalF/MalG. (iiia) In
the presence of the MalE:substrate complex, the MalF/
MalG conformation change proceeds, the MalE lobes
and the MalF/MalG cavity open and the substrate is
transferred from MalE to the binding cavity (Fig. 3a4).
(iiib) MalE binding and substrate release induce a con-
formation change of MalF and MalG that triggers ATP
hydrolysis in MalK. (iv) Upon ATP hydrolysis, the
MalK dimer expands and thereby pries the binding cav-
ity inward open. The substrate is released.

MalE has a 1000-fold higher affinity for oligomaltose than
MalF/MalG, but not all substrates that bind to MalE are also
transported by MalFGK2. Maltoheptaose is the largest sub-
strate that is transported, maltooctaose binds to MalE but is
no longer transported [12, 130]. Similarly, a mutant MalE can
bind sucrose, but this sucrose is not transported. An excess of
ligand-free MalE competitively inhibits transport of maltose
but does not stimulate the ATPase activity of MalK [116] .

Control of uptake activity MalK plays an additional role in
control of maltose uptake and expression of the maltose op-
erons. (i) Dephosphorylated IIAGlc, a subunit of the PTS (see
below), which is abundant when glucose and other PTS sugars
are transported binds to MalK and inhibits its ATPase activity
(Figs. 3a2 and 4c [21]). Uptake of maltose, the inducer ofmal
operon transcription, is prevented. This process is termed
inducer exclusion [34]. (ii) MalT is a transcription acti-
vator of the mal operon [174]. In the absence of a
substrate when MalEFGK2 is resting in the inward-
open state, MalT is sequestered to the membrane in a
complex with MalK [10, 84]. In this state, MalT cannot
be activated by internal maltotriose. MalT is released
when MalEFGK2 turns over during the uptake of an
external substrate. Free MalT binds maltose and ATP
whereupon it polymerizes into a homooligomer that acts
as transcription activator of the mal operons [157].
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Structure and mechanism of secondary
(active) transporters

Secondary active sugar transporters occur in the major facili-
tator superfamily (MFS) and in the solute sodium symporter
(SSS) family of electrochemical potential-driven transporters
[14, 149].

The MFS superfamily comprises bacterial sugar trans-
porters (described below) and the mammalian glucose/
fructose transporters GLUT1, GLUT3, GLUT4 and GLUT5
(Table 1; accompanying reviews in this special issue). The
sodium xylose symporter XylE of E. coli is the closest relative
of eukaryotic GLUT sharing 28% sequence identity and 62%
sequence similarity with human GLUT1. Six X-ray structures
of XylE in different conformations and one of GLUT1 have
been solved [179, 199]. In this review, XylE will serve as the
model for the description of structure and function of the MFS
sugar transporters (Fig. 3b1–4). Note that although bacterial
transporters and eukaryotic GLUT transporters share the same
MFS structural fold (see below), GLUTs mediate facilitated
diffusion whereas bacterial transporters mediate ion-driven
active solute uptake. Whether the latter can be converted from

a wild-type active to a mutated facilitative form with a single
amino acid mutation in the proton binding site is controversial
[86, 199].

The SSS family comprises bacterial sugar and amino acid
transporters and the mammalian sodium-glucose transporters
SGLT (see the accompanying reviews in this special issue).
The vSGLTof Vibrio parahaemolyticus shares 28% sequence
identity and 60% sequence similarity to human SGLT1. Its
structure has been solved, and it will serve as a model for
the description of structure and function (Fig. 3c1–4) [48].

The MFS fold and the rocker switch transport cycle

Forty-eight X-ray structures of 12 structurally similar MFS
transporters, including 20 structures of seven sugar trans-
porters, all in distinct conformational states provide snapshots
to visualize the progress of substrate translocation from the
outside to the inside [14]. Biophysical (single-molecule
fluorescence resonance energy transfer) and biochemical
(counterflow) experiments with transporter mutants and sub-
strate analogues and more recently molecular dynamics

Fig. 4 Sugar uptake and control of metabolism by the PTS of E. coli. b
The general phosphoryltransfer proteins EI and HPr and the glucose-
specific complex of IIAGlc (IIA) and IICBGlc (IICB) sequentially transfer
phosphorylgroups from phosphoenolpyruvate (PEP) to glucose (Glc).
HPr transfers phosphorylgroups also to the IIA subunits/domains of other
PTS transporters (not shown). In the presence of Glc (+Glc) the PTS
proteins are predominantly in the dephosphorylated form (green arrows).
In the absence of Glc (no Glc), they are in the phosphorylated form (red
arrows). (a, c) Control of transcription and enzyme activities by compo-
nents of the Glc-PTS. Oval frames denote the active form, rectangular
frames the inactived form of the regulatory proteins. Green frames indi-
cate regulatory proteins active in the presence of Glc (+Glc), red frames
indicate proteins active in the absence of Glc (no Glc). a, b
Transcriptional, translational and posttranslation autoregulation of
IICBGlc activity. Activation of ptsG transcription: IICBGlc is partially
dephosphorylated during steady-state uptake of Glc. Dephospho-
IICBGlc binds/sequesters the transcription repressor Mlc enabling the
transcription/expression of ptsG encoding IICBGlc. Expression is further
stimulated by the global transcription activator Crp::cAMP. Feedback

inhibition of IICBGlc activity: (i) the concentration of Crp::cAMP de-
creases (c) with increasing Glc uptake, slowing down ptsG transcription.
(ii) Accumulation of glucose-6-phosphate (phosphate stress) triggers ex-
pression of the small RNA sgrS and small protein SgrT, which downreg-
ulate translation of ptsGmRNA by antisense binding, and inhibit IICBGlc

allosterically [102, 193]. c Transcriptional and allosteric control of non-
PTS sugar transporters and enzymes (CCR, Carbon Catabolite
Repression). In the presence of glucose (+Glc) dephospho-IIAGlc inhibits
the maltose- and lactose transporters (inducer exclusion) and glycerol
kinase (GlpK). In the absence of glucose (no Glc) P-IIAGlc (IIA-P) acti-
vates adenylate cyclase (Cya), and cyclic AMP (cAMP) activates the
cyclic AMP receptor protein (Crp). Crp::cAMP is a global transcription
activator. Crp::cAMP activates transcription: (i) of the lacYZA operon
under the condition that the LacI repressor is inactivated in the presence
of lactose (inducer); (ii) of the malEFGK operon under the condition that
the transcription activator MalT is released (activated) from MalEFGK2

in the presence of maltose (inducer). Crp::cAMP affects transcription of
an estimated 200 additional metabolic genes (not shown). The properties
of the proteins shown are summarized in Table 1
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calculations provide complementary and confirming evidence
for the sequence of events.

The MFS core fold of the D-xylose transporter XylE
consists of two 6 TM domains (Fig. 3b). Each 6 TM
domain in turn consists of 2 repeat folds of three
interwined transmembrane helices (TM) arranged in a
1,3,2 order. Inserted between the N terminal (TM1-6)
and C terminal (TM7-12) domain on the cytoplasmic
face of the membrane is a small helical domain (ICH)
which serves as an inner gate (Fig. 3b1–3). The flat
domain interface is formed by hydrophobic residues of
the symmetrically related TM2,5 and TM8,11. TM3,6,
TM9,12 are in contact with the lipid bilayer.

The substrate binding site is located in the middle of a
cavity between the N- and C-terminal domain (Fig. 3b4). D-
xylose is oriented parallel to the TMs (perpendicular to the
plane of the membrane) liganded by hydrogen bonds between
the hydroxyl groups and conserved amino acid side chains
located in the symmetrically related TM1,5 and TM7,11 and
TM10 [199].

MFS sugar transporters operate by the rocker switch mech-
anism (Fig. 2a). The inward-outward exposure of the binding
site of XylE is effected by a 16° rigid body rotation of the two
domains (around an axis parallel to the membrane plane).
Substrate binding and release are triggered by local conforma-
tion changes in TM7 and TM10 of the C-terminal domain, the
two TM helices that provide the most important hydrogen
bonding with the substrate (Fig. 3b4). Coupling of proton
and substrate transport depends of a salt bridge between an
aspartate in TM1 (D27) and an arginine in TM4 (R133). The
salt bridge stabilizes XylE in the outward conformation. The
substrate can bind and the binding site close, but the outwards-
inward switch cannot occur. Protonation of D27 breaks the
ionic interaction, and R133 forms an alternative salt bridge
with the C-domain, bringing about the outward to inward
transition. Deprotonation of D27 on the cytoplasmic side trig-
gers substrate release and allows XylE to switch back to the
outward conformation. The D27N mutation abolishes proton-
xylose symport but not facilitated diffusion [199].

The SSS fold and the rocking bundle transport cycle

The SSS core fold (also termed amino acid-polyamine-
organocation (APC) and LeuT fold [171, 206]) consists
of two 5 transmembrane helix (TM) repeats, which are
related by a two-fold symmetry around an axis parallel
to the plane of the membrane (Fig. 3c1) [48]. The TMs
of the two repeats are interdigitated forming a single com-
pact domain (and not apposed like the 6 TM domains of
the MFS fold). Extra TMs may be located on the N- and/
or C-terminus of the 5 + 5 TM core. The sodium galactose
cotransporter vSGLT, for instance, has 14 TM, one before
and three after the core (Fig. 3c1–3; extra TMs red). Core

TM2,3 and 7,8 form the substrate transport domain (TD)
better known as the “bundle domain”, core TM4,5,6 and
9,10,11 the scaffold domain (SD) (Fig. 3c1). The inward-
outward exposure of the galactose binding site of vSGLT
is effected by a rigid-body motion of the bundle around
the scaffold domain.

In vSGLT, galactose is oriented perpendicular to the
TMs (parallel to plane of the membrane) liganded by
hydrogen bonds between the hydroxyl groups and con-
served amino acid side chains located in the symmetri-
cally related pairs TM2,3 and TM7,8 and in TM11 (Fig.
3c4). At the cytoplasmic exit, the substrate translocation
pathway is blocked by Tyr 263, which forms the inner
gate (Fig. 3c4). At the periplasmic entry, Tyr 87 forms a
similar outer gate. Sodium is complexed between TM2
and TM9. Sodium binding and the negative membrane
potential (but not sodium binding alone!) shift the con-
formation equilibrium towards the outward-open confor-
mation. Sugar binding induces a rocking-bundle confor-
mation switch towards the inward open state (Fig. 2c),
where galactose and sodium are released [138].

The SWEET and semiSWEET facilitative sugar
transporters

SWEETS were initially identified as Glc and sucrose trans-
porters in plants ([205] and accompanying review in this spe-
cial issue). Homologs occur in all eukaryotic kingdoms.
SWEETs consist of seven TM, two 3TM repeats in parallel
orientation and a connecting TM (3 + 1 + 3). SemiSWEETs
are the bacterial homologs of the plant SWEETS. They are
homodimers of two 3TM subunits (Fig. 3d1–3). The sugar
translocation pore is inbetween the 3TM repeats/subunits.
Crystal structures of semiSWEETS in outward open and oc-
cluded state suggest a rocker-switch transport cycle (Fig. 2,
[204]). Pangenome analysis indicates that 3 + 1 + 3 SWEETS
also occur in bacteria and that membrane proteins containing
one or several 3TM repeats (extraSWEET and superSWEET)
exist [83].

Structure and mechanism of the
phosphoenolpyruvate-phosphotransferase
system transporters

The bacterial PEP/sugar phosphotransferase system (PTS)
was discovered serendipitously during research into the me-
tabolism of sialic acid [93, 160]. N-acetyl-mannosamine
(ManNAc) is phosphorylated by an ATP-dependent liver ki-
nase. Bacteria were expected to contain a similar kinase be-
cause they could grow onManNAc as only carbon source. But
such a kinase could not be detected in cellular extracts.
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Instead, a PEP-dependent activity was found, and this activity
turned out to be tightly coupled with sugar uptake [93, 160]
leading to the discovery of the sugar transporters of the PTS.
The PTS-transporters differ from primary and secondary ac-
tive transporters in three important aspects [41, 144, 159]: (i)
PTS and its transporters occur only in bacteria, in some
arachaebacteria but not in animals and plants. (ii) The sugar
is not taken up unchanged, but transport is coupled with sugar
phosphorylation. (iii) In addition to sugar uptake and phos-
phorylation, PTS control the carbon and nitrogen metabolism
in response to the availability of carbohydrates, in particular of
Glc [139, 192]. All PTS transporters (sugar-specific enzyme
IISugar complexes) consist of three functional units IIASugar,
IIBSugar and IICSugar or IICIIDSugar, which are either subunits
or domains of multidomain proteins [82]. The integral mem-
brane subunits IIC and IICIID contain the sugar binding site.
Some PTS transporters have multiple substrates (mono- and
disaccharides, sugar alcohols and ascorbic acid), and some
sugars are transported by more than one transporter [7].
Phosphorylgroups are sequentially transferred from phospho-
enolpyruvate (PEP) to the incoming substrate by the two
“general” phosphotransferase proteins, EI and HPr, and by
the IIASugar and IIBSugar subunits/domains of the enzyme
IISugar complexes (Figs. 1 and 4b, Table 1).

The IIA, IIB, IIC and IICIID subunits/domains are of poly-
phyletic origin. The IIC and IICIID transporters have been
grouped in four superfamilies: (1) glucose/fructose/lactose
(GFL), (2) glucitol, (3) ascorbate/galactitol and (4) mannose/
sorbose/fructose [4, 164]. A fifth superfamily contains the
PEP-dependent dihydroxyacetonekinases, which are supplied
with phosphorylgroups by EI and HPr but do not comprise
integral membrane proteins [41, 45].Escherichia coli contains
representatives from all five superfamilies [187]. Otherwise,
the number of IIC and IICIID complexes varies broadly be-
tween bacterial species. Genome analyses of 136 species re-
vealed that 34% have from two to thirty different enzyme
IISugar complexes (IIA, IIB, IIC, IICIID), 21% have only one
complete PTS (EI, HPr, IIA, IIB, IIC), 21% an incomplete
PTS (EI, HPr, IIA but no IIB and IIC) and 22% do not contain
any PTS genes at all. For instance, Listeria monocytogenes
has 30 different systems with IIA, IIB, IIC, IICIID subunits
encoded by 91 genes accounting for 3.2% of all genes [4].
Multiple PTS systems occur in bacteria growing in the rumen,
the oxygen-free and carbohydrate-rich section of the stomach
of ruminant animals, and multiple IICIID systems in bacteria
from the intestinal microbiota [216]. Where only one or two
systems are present, they always are Glc and/or fructose spe-
cific. Incomplete PTS may have regulatory functions.

The general phosphotransferase proteins EI, HPr and the
transporter subunits/domains are transiently phosphorylated at
histidines, the IIB subunits/domains at cysteines [128, 136],
with the exception of the IIB of the mannose (Man) superfam-
ily which are phosphorylated at a histidine [44]. The structures

of the general phosphotransferase proteins EI and HPr, of
representative IIA and IIB cytosolic subunits and domains,
and of some binary complexes have been determined by
NMR and X-ray diffraction [25, 41]. High-resolution X-ray
structures of six Bacillus cereus and E. coli IICs belonging to
the GFL and AG superfamilies [18, 107, 108, 114, 154] and a
cryo-electron microscopic structure of the E. coli IICIIDMan

complex are known [101]. Still unknown is the structure of a
poorly characterized glucitol transporter [150].

The main PTS transporters for Glc of E. coli are IIAGlc/
IICBGlc and IIABMan/IICIIDMan. The former is specific for the
uptake of Glc. The latter has a broad substrate specificity for
glucopyranoses with modifications at the C-2 position (Glc,
Man, GlcNAc). It is believed to be a scavenger of carbohy-
drates released during cell wall remodeling [140].

bcIICMal—a glucose transporter of the GFL
superfamily

E. coli ecIICBGlc has been functionally characterized but the
structures are not known. The structurally characterized
Bacillus cereus bcIICBMal and bcIICChb share 32% and 18%
sequence identity with ecIICBGlc. ecIICBGlc and bcIICBMal

can be characterized as follows.
ecIICBGlc is a dimer of subunits consisting of two domains,

the N-terminal transport domain IIC and the cytoplasmic
phosphorylation domain IIB. IIC and IIB are connected by a
conserved linker sequence [16, 95]. “Relaxed” IICBGlc mu-
tants exist that can transport without phosphorylation (in the
absence of a phosphoryldonor), phosphorylate without trans-
port or have an extended substrate specificity [40]. Interallelic
complementation indicates that the IIB domain of one subunit
can donate phosphoryl groups to Glc translocated by the same
and by the opposite subunit [95]. Negative dominance, that is
inactivation of the active subunit by an inactive one, has not
been observed. It is still controversial, whether the two sub-
units of the dimer function independently, or whether their
transport cycles are allosterically coupled. IICBGlc can phos-
phorylate intracellular Glc in a kinase-like reaction (Fig. 1;
[15]). Low and high affinity binding sites have been charac-
terized, but it is not clear whether they correspond to inward-
and outward-oriented transporter subunits, or to the same sites
of subunits in different conformational states [59, 60]

Structure The IIC domain of bcIICBMal is composed of 10
transmembrane helices (TM1-10) two reentrant loops (HP1
and HP2) between TM8/9 and TM9/10, respectively, two am-
phipathic helices (AH1 and AH2) preceding TM1 and TM6,
two periplasmic loops (PL1 and PL2) between TM3/4 and
TM7/8 and one cytoplasmic loop (CL) between TM4/5 (Fig.
3e1) (Ren 2017; McCoy 2016). Two domains can be
discerned: the scaffold domain (SD) comprising TM1-5 and
the transport domain (TD) comprising TM6-10. The SD
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contains the dimer interface, the TD contains the sugar bind-
ing site and translocation pathway. Maltose is coordinated by
the reentrant loops HP1 and HP2 and the loop connecting
TM6 and TM7 (Fig. 3e4). The periplasmic loops (PL1 and
PL2, Fig. 3e1, cyan, green) are of variable length (20–200
residues) in the different IIC of the GFL superfamily and their
function is not known. The cytoplasmic loop (CL) reaches
from the SD of one subunit to the TD of the other (Fig. 3e2,
3, asteriks), and may possibly play a role in allosteric coupling
of the two subunits. It assumes a rigid, partially α-helical
structure in the outward open conformation, but is unstruc-
tured in the inward-open conformation leaving the access
open for phosphate transfer from phospho-IIBMal to the sugar
(Fig. 3e2, 3) [114, 154]

Substrate binding site The substrate binding cavity of
bcIICMal is located in the TD near the TD/SD interface. The
sugar is hydrogen-bonded by residues of the TD. All H-
bonding interactions are preserved during translocation from
the outward to the inward facing conformation (Fig. 3e4).
TM1 walls off the binding cavity on the SD side, but the SD
does not directionally interact with the sugar. The C6-OH of
the non-reducing hexose is oriented towards the cytoplasmic
exit where it can be phosphorylated by the IIB subunit.

Transport mechanism The structural snapshots of bcIICMal

and bcIICChb in different conformations indicate that sugars
are translocated by an alternating-access elevator mechanism
(Fig. 2c), a translational rigid-body motion of the TD against
the immobile SD. Substrate translocation is accomplished by a
9 Å vertical translation and a 44° rotation of the TD relative to
the SD. The complete transport cycle may be more complex
than what can be inferred from the structural snapshots as
described in [82].

ecIICIID Man—a glucose/mannose transporter
of the mannose superfamily

The mannose transporter (ecIICIIDMan) has the broadest sub-
strate specificity of all E. coli PTS transporters. It tolerates sub-
stantial modifications at C-2 of the glucopyranose ring.
S. typhimurium IICIIDMan, for instance, transports zwitterionic
glucoselysine and fructoselysine which can be utilized as com-
bined carbon and nitrogen source [118]. The mannose super-
family has been phylogenetically grouped in seven families of
which the putative metabolic function and substrate specificity
was inferred from their respective genome-context [216].

The ecIICIIDMan complex consists of a cytoplasmic
phosphotransferring two-domain protein IIABMan and the in-
tegral membrane subunits IICMan and IIDMan [43]. IIABMan

forms a dimer, with subunits interwined due to a β-strand
swap between the IIA domains [67, 127, 169, 175]. IICMan

and IIDMan form a tight complex which cannot be dissociated.

Attempts to experimentally and in silico predict the membrane
topology of IIC and IID, produced inconsistent results or
failed altogether [120]. The difficulties with oligomeric struc-
ture and membrane topology were finally resolved by cryo-
electronmicroscopy revealing a structure unseen before [101].

Structure The ecIICIID Man complex is a trimer of three
IICIID Man protomers [101]. The IIC and IID subunits of the
protomer are related to each other by a twofold
pseudosymmetry axis parallel to the plane of the membrane
(Fig. 3f5). Both are composed of two reentrant loops (HP1
and HP2 and 5 TM helices (Fig. 3f5). Reentrant loops HP1,
HP2 and TM1 and TM2 of the IIC and IID subunits together
form the substrate-binding transport domain (TD), transmem-
brane helices TM3, TM4 and TM5 the scaffold domain (SD).
The HP1 andHP2 can be compared to an upper and lower jaw,
the TM1 and TM2 of IIC and IID form the jawjoints. The
loops connecting HP1a with HP1b and HP2a with HP2b of
IIC and IID form top and bottom, respectively, of the sugar
binding cavity, TM1 and TM2 the sidewalls (Fig. 3f1–3). The
scaffold domain (SD) consists of two three-helix bundles
(TM3-5), with TM3 of each subunit swapped ([3D4C5C] and
[3C4D5D]). This helix swap may explain the tight IICIID
intersubunit contact, and why these subunits could not be
separated without unfolding/inactivation in vitro, nor indepen-
dently be expressed in vivo [46]. The interprotomer contact
consists of a six-helix bundle ([4C5C]3) composed of TM4 and
TM5 of IIC (Fig. 3f3).

Substrate binding site and mechanism of transport Mannose
is coordinated by the reentrant loops HP1 and HP2 of IIC and
IID (Fig. 3f1, 4). In the resting state depicted by the cryo-EM
structure, the cavity is open towards the cytoplasmic side (in-
ward-facing conformation). Structural snapshots of alternative
conformations are not yet available, and the transport mecha-
nism outlined hereinafter is hypothetical: the ellipsoidic TD of
IICIID (HP1, HP2, TM1, TM2) rotates (topples) as a rigid
body from in- to outward against a static hyperboloidic SD
(TM3-5) (Fig. 2d), possibly similar to the energy-coupling
factor (ECF) transporters of the ABC2 superfamily [182].

Control of carbohydrate uptake
and metabolism by the glucose PTS of E. coli

Sugars are taken up by bacteria one after the other in a
predetermined order [47, 100, 188]. Glucose is the most pre-
ferred, probably because it can directly enter glycolysis, while
other sugars first must be enzymatically transformed. The PTS
controls the uptake of non-PTS sugars (carbon catabolite repres-
sion, CCR), intermediatemetabolism (carbon, nitrogen balance,
glycogen synthesis), gene expression, chemotaxis and virulence
(comprehensively reviewed in [36, 57, 172]. EI, HPr, IIA and
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IIB control target enzymes allosterically and by reversible
transphosphorylation [196]. In E. coli for instance: (i) EI and
IIA control chemotaxis towards PTS sugars [1, 109, 110, 125,
172]; (ii) HPr controls mannitol uptake and metabolism [22];
(iii) IIAGlc controls maltose uptake by MalEFGK2 (Figs. 3a2
and 4c) [21, 34], and lactose uptake by LacY [173] (Fig. 4c);
(iv) IICBGlc controls the activity of Mlc, the transcription re-
pressor of the ptsG gene (encoding IICBGlc) and of themanXYZ
operon (encoding IIABManIICIIDMan) (Fig. 4a) [97, 141, 142].
Translation of ptsG mRNA (IICBGlc) is feed-back inhibited by
antisense RNA SgrS in response to the accumulation of Glc-6-
phosphate [102, 178, 193]. Which PTS component controls
which target varies between bacterial species. In Gram-
positive bacteria, for instance, HPr and the HPr kinase/
phosphorylase (HprK/P) are the major regulators and not IIA
[36, 50].

The glucose PTS is induced in the presence of Glc, and
alternative carbon sources are not taken up, not even when
available (inducer exclusion).When Glc and other PTS sugars
are exhausted, and/or whenever the PEP/Prv ratio is high for
other reasons (gluconeogenesis, unbalanced glycolysis), the
ratio of P-IIAGlc/IIAGlc increases (Fig. 4b, red arrows). P-
IIAGlc activates adenylate cyclase (Cya) catalysing the con-
version of ATP into the second messenger cyclic AMP
(cAMP) [135]. cAMP is the coactivator of the general tran-
scription factor Crp (cyclic AMP receptor protein, catabolite
repression protein, also Cap for catabolite gene activator p-
rotein). Genes that are activated by cAMP-Crp are termed
“catabolite repressed”, because they are repressed (not active)
in the presence of the catabolite Glc (absence of cAMP). Crp-
cAMP activates the transcription of ptsG and ptsHI, the genes
for IICBGlc, EI and HPr (Fig. 4a).

IICBGlc and IIAGlc are dephosphorylated when Glc is taken
up and phosphorylated. And this has two effects: (i) dephos-
phorylated IICBGlc binds (sequesters) Mlc, the transcription
repressor of ptsG (encoding IICBGlc). Consequently, ptsG re-
pression by Mlc is relieved, and IICBGlc expression is stimu-
lated. (ii) Dephosphorylated IIAGlc does not stimulate adenyl-
ate cyclase activity, cAMP concentration is low, and conse-
quently the cAMP-Crp-dependent activation of PTS genes is
reduced (Fig. 4a). Depending on the timing of the two oppos-
ing effects (Mlc sequestration and cAMP depletion), Glc
could first increase the rate of pts gene expression (by seques-
tration of Mlc to dephosphorylated IICBGlc) and then limit it
(prevent an overshoot) via the reduction of cAMP. The
cAMP-crp regulon comprises over 200 metabolic operons
including a few encoding small RNAs [77, 98, 176, 189,
212]. About 70–80% are activated by cAMP-Crp, the remain-
ing are inhibited, depending on where the Crp-binding nucle-
otide sequence is located relative to the promoter-sequence
[64, 68, 122, 124]. In most cases, cAMP-Crp acts not alone
but in concert with one or several more specific transcription
factors (for additional references see Erni, 2013).

Bacterial sugar transporters: targets and open
doors for macromolecules and drugs

Certain bacterial sugar transporters are hijacked by bacteria
and bacteriophages to channel in bacteriocins, nucleic acids,
and antibiotics.

Bacteriocins Bacteriocins are antimicrobial peptides produced
by lactic acid bacteria. They are of interest as food preserva-
tives against food born pathogens (for a review, see [158]).
Bacteriocins inhibit peptidoglycan synthesis, protein synthesis
or form pores in the inner membrane causing membrane de-
polarization. Both uptake and pore formation require outer
and inner membrane proteins as scaffolds. The bacteriocin-
scaffold interactions are specific, and dependency on a cog-
nate inner membrane protein restricts the bacteriocidal spec-
trum of each bacteriocin to a narrow range of target bacteria,
often to species closely related to the producer [90, 190]. A
phylogenetic subgroup of IICIID of the mannose superfamily
[32, 70, 147, 181] and certain IICB of the GFL superfamily
[58] serve as inner membrane scaffolds. The E. coli IICIIDMan

complex, for instance, serves as a gate for the bacteriocin
MccE492 [8, 9]. MccE492 compromised the uptake of Man
and caused loss of proton motive force in a wild-type but not
in a manXYZ mutant, indicating that a functional IICIIDMan

complex is essential for MccE492 toxicity. In the MccE492
producer bacterium, the bacteriocin and the (self)immunity
protein MceB (which protects against killing of the producer)
form a ternary complex with IICIIDMan [9]. Similarly, the
bacteriocin lactococcin A and its cognate immunity protein
LciA copurify with the IICIID complex of the Lactococcus
producer strain [37]. Notice that (i) the majority of bacteriocin
uptake systems belong to ABC (not PTS) transporters specific
for oligopeptides [6], one exception being the maltose ABC
transporter of Lactococcus [56]. (ii) Bacteria utilize specific
ABC transporters for bacteriocin export [6].

Bacteriophage DNA injection Phage infection of bacteria is a
complex process that requires interactions between bacterio-
phage and bacterial host proteins. Bacteriophages utilize host
membrane proteins as receptors and for DNA injection [61].
Elliott and Arber [39] characterized E. coli mutants, which
were resistant against bacteriophage lambda and also unable
to grow on mannose. The genetic linkage between phage sen-
sitivity and ability to grow onMan suggested that phage lamb-
da hijacks a Man transporter for DNA transfer across the inner
membrane [134]. IICMan turned out to be the major specificity
determinant for lambda infection, but not sufficient, most like-
ly because IIC is stably expressed only in a complex with IID
[42, 43, 46, 197]. But E. coli also has a counter-defence
against IICIIDMan mediated infection [146]. The E. coli K12
strain, for instance, harbors between one and several cryptic
prophages Qin which encode a small RNA (DicF) and a small
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protein (DicB) that inhibit cell division. DicB in complex with
the cell division protein MinC in addition inhibits growth on
Man as sole carbon source, and in parallel it specifically in-
hibits phage lambda DNA injection through IICIIDMan. DicB
does not inhibit growth on sugars taken up by PTS trans-
porters other than IICIIDMan, and it does not inhibit other
lambdoid phages. The small RNA DicF base pairs with and
represses translation manXYZ mRNAs, encoding IICIIDMan.
This is strikingly similar to the regulation of the glucose PTS
(ptsG, IICBGlc) by the small RNA SgrS and the small protein
SgrT (see above and Fig. 4a).

IICBGlc, belonging to the GFL family of PTS sugar trans-
porters, is utilized by phage HK97 for DNA injection [28].
Injection depends on the interaction between IICBGlc and a
short C-terminal sequence/domain of the HK 97 tape measure
protein (TMP, which i.a. determines the length of the phage
tail). Also dependent on IICBGlc is the superinfection exclu-
sion protein gp15, which inhibits second infection of bacteria
already harboring the HK97 phage. The small gp15 protein
targets the same sequence of the TMP that interacts with
IICBGlc, and gp15, TMP and IICBGlc may form a ternary
complex.

Antibiotics Most currently used antibiotics are hydrophobic
enough to partition into and diffuse across the bacterial inner
membrane. Only a few, lowmolecular weight polar antibiotics
utilize solute importers to enter the bacterial cell.
Streptozotocin, a N-acetyl glucosamine (GlcNAc) analog pro-
duced by Streptomyces, is taken up by the IICBAGlcNAc (a
member of the GFL family) and the IICIIDMan transporters
of the PTS [23, 78]. Streptozotocin has been earmarked as a
lead candidate for anti-virulence drugs against staphylococcal
infections [207]. It is currently in use for the treatment of
metastatic pancreatic islet cancer [75]. Streptozotocin is also
used to induce autoimmune diabetes in mice and rats. It is
taken up by the facilitative transporter GLUT2, and damages
beta-cells by its cytotoxic action [75]. Fosfomycin, an analog
of phosphoenolpyruvate and inhibitor of peptidoglycan syn-
thesis is a last resort option to combat multiresistant patho-
gens. To reach its target, it depends on import by the MFS
secondary active phosphate/organophosphate antiporters for
glucose-6-phosphate (UhpT) and glycerol-3-phosphate
(GlpT) [27, 94, 183]. Fosmidomycin, an inhibitor of the
mevalonate-independent isoprenoid biosynthesis, also enters
bacteria through GlpT [166].

Inhibitors Inhibitors of animal Glc transporters play in impor-
tant role in diabetes research and therapy (see the accompany-
ing reviews in this special issue). To starve bacterial cells with
similar inhibitors in order to combat resistant strains is unlike-
ly to succeed, because more often than not bacteria have re-
dundant transport systems for a particular sugar, and have the
choice between chemically different nutrients (amino acids,

carbohydrates, fatty acids). Glc analogs inhibiting bacterial
Glc transporters were utilized to characterize binding sites
and transport kinetics, notably glucose-6-aldehyde is a re-
markably potent inhibitor of glucose phosphorylation by
IICBGlc [59, 60].

The role of sugar transporters
in pathogenicity

Glucose is the preferred carbon source for bacteria and crucial for
intracellular survival of pathogens. Not surprisingly, Glc affects
not only the uptake andmetabolism of alternative sugars but also
the expression of virulence factors, biofilm formation [76] and of
other cellular activities [91, 96, 98, 139, 143]. EI of the PTS, the
unique (non redundant) component at the top of the divergent
protein phosphorylation cascade, and IIA, the central regulator of
carbohydrate metabolism in Gram-negative bacteria, were re-
peatedly found associated with virulence (for reviews see [41,
98, 195]. PtsP, an EI-paralog, and EI were identified as virulence
genes in Pseudomonas aeruginosa, Legionella pneumophila,
S. typhimurium, E. coli, Vibrio cholerae and Group A
Streptococcus [63, 72, 73, 91, 98, 184, 195, 202]. EI has been
considered as a therapeutic target [121], and Salmonella EI mu-
tants as live-vaccine and as delivery vectors for heterologous
antigens [213]. In the following, however, we restrict ourselves
to the possible role of sugar transporters in pathogenesis.

Different approaches were used to earmark potential and
identify real (sugar) transporters required for pathogenesis: (i)
comparative genomics of pathogenic and non-pathogenic
(commensal) strains; (ii) comparative transcriptomics of path-
ogens grown in an animal model versus in a laboratory medi-
um; (iii) IVET (in vivo expression technology) selections and
screens to identify pathogen genes induced during host infec-
tion; (iv) competitive growth of a sugar transport mutant and
wild-type in an animal model. Whether the knockout/
inhibition of a particular transporter compromises infectivity
generally depends on the bacterial species and the animal vir-
ulence model [38]. So several sugar transporters could be
identif ied as virulence factors—virulence model
dependent—but they are not always the same.

Milton Saier and colleagues compared the total transport
protein content in the genomes of closely related E. coli (pro-
biotic/commensal, extracellular and intracellular pathogenic,
laboratory strain K12), Treponema (pathogenic, termite sym-
bionts, free living) and Bacteroides (probiotic, pathogenic)
[17, 38, 185, 208]. Substrate specificity was assigned based
on sequence similarity with well characterized orthologous
transporters, and from the association of a transporter gene
with metabolic genes of known function [185]. Over all, the
probiotic (health-promoting) strains contain fewer transport
systems than pathogenic (disease causing) strains. The latter
for instance have extra drug efflux pumps, toxin exporters and
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iron uptake systems. However, this trend does not apply for
sugar transporters (ABC, MFS, SSS, PTS). Probiotic and ex-
tracellular pathogenic E. coli have more transporters for
sugars and other nutrients available in the extracellular envi-
ronment. As a “compensation” intracellular pathogens have
more transport systems specific for intracellular host metabo-
lites, such as sugar-phosphates, amino acids, or glycolytic and
Krebs cycle intermediates. Of 22 putative MFS transporters
detected in seven pathogenic E. coli and in the K12 laboratory
strain, each strain contained between 13 and 17 transporters,
11 transporters occurred in all strains, 4 only once (strain spe-
cific). Of 51 ABC transporter subunits (corresponding to 12-
16 multisubunit ABC transporters), 29 occurred in all strains,
3 only once, and of 61 PTS transporter subunits, 18 occurred
in all strains, 6 only once.

Free living and termite symbiontic Treponema species [17]
have between 10 and 50 ABC transporters, whereas the intra-
cellular pathogens have only two to four. The number of MFS
transporters for all seven species was between 0 and 4, and
complete PTS systems are absent. Bacteroides [208] are the
most abundant species in the microbiota of the large intestine.
They have MFS and ABC transporters but no PTS. They
degrade and ferment carbohydrates from plant fibers and mu-
cins (glycoconjugates secreted by intestinal epithel cells) and
in return secrete SCFAs and vitamins for the host and hydro-
gen for the methanogenic gut bacteria [52, 167, 201].

Lyme borreliosis, a common tick-transmitted disease, is
caused by the spirochete Borrelia burgdorferi. A transposon
library consisting of 434 signature-tagged Borrelia mutants
was tested for genes required for wild-type pathogenesis in
mice [99]. Seven genes for ABC, 12 for MFS and 6 for PTS
transporters were found to be required for full infectivity in
mice. Eight of these candidate virulence genes encoded sugar
transporters: the PTS transporters for Glc, maltose, chitobiose
and fructose (genes ptsG,malX1,malX2, chbB, fruA1, fruA2),
theMFS transporter for lactose (lctP) and the ABC transporter
for methylgalactoside (mglA). Not present among the 434
conditional mutants were EI and IICIID mutants, which acci-
dentally might have escaped transposon insertion. All 12 PTS
transporter component mutants found in the Borrelia genome
were then analysed in greater detail. They were inactivated,
one at a time and tested for virulence in mice [89]. Only one
mutant with a defective IICBGlc (ptsG) was unable to infect
mice, but was still viable in ticks and grew at the same rate in a
complex medium with and without Glc. Transcriptome anal-
ysis of the ptsGmutant revealed that several genes associated
with lipoprotein synthesis and virulence were 5–20-fold up-
regulated and a few were down regulated.

Streptococcus pneumoniae has 30 sugar transport systems
which together can take up 26 out of a set of 32 different me-
tabolizable carbohydrates [7]. Group A Streptococcus pyogenes
(GAS) has fourteen predicted PTS sugar transporters (9 GFL, 2
AG, 3 mannose family). They were inactivated one at a time in

order to characterize how they contribute to the early expression
of streptolysin secretion (SLS, haemolytic activity), increased
lesion size and decreased survival in a murine soft tissue infec-
tion model [180]. Six IIC and IICIID mutants displayed early
onset haemolytic activity, that is a derepression/activation of
virulence genes. A similar phenotype was also observed after
inactivation of the two-component histidine-kinase CovS [186].
The sugar-specific uptake activity is only marginally affected
by any of the 13 mutations, probably because of overlapping
substrate specificities between the 13 transporters, and the up-
take of Glc is not affected at all, suggesting strong redundancy
for Glc uptake between PTS- and/or non-PTS transporters. A
non-virulent Streptococcus iniae vaccine strain was compared
with the virulent fish-pathogenic parent by subtractive hybridi-
zation [145]. A fructose PTS (IIABCFru) was found in the vir-
ulent but not in the vaccine strains. The correlation between
fructose PTS and fish pathogenicity was confirmed with five
virulent and five avirulent field isolates of S. iniae.

A Yersinia pestis strain carrying an in-frame deletion of
ptsG encoding the Glc transporter of the PTS did not affect
mouse infectivity [133]. However, IICBGlc conferred a growth
advantage in the competition between wild-type and mutant in
the mouse model, in serum-like medium, and in a rich culture
medium containing Glc, but not in the absence of Glc.

In conclusion, it is not clear whether the loss of infectivity
of sugar transport mutants is caused directly by the reduced
transport capacity for an essential nutrient or indirectly by the
up/down regulation of other genes and/or their products.
Considering the frequent substrate specificity overlap between
different transporters and the availability of different macro-
nutrients in the host environment, transport capacity is unlike-
ly to be limiting. At least in the case of PTS transporters, the
effect may be indirect, and a compromised induction/
repression of bona fide virulence genes may be the main cause
of attenuated/augmented infectivity. Moreover some trans-
porters may serve as sensors of host-specific compounds
informing the bacterium that it has entered the host [132].
For instance, periplasmic binding proteins of ABC trans-
porters act as chemotactic sensors in conjunction with the
cognate membrane spanning chemotaxis receptors [71, 87].
It is likely that the number of lead compounds is much smaller
in the host tissue/cell than the number of available carbon and
nitrogen macronutrients. Inactivation of a transporter for an
indicator/lead compound thus compromises signaling rather
than metabolic energy-salvage.

The role of sugar transporters
in the microbiota of the gut

Complex carbohydrates and polysaccharides are degraded
and fermented by the gut microbiota in the large intestine,
simple sugars by the microbiota in the small intestine [215].
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The products of bacterial fermentation, short chain fatty acids
(SCFA) are metabolized by the colon epithelium, in the liver
and in muscle of the host [19, 167]. Carbohydrates are key
carbon sources for the majority of resident microbiota and as
such impose (i) strong competition between well adapted res-
idents and potentially pathogenic invaders and (ii) selective
pressure on cooperation between species of the bacterial con-
sortium, for instance cross-feeding [117]. The carbohydrate
metabolic network of the gut encompasses pathways of the
host and of up to thousand bacterial species [29, 115]. Nutrient
transporters are at the interface between host and microbial
metabolism at the periphery of the bacterial network. In this
position sugar transporters and in particular PTS transporters
are expected to react prominently to changes of diet (fat/high
sugar Western vs. plant polysaccharide-rich) and to the
immune/disease state of the host (diabetes, obesity, inflamma-
tory bowel disease) [66]. Numerous comparative omics stud-
ies revealed conditions under which microbial community
(16S rRNA) and/or gene expression (transcriptomics) is al-
tered and in consequence the abundance of carbohydrate
metabolic/sugar transport pathways. But more often than not
such an alteration of transport activity may be the incidental
consequence of a network adaptation. A causal relation be-
tween activity and well-being of the host and its bacterial
community could be detected in studies with transporter mu-
tants in defined bacterial communities of gnotobiotic mice.

Bacteroides thetaiotaomicron, Eubacterium rectale and
gut epithelial cells constitute a carbohydrate recycling system
as follows [112]: B. theta. stimulates the host to produce mu-
cins and secretes numerous glycoside hydrolases to degrade
these mucosal glycans.Eubacterium rectale adapts toB. theta.
by downregulating its own production of glycan-degrading
enzymes. It increases instead the expression of sugar trans-
porters, glycolytic enzymes and secretes SCFAs which are
utilized by the gut epithelial cells. Among the most strongly
up-regulated genes are three for sugar transporters of cellobi-
ose, galactoside, and arabinose/lactose.

A hypervirulent Clostridium difficile strain (ribotype) was
found to overexpress a trehalose PTS transporter (belonging
to the GFL family), due to the acquisition of the gene ptsT by
horizontal gene transfer [26]. PtsT conferred a fitness advan-
tage against its isogenic ptsT deletion mutant in a human fae-
cal minibioreactor, as well as in the mouse intestine in the
presence of a complex microbiota. The 500-fold increased
trehalose sensitivity of this strain confers a growth advantage,
but the mechanism responsible for increased virulence is not
known. Historically, the appearance of this hypervirulent
strain coincides with the use of trehalose as food additive,
e.g. in prepared frozen food.

The non-caloric artificial sweetener saccharin induces al-
terations in the composition of the intestinal microbiota
(dysbiosis) and glucose intolerance inmice [177]. The glucose
intolerance is transferable from saccharin consuming mice to

germ-free mice by fecal transplantation, indicating that intol-
erance is mediated by the dysbiotic microbiota. Glycan deg-
radation pathways leading to SCFAs, starch, sucrose, fructose
and mannose metabolic pathways were enriched in the
metagenome of microbiota, PTS sugar transport pathways
were underrepresented. Enrichment of the former pathways
was associated with obesity in mice and humans, with the
SCFA possibly serving as precursors for de novo glucose
and lipid synthesis by the host.

Mutant libraries of four human gut Bacteroides strains to-
gether with eleven wild-type species representing other major
lineages of the gut microbiota were introduced in germ free
mice and fed with either high fat/high sugar or low fat/high
plant polysaccharide (arabinoxylan) diet [201]. 80–90% of the
Bacteroides genes could be tagged (were not essential in vitro).
Of 2238 genes conserved in all four strains, 82 had a fitness
effect in the mouse microbiota independent of diet. Seven
carbohydrate metabolic pathways (arabinose, fructose, xylose,
fucose, rhamnose, fructose, glucose/galactose and
hexuronate) had a significant effect on fitness in all four spe-
cies, among them the three transporters for glucose/galactose
(GlcT), arabinose (AraP) and fructose (FruP). These trans-
porters were also significantly higher expressed in the micro-
biota than in a rich culture medium. GlcT and FruP were
significant fitness determinants only in high fat/high sugar
but not in arabinoxylan fed mice. The results suggest that
sugar transporters can become metabolic bottlenecks under
certain conditions.

Conclusion and outlook

This review on bacterial sugar transporters accompanies an
outshining collection dedicated to eukaryotic and in particular
human glucose transporters (this special issue). It is tempting
to ask: what is the difference? One answer is “What is true for
E. coli is true for the elephant” (JacquesMonod)—but not vice
versa. The transporters of Escherichia coli were the training
devices to sharpen the tools for the structural, biochemical,
and biophysical characterization of integral membrane pro-
teins. Genomic data, powerful sequence similarity search al-
gorithms and homology threading methods provided evi-
dence, that bacterial and eukaryotic transporters share se-
quence similarity and assume similar folds. Eukaryotic trans-
porters were predicted to have the same number of transmem-
brane helices and a similar core structure. Residues essential
for the function of bacterial transporters were found to be
conserved between the bacterial and eukaryotic homologs
[85]. The overall size of the eukaryotic homologs, however,
is about twice that of prokaryotic permeases. They have lon-
ger N and C termini, often with extra helices, and the loops
between the TMs of the core are longer. Some of the extracel-
lular loops are glycosylated, and intracellular loops may
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contain sites for activity control, for instance by phosphoryla-
tion or ubiquitination [31]. Isoforms of eukaryotic transporters
are tissue-specifically produced by alternative promoter use
and exon-skipping (pre-mRNA-splicing) [2, 170].

A comparison of the transporter repertoire of 141 bacteria,
plants, protists and animals [152] indicate that organisms with
larger genome sizes generally possess a greater number of
transport systems. In bacteria, the increase in transporter con-
tent is correlated with a greater diversity of transporter types
(superfamilies MFS, ABC, PTS). In multicellular eukaryotes,
the increase is due to the large number of paralogs.
Multicellular eukaryotes exhibit fewer transporter families
than prokaryotic species but have generated a large number
of paralogs by duplicating genes out of particular families of
ABC and MFS transporters (see above). Paralogous proteins
in multicellular organisms assume specific functions in terms
of substrate preference, kinetics and regulation. In contrast,
the single-celled prokaryotes and eukaryotes, with less
paralogs but more (super)family diversity, are capable to uti-
lize a much greater variety of carbohydrate nutrients. ABC
transporter types account for 30–50% of all transporters in
bacteria but for only 10–20% in animals. ABC transporters
are particularly abundant in bacteria that lack respiration
chains and depend on substrate level phosphorylation and
photosynthesis for ATP generation. MFS secondary transport-
er families account for 40–60% in bacteria and animals. Ion-
channels (which are not included in this review) account for
10–40% in animals but only 0–8% bacteria. Prokaryotic obli-
gate intracellular pathogens and endosymbionts possess the
most limited repertoire of membrane transporters.
Multicellular organisms possess more energy-independent fa-
cilitators and channel proteins. The (blood)glucose concentra-
tion is constant within a narrow margin and glucose equili-
brates by facilitated diffusion between the extra- and intracel-
lular compartment.

A century of biochemical and biophysical research has
provided a detailed picture of bacterial sugar transport pro-
teins, of their structure and the molecular mechanism of their
action. In the recent years, research priorities have shifted
from the characterization of the molecular parts to a better
understanding of cellular, physiological and biotechnological
aspects. Attempts to improve the fermentative production of
natural compounds have placed sugar transport in the spot-
light of metabolic engineering and systems biology [41, 65,
106, 113]. For instance, the replacement of the PTS trans-
porters with PEP-independent ABC and MFS transporters,
and the inactivation of PTS components involved in catabolite
repression have significantly improved the industrial produc-
tion of aromatic metabolites, biofuels and organic acids [3,
214]. The antibiotic crisis increases the interest in bacteriocins
and bacteriophages as potential antiinfectives and substitutes
for low molecular weight antibiotics. Bacterial sugar trans-
porters are gateways for bactriophage DNA penetration and

receptor for pore forming bacteriocins. These functions are no
yet understood, and their study opens a vast field of exciting
research, and eventually therapeutical applications.
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