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Humans and animals maintain accurate sound discrimination in the presence of loud sources of background noise. It is com-
monly assumed that this ability relies on the robustness of auditory cortex responses. However, only a few attempts have
been made to characterize neural discrimination of communication sounds masked by noise at each stage of the auditory sys-
tem and to quantify the noise effects on the neuronal discrimination in terms of alterations in amplitude modulations. Here,
we measured neural discrimination between communication sounds masked by a vocalization-shaped stationary noise from
multiunit responses recorded in the cochlear nucleus, inferior colliculus, auditory thalamus, and primary and secondary audi-
tory cortex at several signal-to-noise ratios (SNRs) in anesthetized male or female guinea pigs. Masking noise decreased
sound discrimination of neuronal populations in each auditory structure, but collicular and thalamic populations showed bet-
ter performance than cortical populations at each SNR. In contrast, in each auditory structure, discrimination by neuronal
populations was slightly decreased when tone-vocoded vocalizations were tested. These results shed new light on the specific
contributions of subcortical structures to robust sound encoding, and suggest that the distortion of slow amplitude modula-
tion cues conveyed by communication sounds is one of the factors constraining the neuronal discrimination in subcortical
and cortical levels.

Key words: amplitude modulation; auditory system; masking noise; natural sounds; neural discrimination; population
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Significance Statement

Dissecting how auditory neurons discriminate communication sounds in noise is a major goal in auditory neuroscience.
Robust sound coding in noise is often viewed as a specific property of cortical networks, although this remains to be demon-
strated. Here, we tested the discrimination performance of neuronal populations at five levels of the auditory system in
response to conspecific vocalizations masked by noise. In each acoustic condition, subcortical neurons better discriminated
target vocalizations than cortical ones and in each structure, the reduction in discrimination performance was related to the
reduction in slow amplitude modulation cues.

Introduction
Understanding the neural mechanisms used by the auditory
system to extract and represent relevant information for discrim-
inating communication sounds in a variety of acoustic environ-
ments is a major goal in auditory neurosciences.

Several studies have prompted the view that the perceptual
robustness mainly relies on the capacity of cortical neurons to
extract invariant acoustic features (Narayan et al., 2007;
Schneider and Woolley, 2013; Carruthers et al., 2015; Ni et al.,
2017; Town et al., 2018), and it was proposed that this capacity is
due to a larger adaptation of cortical cells to the noise statistics
compared with subcortical cells (Rabinowitz et al., 2013). Indeed,
in the cortical field L—analogous to primary auditory cortex
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(A1) in birds—the percentage of correct neuronal discrimination
between zebra-finch songs embedded in different types of acous-
tic maskers decreases proportionally to the target-to-masker ratio
and parallels behavioral performance (Narayan et al., 2007).
Also, consistent with behavioral data (for review, see Verhey et
al., 2003), the comodulation of different frequency bands in
background noise improved tone detection in noise of auditory
cortical, thalamic, and collicular neurons (Nelken et al., 1999; Las
et al., 2005). Moreover, between-vowels discrimination perform-
ance of neuronal populations located in A1 resists to a large
range of acoustic alterations (including changes in fundamental
frequency, spatial location, or level) and is similar to behavioral
performance (Town et al., 2018).

The goal of the present study was to challenge this view by
identifying the auditory structures responsible for this robust
neural discrimination. Background noise has the following three
disruptive effects on communication sounds (Noordhoek and
Drullman, 1997; Dubbelboer and Houtgast, 2007): it attenuates
the power of their amplitude modulation (AM) components
(also called “temporal envelope”; Houtgast and Steeneken, 1985;
Ewert and Dau, 2000; Biberger and Ewert, 2017); it corrupts their
frequency modulation (FM) components [also called “temporal
fine structure” (TFS); Shamma and Lorenzi, 2013; Varnet et al.,
2017]; and it introduces stochastic fluctuations in AM power
that generate temporal irregularities (from bin to bin) in the sig-
nal temporal envelopes (Ewert and Dau, 2000). Here, electro-
physiological recordings were collected from the cochlear
nucleus up to a secondary auditory cortical area in anesthetized
guinea pigs and the discrimination performance of neuronal
populations was assessed for four utterances of the same vocal-
ization category (the whistle; e.g., the guinea pig alarm call) pre-
sented against a vocalization-shaped stationary noise at three
signal-to-noise ratios (SNRs; 110, 0, �10dB). An increased dis-
crimination performance may result from the specialization of
cortical responses for detecting crucial vocalization features
(Wang et al., 1995; Wang and Kadia, 2001; Schneider and
Woolley, 2013), whereas a decreased discrimination performance
may result from the loss of spectrotemporal details promoting
the categorization of sounds into auditory objects (Nelken and
Bar-Yosef, 2008; Chechik and Nelken, 2012). Mutual informa-
tion was used to determine whether the temporal patterns of
neuronal responses to the four vocalizations sufficiently differed
to assign each response to a particular vocalization. The results
obtained in noise were compared with the effects of a determinis-
tic signal-processing scheme, namely, a tone vocoder, which
markedly altered the FM cues and progressively attenuated the
AM cues (within 38-10 frequency bands). The AM spectra were
computed at the output of simulated guinea pig auditory filters
for each acoustic alteration. Our results suggest that the attenua-
tion of slow AM cues is one of the factors explaining the decrease
in discrimination performance in cortical and subcortical struc-
tures. In addition, this study revealed that, for each acoustic distor-
tion tested, the highest level of discrimination was found in
subcortical structures, either at the collicular level (in masking-
noise conditions) or at the thalamic level (in vocoder conditions).

Materials and Methods
Subjects
These experiments were performed under national license A-91-557
(project 2014-25, authorization 05,202.02) and using procedures 32–
2011 and 34-2012, which were validated by Ethics Committee no. 59
[CEEA (Comité d’Ethique en Expérimentation Animale) Paris Center et
Sud]. All surgical procedures were performed in accordance with the

guidelines established by European Communities Council Directive
(2010/63/EU Council Directive Decree).

Extracellular recordings were obtained from 47 adult pigmented
guinea pigs (age, 3–16months; 36 males, 11 females) at the following
five different levels of the auditory system: the cochlear nucleus (CN),
the inferior colliculus (IC), the medial geniculate body (MGB), A1, and
secondary auditory cortex (area VRB). Animals, weighing from 515 to
1100 g (mean weight, 856 g), came from our own colony housed in a hu-
midity-controlled (50–55%) and temperature-controlled (22–24°C) facil-
ity on a 12 h light/dark cycle (light on at 7:30 A.M.) with free access to
food and water.

Two to three days before each experiment, the pure-tone audiogram
of the animal was determined by testing auditory brainstem responses
(ABRs) under isoflurane anesthesia (2.5%), as described in the study by
Gourévitch et al. (2009). The ABR was obtained by differential record-
ings between two subdermal electrodes (SC25, NeuroService) placed at
the vertex and behind the mastoid bone. Software (RTLab, Echodia)
allowed the averaging of 500 responses during the presentation of nine
pure-tone frequencies (between 0.5 and 32kHz) delivered by a speaker
(Knowles Electronics) placed in the right ear of the animal. The auditory
threshold of each ABR was the lowest intensity where a small ABR wave
can still be detected (usually, wave III). For each frequency, the threshold
was determined by gradually decreasing the sound intensity (from 80dB
down to �10dB SPL). All animals used in this study had normal pure-
tone audiograms (Gourévitch et al., 2009; Gourévitch and Edeline, 2011;
Aushana et al., 2018).

Surgical procedures
All animals were anesthetized by an initial injection of urethane (1.2
g/kg, i.p.) supplemented by additional doses of urethane (0.5 g/kg, i.p.)
when reflex movements were observed after pinching the hindpaw (usu-
ally two to four times during the recording session). A single dose of at-
ropine sulfate (0.06mg/kg, s.c.) was given to reduce bronchial secretions,
and a small dose of buprenorphine was administered (0.05mg/kg, s.c.)
as urethane has no antalgic properties.

After placing the animal in a stereotaxic frame, a craniotomy was
performed and a local anesthetic (Xylocain 2%) was liberally injected
into the wound.

For auditory cortex recordings (areas A1 and VRB), a craniotomy
was performed above the left temporal cortex. The opening was 8 mm
wide starting at the intersection point between parietal and temporal
bones and 8–10 mm in height. The dura above the auditory cortex was
removed under binocular control and the CSF was drained through the
cisterna to prevent the occurrence of edema.

For the recordings in MGB, a craniotomy was performed above the
most posterior part of the MGB (8 mm posterior to bregma) to reach the
left auditory thalamus at a location where the MGB is mainly composed
of its ventral, tonotopic, division (Redies et al., 1989; Edeline et al., 1999,
2000; Anderson et al., 2007; Wallace et al., 2007).

For IC recordings, a craniotomy was performed above the IC, and
portions of the cortex were aspirated to expose the surface of the left IC.
For CN recordings, after opening the skull above the right cerebellum,
portions of the cerebellum were aspirated to expose the surface of the
right CN (Paraouty et al., 2018).

After all surgeries, a pedestal in dental acrylic cement was built to
allow an atraumatic fixation of the animal’s head during the recording
session. The stereotaxic frame supporting the animal was placed in a
sound-attenuating chamber (IAC, model AC1). At the end of the record-
ing session, a lethal dose of Exagon (pentobarbital.200mg/kg, i.p.) was
administered to the animal.

Recording procedures
Data from multiunit recordings were collected in five auditory struc-
tures, the non-primary cortical area VRB, the primary cortical area A1,
the MGB, the IC, and the CN. In a given animal, neuronal recordings
were only collected in one auditory structure. Cortical extracellular
recordings were obtained from arrays of 16 tungsten electrodes (ø:
33mm, ,1 MV) composed of two rows of eight electrodes separated by
1000mm (350mm between electrodes of the same row). A silver wire,
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used as a ground, was inserted between the temporal bone and the dura
mater on the contralateral side. The location of the primary auditory
cortex was estimated based on the pattern of vasculature observed in
previous studies (Edeline and Weinberger, 1993; Manunta and Edeline,
1999; Wallace et al., 2000; Edeline et al., 2001). The non-primary cortical
area VRB was located ventral to A1 and distinguished because of its long
latencies to pure tones (Rutkowski et al., 2002; Grimsley et al., 2012). For
each experiment, the position of the electrode array was set in such a
way that the two rows of eight electrodes sample neurons responding
from low to high frequency when progressing in the rostrocaudal direc-
tion [see examples of tonotopic gradients recorded with such arrays in
Gaucher et al., 2012 (their Fig. 1) and in Occelli et al., 2016 (their Fig.
6A)].

All the remaining extracellular recordings (in MGB, IC, and CN)
were obtained using 16-channel multielectrode arrays (NeuroNexus)
composed of one shank (10 mm) of 16 electrodes spaced by 110mm and
with conductive site areas of 177 mm2. The electrodes were advanced ver-
tically (for MGB and IC) or with a 40° angle (for CN) until evoked
responses to pure tones could be detected on at least 10 electrodes.

All thalamic recordings were from the ventral part of MGB (see
above Surgical procedures), and all displayed latencieswere ,9 ms. At
the collicular level, we distinguished the lemniscal and nonlemniscal
divisions of IC based on depth and on the latencies of pure-tone
responses. We excluded the most superficial recordings (until a depth of
1500mm) and those exhibiting latency �20ms in an attempt to select
recordings from the central nucleus of IC (CNIC). At the level of the
cochlear nucleus, the recordings were collected from both the dorsal and
ventral divisions.

The raw signal was amplified 10,000 times [Medusa, Tucker-Davis
Technologies (TDT)]. It was then processed by an RX5 multichannel
data acquisition system (TDT). The signal collected from each electrode
was filtered (610–10,000Hz) to extract multiunit activity (MUA). The
trigger level was set for each electrode to select the largest action poten-
tials from the signal. Online and offline examination of the waveforms
suggests that the MUA collected here was made of action potentials gen-
erated by a few neurons in the vicinity of the electrode. However, as we
did not use tetrodes, the result of several clustering algorithms (Pouzat et
al., 2004; Quiroga et al., 2004; Franke et al., 2015) based on spike wave-
form analyses were not reliable enough to isolate single units with good
confidence. Although these are not direct proofs, the fact that the elec-
trodes were of similar impedance (0.5–1 MV) and that the spike ampli-
tudes had similar values (100–300 mV) for the cortical and the
subcortical recordings, were two indications suggesting that the cluster
recordings obtained in each structure included a similar number of
neurons.

Acoustic stimuli
Acoustic stimuli were generated using MATLAB (MathWorks), trans-
ferred to a RP2.1-based sound delivery system (TDT) and sent to a
Fostex Speaker (model FE87E). The speaker was placed at 2 cm from the
right ear of the guinea pig, a distance at which the speaker produced a
flat spectrum (63 dB) between 140Hz and 36kHz. The stimulation was
not purely monaural, but the head and body of the animal largely attenu-
ated binaural cues. Calibration of the speaker was made using noise and
pure tones recorded by a Brüel & Kjær (B&K) microphone (model 4133)
coupled to a preamplifier (model 2169, B&K) and a digital recorder
(model PMD671, Marantz).

The time–frequency response profiles (TFRPs) were determined
using 129 pure-tone frequencies covering eight octaves (0.14–36 kHz)
and presented at 75dB SPL. The tones had a g envelop given by
g tð Þ ¼ t

4

� �
2e

�t
4 , where t is time in milliseconds. At a given level, each fre-

quency was repeated eight times at a rate of 2.35Hz in pseudorandom
order. The duration of these tones over half-peak amplitude was 15ms,
and the total duration of the tone was 50ms, so there was no overlap
between tones.

A set of four conspecific vocalizations was used to assess the neuro-
nal responses to communication sounds. These vocalizations were
recorded from animals of our colony. Pairs of animals were placed in the
acoustic chamber, and their vocalizations were recorded by a Brüel &

Kjær microphone (model 4133) coupled to a preamplifier (model 2169,
B&K) and a digital recorder (model PMD671, Marantz). A large set of
whistle calls was loaded in the Audition software (Audition 3, Adobe)
and four representative examples of whistle were selected. As shown in
Figure 1A, despite the fact that the maximal energy of the four selected
whistles was in the same frequency range (typically, between 4 and
26kHz), these calls displayed slight differences in their spectrogram and
spectrum (Fig. 1A,B). In addition, their global temporal envelopes clearly
differed (Fig. 1C). The four selected whistles were processed by three-
tone vocoders (Gnansia et al., 2009, 2010). In the following figures, the
unprocessed whistles will be referred to as the original versions, and the
vocoded versions as Voc38 (Voc20, and Voc10, respectively) for the 38-
band (20-, and 10-band, respectively) vocoded whistles. In contrast to
previous studies that used noise-excited vocoders (Nagarajan et al., 2002;
Ranasinghe et al., 2012; Ter-Mikaelian et al., 2013), a tone vocoder was
used here, because noise vocoders introduce random (i.e., non-informa-
tive) intrinsic temporal envelope fluctuations distorting the crucial spec-
trotemporal modulation features of communication sounds (Kates,
2011; Stone et al., 2011; Shamma and Lorenzi, 2013).

Figure 1D displays the spectrograms of the 38-band vocoded (first
column), the 20-band vocoded (second column) and the 10-band
vocoded (third column) versions of the four whistles. The three vocoders
differed only in terms of the number of frequency bands (i.e., analysis fil-
ters) used to decompose the whistles (38, 20, or 10 bands). The 38-band
vocoding process is briefly described below, but the same principles
apply to the 20-band or the 10-band vocoders. Each digitized signal was
passed through a bank of 38 fourth-order Gammatone filters (Patterson,
1987) with center frequencies uniformly spaced along a guinea pig-
adapted ERB (equivalent rectangular bandwidth) scale ranging from 20
to 35,505Hz (Sayles and Winter, 2010). In each frequency band, the
temporal envelope was extracted using full-wave rectification and low-
pass filtering at 64Hz with a zero-phase, sixth-order Butterworth filter.
The resulting envelopes were used to amplitude modulate sine-wave car-
riers with frequencies at the center frequency of the Gammatone filters,
and with random starting phase. Impulse responses were peak aligned
for the envelope (using a group delay of 16ms) and the temporal fine
structure across frequency channels (Hohmann, 2002). The modulated
signals were finally weighted and summed over the 38 frequency bands.
The weighting compensated for imperfect superposition of the impulse
responses of the bands at the desired group delay. The weights were opti-
mized numerically to achieve a flat frequency response. Figure 1E shows
the long-term power spectrum of the 38-, 20-, and 10-band vocoded
whistles, and Figure 1F shows their global temporal envelopes (which
were relatively well preserved by the vocoding process).

The four whistles were also presented in a frozen noise ranging from
10 to 24,000Hz. To generate this noise, recordings were performed in
the colony room where a large group of guinea pigs were housed (30–40;
2–4 animals/cage). Several 4 s audio recordings were added up to gener-
ate a “chorus noise,” the power spectrum for which was computed using
the Fourier transform. This spectrum was then used to shape the spec-
trum of white Gaussian noise. The resulting vocalization-shaped station-
ary noise therefore matched the chorus noise audio spectrum, which
explains why some frequency bands were overrepresented in the vocal-
ization-shaped stationary noise. Figure 1G displays the spectrograms of
the four whistles in the vocalization-shaped stationary noise with SNRs
of110, 0, and �10dB SPL. Figure 1H shows the long-term power spec-
trum of the four whistles at the110, 0, and �10dB SNRs, and Figure 1I
shows their global temporal envelopes (which were severely altered at
the 0 and�10dB SNRs).

AM spectra were computed for the original, vocoded, and noisy ver-
sions of each vocalization by decomposing each sound with the same
bank of 50 gammatone filters than for the vocoding (range, 0.1–50 kHz).
The AM component (envelope) thus corresponds to the magnitude of
the analytic signal, whereas the TFS corresponds to its unwrapped in-
stantaneous phase.

For the AM spectrum, we analyzed the temporal envelope in each
frequency band through a bank of AM filters using a method adapted
from the human study by Varnet et al. (2017) for the hearing range of
guinea pigs (one-third octave wide first-order Butterworth bandpass
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filters overlapping at �3dB, with center frequencies between 0.1 and
410Hz). The root mean square amplitude of the filtered output was multi-
plied by a factor of

ffiffiffi
2

p
. For each AM filter, and a modulation index was cal-

culated by dividing the output by the mean amplitude of the AM component
for the vocalization sample in the corresponding gammatone filter.

Experimental protocol
As inserting an array of 16 electrodes in a brain structure almost system-
atically induces a deformation of this structure, a 30 min recovering time
lapse was allowed for the structure to return to its initial shape, then the
array was slowly lowered. Tests based on measures of TFRPs were used

Figure 1. Spectrograms, spectra, and temporal envelopes of the acoustic stimuli. A–C, Spectrograms (A), spectra (B), and temporal envelopes (C) of the four original whistles used in this
study. D–F, From left to right: spectrograms (D), spectra (E), and temporal envelopes (F) of the four vocoded whistles using 38, 20, and 10 frequency bands. G–I, From left to right: spectro-
grams (G), spectra (H), and temporal envelopes (I) of the four original whistles embedded in a vocalization-shaped stationary noise at three SNRs (110, 0, and�10 dB).
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to assess the quality of our recordings and to adjust the depth of electro-
des. For auditory cortex recordings (A1 and VRB), the recording depth
was 500–1000mm, which corresponds to layer III and the upper part of
layer IV, according to Wallace and Palmer (2008). For thalamic record-
ings, the NeuroNexus probe was lowered ;7 mm below pia before the
first responses to pure tones were detected.

When a clear frequency tuning was obtained for at least 10 of the 16
electrodes, the stability of the tuning was assessed, as follows: we
required that the recorded neurons displayed at least three successive
similar TFRPs (each lasting 6min) before starting the protocol. When
the stability was satisfactory, the protocol was started by presenting the
acoustic stimuli in the following order: we first presented the four origi-
nal whistles in their natural versions, followed by the vocoded versions
with 38, 20, and 10 bands at 75 dB SPL. The same set of original whistles
was then presented in the vocalization-shaped stationary noise presented
at 65, 75, and 85dB SPL. Thus, the level of the original vocalizations was
kept constant (75 dB SPL), and the noise level was increased (65, 75, and
85dB SPL). In all cases, each vocalization was repeated 20 times.
Presentation of this entire stimulus set lasted 45min. The protocol was
restarted either after moving the electrode arrays on the cortical map or
after lowering the electrode at least by 300mm for subcortical structures.

Data analysis
Quantification of responses to pure tones. The TFRPs were obtained by
constructing post-stimulus time histograms (PSTHs) for each frequency
with 1ms time bins. The firing rate evoked by each frequency was quan-
tified by summing all the action potentials from the tone onset up to
100ms after this onset. Thus, TFRPs are matrices of 100 bins on the ab-
scissa (time) multiplied by 129 bins on the ordinate (frequency). All
TFRPs were smoothed with a uniform 5� 5 bin window.

For each TFRP, the best frequency (BF) was defined as the frequency
at which the highest firing rate was recorded. Peaks of significant excita-
tory response were automatically identified using the following proce-
dure: an excitatory peak in the TFRP was defined as a contour of firing
rate above spontaneous activity plus six times the SD of the spontaneous
activity. Recordings without a significant excitatory peak of responses or
with only inhibitory responses were excluded from the data analyses.
The bandwidth (BW) was defined as the sum of all peak widths in
octaves. The response duration was the time difference between the first
and last spikes of the significant peaks. The response strength was the
total number of spikes falling in the significant peaks (in Action
Potentials/s, AP/s).

Quantification of responses evoked by vocalizations. The responses to
vocalizations were quantified using the following two parameters: (1) the
firing rate of the evoked response, which corresponds to the total num-
ber of action potentials occurring during the presentation of the stimulus
minus spontaneous activity; (2) the trial-to-trial temporal reliability coef-
ficient (called CorrCoef, as in our previous studies: Gaucher et al., 2013;
Huetz et al., 2014; Gaucher and Edeline, 2015; Aushana et al., 2018),
which quantifies the trial-to-trial reliability of the responses over the 20
repetitions of the same stimulus. This index was computed for each
vocalization: it corresponds to the normalized covariance between each
pair of spike trains recorded at the presentation of this vocalization and
was calculated as follows:

CorrCoef ¼ 1
NðN � 1Þ

XN�1

i¼1

XN

j¼i11

s xixj

s xjs xj
;

where N is the number of trials and sxixj is the normalized covariance
at zero lag between spike trains j and xj, where i and j are the trial
numbers. Spike trains j and xj were previously convolved with a 10-ms-
width Gaussian window. Based on computer simulations, we have previ-
ously shown that this CorrCoef index is not a function of the firing rates
of neurons (Gaucher et al., 2013).

Quantification of mutual information from the responses to vocaliza-
tions. The method developed by Schnupp et al. (2006) was used to quan-
tify the amount of information (Shannon, 1948) contained in the
responses to vocalizations obtained with natural vocoded and noise
stimuli. This method allows quantifying how well the identity of the

vocalization can be inferred from neuronal responses. Here, “neuronal
responses” refer to either (1) the spike trains obtained from a small group
of neurons below one electrode [for the computation of the individual
mutual information (MIIndividual)] or (2) a concatenation of spike trains
simultaneously recorded under several electrodes [for the computation
of the population MI (MIPopulation)]. In both cases, the following compu-
tation steps were the same. Neuronal responses were represented using
different time scales ranging from the duration of the whole response
(firing rate) to 1 ms precision (precise temporal patterns), which allows
analyzing how much the spike timing contributes to the information. As
this method is exhaustively described in Schnupp et al. (2006) and in
Gaucher et al. (2013), we present below only the main principles.

The method relies on a pattern recognition algorithm that is
designed to “guess which stimulus evoked a particular response pattern”
(Schnupp et al., 2006) by going through the following steps: From all the
responses of a cortical site to the different stimuli, a single response (test
pattern) is extracted and represented as a PSTH with a given bin size
(different sizes were considered as indicated in the Results section).
Then, a mean response pattern is computed from the remaining
responses (training set) for each stimulus class. The test pattern is then
assigned to the stimulus class of the closest mean response pattern. This
operation is repeated for all the responses, generating a confusion matrix
where each response is assigned to a given stimulus class. From this con-
fusion matrix, the MI is given by Shannon’s formula, as follows:

MI ¼
X

x;y

pðx; yÞ � log2
pðx; yÞ

pðxÞ � pðyÞ;

where x and y are the rows and columns of the confusion matrix, or in
other words, the values taken by the random variables “presented stimu-
lus class” and “assigned stimulus class.”

In our case, we used responses to the four whistles and selected the
first 280ms of these responses to work on spike trains of exactly the
same duration (the shortest whistle being 280ms long). In a scenario
where the responses do not carry information, the assignments of each
response to a mean response pattern is equivalent to chance level (here
0.25, because we used four different stimuli and each stimulus was pre-
sented the same number of times) and the MI would be close to zero. In
the opposite case, when responses are very different between stimulus
classes and very similar within a stimulus class, the confusion matrix
would be diagonal and the mutual information would tend to log2(4) =
2 bits.

This algorithm was applied with different bin sizes ranging from 1 to
280ms (Fig. 2B; the evolution of MI with temporal precisions ranging
from 1 to 40ms).

The MI estimates are subject to non-negligible positive sampling
biases. Therefore, as in the study by Schnupp et al. (2006), we estimated
the expected size of this bias by calculating MI values for “shuffled” data,
in which the response patterns were randomly reassigned to stimulus
classes. The shuffling was repeated 100 times, resulting in 100 MI esti-
mates of the bias (MIbias). These MIbias estimates are then used as estima-
tors for the computation of the statistical significance of the MI estimate
for the real (unshuffled) datasets: the real estimate is considered to be
significant if its value is statistically different from the distribution of
MIbias shuffled estimates. Significant MI estimates were computed for
MI calculated from neuronal responses under one electrode. The range
of MIbias values was very similar between auditory structures: depending
on the conditions (original, vocoded, noisy vocalizations), the MIbias
ranges were from 0.102 to 0.107 in the CN, from 0.107 to 0.110 in the
IC, from 0.105 to 0.114 in the MGB, from 0.107 to 0.111 in A1, and from
0.106 to 0.116 in VRB. There was no significant difference between the
mean MIbias values in the different structures (unpaired t test, all
p. 0.25).

The information carried by a group of recordings was estimated by
the MIPopulation, using the same method described above, as follows:
responses of several simultaneous multiunit recordings were concaten-
ated and considered as a single pattern. To assess the influence of the
group size of simultaneous multiunit recordings on the information
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carried by that group (MIPopulation), the number of sites used for computing
MIPopulation varied from two to the maximal possible size (which is equal to
16 minus the nonresponsive sites). As the number of possible combinations
could be extremely large (Cn

k, where k is the group size and n the number of
responsive sites in a recording session), a threshold was fixed to save com-
putation time, as follows: when the number of possible combinations
exceeded 100, 100 combinations were randomly chosen, and the mean of
all combinations was taken as theMIPopulation for this group size.

For the MIPopulation, the values of bias were also computed as follows:
on average and for all sets of nine simultaneous recordings, MIPopulation
was 0.104 in the CN, 0.111 in the IC, 0.114 in the MGB, 0.107 in A1, and
0.106 in VRB. There was no significant difference between the mean
MIPopulation bias values in the different structures (unpaired t test, all
p. 0.20).

Statistics. To assess the significance of the multiple comparisons
(vocoding process, four levels; masking noise conditions, three levels; au-
ditory structure, five levels), we used an ANOVA for multiple factors to
analyze the whole dataset. post hoc pairwise tests were performed
between the original condition and the vocoding or noisy conditions.
They were corrected for multiple comparisons using Bonferroni correc-
tions and were considered as significant if their p value was ,0.05. All
data are presented as mean values6 SEM.

Results
From a database of 2334 recordings collected in the five auditory
structures, two criteria were used to include neuronal recordings

in our analyses. A recording had to show significant responses to
pure tones (see Materials and Methods) and an evoked firing
rate significantly above spontaneous firing rate (200ms before
each original vocalization) for at least one of the four original
vocalizations. Applying these two criteria led to the inclusion of
499 recordings in CN, 386 recordings in CNIC, 262 recordings
in the ventral division of the MGB (MGv), 354 recordings in A1,
and 95 recordings in VRB. Table 1 summarizes the range of best
frequencies, mean bandwidth, response duration, and response
strength obtained when testing pure tone responses in each audi-
tory structure. In the following sections, the neuronal responses
to the original vocalizations presented in quiet are compared
across brain structures, and the discrimination performances are
described at the individual and population levels. The neuronal
discrimination tested with tone-vocoded vocalizations and vocal-
izations presented against different levels of masking noise are
described and compared next.

Determination of optimal parameters for temporal analyses
of spike trains in the five auditory structures
Before quantifying the neuronal discrimination performance in
the five investigated structures, we first looked for the optimal
parameters for analyzing the temporal patterns of spike trains in
the five structures.

Figure 2. Evolution of the CorrCoef and MI mean values as a function of temporal precision in each structure. A, The trial-to-trial temporal reliability, quantified by the CorrCoef, was calcu-
lated from responses to original vocalizations with a width of Gaussian window varying from 1 to 50 ms in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue), and VRB (in purple). In
our study, a 10 ms width Gaussian window (dashed black line) was selected for the data analysis in each structure. B, Mutual information (in bits) was calculated from neuronal responses to
original vocalizations with a bin size varying from 1 to 40 ms in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue), and VRB (in purple). In this study, the value of 8 ms was selected
for the data analysis because in each structure the MI value was maximal (dashed black line). This holds true also in the different conditions of acoustic alterations, both in noisy and vocoded
conditions (data not shown).

Table 1. Summary of the number of animals, number of selected recordings and TFRP quantifications in each structure

CN

Lemniscal pathway
Nonlemniscal pathway

CNIC MGv A1 VRB

Number of animals 10 11 10 11 5
Number of recordings tested 672 478 448 544 192
TFRP only 560 421 285 455 126
TFRP and significant response to at least one vocalization 499 386 262 354 95
TFRP quantifications

BF range (kHz), minimum–maximum 0.18–18 0.34–36 0.33–33 0.14–36 0.67–36
Mean bandwidth (octave) 3.91 2.88 4.16 2.07 1.79
Mean response duration (ms) 26.83 35.37 17.31 43.73 44.83
Response strength (AP/s) 77.23 82.25 41.61 37.69 19.97
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First, the CorrCoef index, which quantifies the trial-to-trial
temporal reliability, was computed with a Gaussian window
ranging from 1 to 50ms. As a general rule, the largest the
Gaussian window, the largest the CorrCoef mean value, whatever
the structure was. We questioned whether selecting a particular
value for the Gaussian window influenced the between-structure
differences in CorrCoef mean values. Based on the responses to
the original vocalizations, Figure 2A shows that the relative rank-
ing between auditory structures remained unchanged whatever
the width of the Gaussian window was. Therefore, we kept the
value of 10ms for the Gaussian window (Fig. 2A, dashed line) as
it was used in previous cortical studies (Huetz et al., 2009;
Gaucher et al., 2013; Gaucher and Edeline, 2015; Aushana et al.,
2018).

Second, at the cortical level, it was previously shown that the
maximal value of MI based on temporal patterns was obtained,
on average, with a bin size of 8ms (Schnupp et al., 2006;
Gaucher et al., 2013). However, it has never been demonstrated
that the same bin size was optimal at all levels of the auditory sys-
tem. Figure 2B shows the evolution of MI as a function of tempo-
ral precision ranging from 1 to 40ms based on the responses to
the original vocalizations. In our experimental conditions, and
with our set of acoustic stimuli, the 8 ms temporal precision was
found to be optimal for all auditory structures, in the original
(Fig. 2B, dashed line), vocoded, and noisy conditions (data not
shown). Therefore, the MI value obtained for a temporal preci-
sion of 8ms was subsequently used in our analyses.

Subcortical structures better discriminate the original
vocalizations
Figure 3A displays neuronal responses of two simultaneous mul-
tiunit recordings obtained at five levels of the auditory pathway
(CN, CNIC, MGv, A1, and VRB). The neuronal responses were
strong and sustained in the CN and CNIC, more transient in
MGv, phasic in A1, and more diffuse in VRB. For most of the
recordings, temporal patterns of response were clearly reproduci-
ble from trial to trial, but they differed from one vocalization to
another both at the cortical and subcortical levels. The PSTHs
displayed in Figure 3B show that at each level of the auditory sys-
tem, the four whistles triggered distinct temporal patterns of
responses.

Quantifications of evoked responses to original vocalizations
over all the recordings are presented in Figure 3C–F for each au-
ditory structure. These analyses clearly pointed out large differ-
ences among the mean values of evoked firing rate, CorrCoef,
and MI quantified at the cortical level versus the subcortical level.
First, the evoked firing rate was significantly higher in the sub-
cortical structures than in the cortex (unpaired t test, lowest
p value , 0.001). It was also higher in CN compared with the
other subcortical structures (Fig. 3C). Second, the CorrCoef val-
ues were significantly higher in CNIC and MGv compared with
A1 and VRB (Fig. 3D), indicating that the trial-to-trial reliability
of evoked responses was stronger in these structures than in CN,
A1, and VRB. Third, the MIIndividual values obtained at the sub-
cortical level were significantly higher than at the cortical level
(unpaired t test, highest p value , 0.001 between the cortex and
the other structures; Fig. 3E). At the subcortical level, the
MIIndividual values were significantly higher in MGv than in
CNIC and CN (unpaired t test, p, 0.01) with the CN exhibiting
the lowest MI values at the subcortical level. The MIIndividual val-
ues were also significantly lower in VRB than in A1 (p= 0.037).
Recordings in MGv displayed the highest MIIndividual mean val-
ues, suggesting that, on average, thalamic neurons discriminate

the four original whistles better than the other auditory struc-
tures. As shown in Figure 3G, in each auditory structure high
MIIndividual values were strongly correlated with high values of
trial-to-trial temporal reliability (indexed by the CorrCoef value;
0.77, r, 0.88; p, 0.001). Finally, MI was also computed based
on the temporal patterns obtained from 2 to 16 simultaneous
multiunit recordings to determine whether the discrimination
performance of neural networks confirms the results obtained at
the individual (i.e., single-recording) level. MIPopulation quantifies
how well the four whistles can be discriminated based on tempo-
ral patterns expressed by neuronal populations distributed on
the tonotopic map. The MIPopulation values computed from nine
simultaneous multiunit recordings show that neural populations
in subcortical structures discriminate the four original whistles
better than the cortical populations (unpaired t test, highest p
value , 0.002 between CN and VRB) without any statistical dif-
ference among the three subcortical structures (Fig. 3F).

We next investigated the diversity of the MIIndividual and
MIPopulation values obtained in the different structures. The distri-
butions of MIIndividual values were plotted as a function of tempo-
ral precision for each structure (Fig. 4A1–A5). The waterfall
plots showed that whatever the temporal precision, there were
more curves with high MIIndividual values in the subcortical struc-
tures than in the cortical areas (Fig. 4A1–A5, red curves). The ex-
amination of the evolution of the MIPopulation as a function of the
number of simultaneous multiunit recordings in the different
structures revealed that the growth functions rapidly reached
high values in all subcortical structures, whereas there were only
a few such curves in A1 and VRB whatever the number of
recordings considered (Fig. 4B1–B5).

With a temporal resolution of 8ms, we presented the cumula-
tive percentages of neurons for the MIIndividual (Fig. 5A) and the
MIPopulation values (Fig. 5B) in each structure. Above a value of
1.5 bits (indicating that at least three stimuli can be discrimi-
nated), there were 39% of MGv neurons, and 18% and 14%,
respectively, of CNIC and CN neurons; but only 3.5% and 2%,
respectively, of A1 and VRB neurons. This proportion was sig-
nificantly higher in MGv than in CN and CNIC (p= 0.017 and
p= 0.04) and was also significantly higher in subcortical struc-
tures compared with the cortical structures (all p values , 0.01).
The same conclusions were reached for the MIPopulation values.
More than 90% of the MGv neuronal populations were
.1.5 bits, and 83% and 75%, respectively, of the CNIC and CN
populations, whereas these populations represented,40% at the
cortical level (36% and 34%, respectively, in A1 and VRB).

Thus, both at the level of individual recordings, and at the
population of simultaneous multiunit recordings, subcortical
neurons are more accurate in discriminating the four original
whistles than cortical ones.

Modest effects of tone vocoding
Figure 6A displays rasters of recordings obtained in the five
structures in response to the original and tone-vocoded vocaliza-
tions using 38 (Voc38), 20 (Voc20), and 10 (Voc10) frequency
bands. As illustrated by the rasters and the PSTHs presented in
Figure 6B, in all structures neurons still vigorously responded to
the vocoded stimuli even for 10-band vocoded stimuli.

Figure 6C–F summarizes the vocoding effects on the four pa-
rameters quantifying neuronal responses. Compared with the
responses to the original vocalizations, the evoked firing rate
obtained in all structures in response to vocoded stimuli only
showed modest variations (Fig. 6C): apart from an increase in
firing rate in the CN with the 38-band vocoded stimuli, a
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Figure 3. Subcortical neurons discriminate better the original vocalizations than cortical neurons. A, From bottom to top, neuronal responses were recorded in CN, CNIC, MGv, A1, and VRB
simultaneously under 16 electrodes but only two are represented here, with alternated black and red colors. Each dot represents the emission of an action potential, and each line corresponds
to each presentation of one of four original whistles. The gray part of rasters corresponds to evoked activity. For each example, the values of the BF (in kHz) and of the BW (in octaves) obtained
when testing the responses to pure tones are indicated on the left side. The waveforms of the four original whistles are displayed under the rasters. B, PSTHs of each neuronal response pre-
sented in A. For each neuronal recording, the four PSTHs of the four original whistles have been overlayed. C–F, The mean values of the evoked firing rate (in spikes/s; C), the trial-to-trial tem-
poral reliability quantified by the CorrCoef value (D), the neuronal discrimination assessed by MIIndividual values (bits; E), and MIPopulation (bits; F), with populations of nine simultaneous
multiunit recordings obtained with the four original vocalizations in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue), and VRB (in purple). The evoked firing rate corresponds to the
total number of action potentials occurring during the presentation of the stimulus minus spontaneous activity (200ms before each acoustic stimulus). In each structure, error bars represent
the SEM of the mean values, and black lines represent significant differences between the mean values (unpaired t test, p, 0.05). The evoked firing rate decreases from the CN to VRB, but
both the trial-to-trial temporal reliability (CorrCoef) and the discrimination performance (MI) reach a maximal value in MGv. Note also that at the population level, all the subcortical structures
discriminate better the original vocalizations than cortical areas. G, Scatter plots showing in each structure, the strong correlations (0.77, r, 0.88) between the CorrCoef and the MIIndividual
(bits) values obtained in original conditions.
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Figure 4. Diversity of neuronal discrimination performance in quiet for each structure at the individual and population levels. A1–A5, Neural discrimination performance in
response to original vocalizations in each auditory structure. Waterfall plots show the MI (bits) as a function of temporal resolution (1–256 ms) for the selected recordings in CN
(A1), CNIC (A2), MGv (A3), A1 (A4), and VRB (A5). In each structure, the units are ranked by the mean MI value obtained for all bin sizes. Note that there was a larger proportion
of neurons with high values of MI (close from the maximal value of 2 bits) in MGv, CNIC, and CN (red curves) compared with a much lower proportion in the cortical areas A1 and
VRB. B1–B5, Population information quickly reaches high values with simultaneous multiunit recordings at the subcortical level but not the cortical level. For each auditory struc-
ture, each thin line represents a particular case of simultaneous recording with a maximum number of electrodes (maximum of 16 simultaneous multiunit recordings), and each
thick line represents the mean value of MIPopulation in CN (B1, in black), CNIC (B2, in green), MGv (B3, in orange), A1 (B4, in blue), and VRB (B5, in purple). Note that the mean
MIPopulation value quickly reaches high values close to the maximum value of 2 bits in the subcortical structures (CN, CNIC, and MGv) compared with the two cortical areas (A1 and
VRB).

Figure 5. High discrimination performance neurons are more numerous in subcortical structures than in auditory cortex in original conditions. A, B, Cumulative percentage of the neuronal
discrimination performance obtained in original vocalizations assessed by MIIndividual (in bits; A) and MIPopulation (in bits; B) with populations of nine simultaneous multiunit recordings in CN (in
black), CNIC (in green), MGv (in orange), A1 (in blue), and VRB (in purple).

Souffi et al. · Cortical and Subcortical Discrimination in Noise J. Neurosci., 0, 2020 • 00(00):000 • 9



Figure 6. Vocoding slightly alters neuronal responses at each stage of the auditory system. A, From left to right, examples of raster plots representing the responses to the four original
whistles (Original) and their vocoded versions (Voc38, Voc20, and Voc10). The gray part of rasters corresponds to evoked activity. From bottom to top, Neuronal responses were recorded in CN,
CNIC, MGv, A1, and VRB. For each example, the values of the BF (in kHz) and of the BW (in octaves) obtained when testing the responses to pure tones are indicated on the left side. For each
example, the mean evoked firing rate (in spikes/s) obtained in each condition is indicated below the rasters. B, PSTHs of each neuronal response presented in A. For each neuronal recording,
the four PSTHs of the original and vocoded conditions have been overlayed. The gray part of the PSTHs corresponds to evoked activity. C–F, The mean values (6SEM) represent the vocoding
effects on the evoked firing rate (in spikes/s; C), the temporal reliability represented by the CorrCoef value (D), the neuronal discrimination assessed by MIIndividual (in bits; E), and MIPopulation (in
bits; F) with populations of nine simultaneous multiunit recordings in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue), and VRB (in purple; one-way ANOVA, p, 0.05; with post
hoc paired t tests, *p , 0.05). The evoked firing rate corresponds to the total number of action potentials occurring during the presentation of the stimulus minus spontaneous activity
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significant decrease in evoked firing rate in response to the 10-
band vocoded vocalizations was found only at the subcortical level
(for all subcortical structures; with one-way ANOVA: FCN(3,1995) =
22.6; FCNIC(3,1543) = 8.85; FMGv(3,1047) = 6.55; p, 0.001; with post
hoc paired t tests, p, 0.05), whereas there was no decrease in ei-
ther A1 or VRB. Vocoding also decreased the mean CorrCoef val-
ues in every structure except in VRB (Fig. 6D). This decrease was
significant with the 10-band vocoded vocalizations in CN, MGv,
and A1 (one-way ANOVA: FCN(3,1930) = 26.48; FMGv(3889) = 7.7;
FA1(3,1125) = 3.42; highest p value, p, 0.02; with post hoc paired
t tests, p, 0.05). The decrease in CorrCoef value was already sig-
nificant with 20-band vocoded vocalizations in the CNIC (one-
way ANOVA: F(3,1391) = 26.19, p, 0.001; with post hoc paired
t tests, p, 0.05).

Similarly, vocoding decreased the MIIndividual values in each
structure except in VRB (Fig. 6E). Here too, the decrease was signif-
icant with the 10-band vocoded vocalizations in CN, MGv, and A1
(one-way ANOVA: FCN(3,1445) = 12.23, FMGv(3810) = 3.75, FA1(3720) =
3.59; highest p value, p, 0.02; with post hoc paired t tests, p, 0.05),
and it was already significant with 20-band vocoded vocalizations in
the CNIC (one-way ANOVA: FCNIC(3,1231) = 13.17, p, 0.001; with
post hoc paired t tests, p, 0.05). At the population level
(MIPopulation), compared with the values obtained in response to the
original vocalizations, the MIPopulation values computed with the 10-
band vocoded vocalizations were significantly lower in the subcorti-
cal structures (one-way ANOVA: FCN(3127) = 6.46, FCNIC(3115) =
6.28, FMGv(3,67) = 4.62; highest p value, p, 0.005; with post hoc
paired t tests, p, 0.05) but not at the cortical level (Fig. 6F). The
evolution of MIPopulation as a function of the number of simultane-
ous multiunit recordings (Fig. 7A–E) showed that in each subcorti-
cal structure, the curves rapidly reached high MIPopulation values
(close to the maximal value of 2bits) in each vocoding conditions,
whereas in A1 and VRB the curves slowly reached the maximum
MIPopulation values.

In conclusion, for the five auditory structures, the neuronal
responses to 10-band vocoded vocalizations were slightly weaker,
temporally less accurate, and less discriminative than the
responses to the original vocalizations. Nonetheless, on average,
subcortical neurons still maintained the highest discrimination

performance between tone-vocoded vocalizations, both at the
level of individual recordings and at the population level.

Pronounced effects of masking noise on neuronal
discrimination
The rasters presented in Figure 8A illustrate the effects induced
by presenting the original vocalizations against a vocalization-
shaped stationary noise at three SNRs (110, 0, and �10dB). As
illustrated by the rasters and the PSTHs presented in Figure 8B,
masking noise attenuated neuronal responses at each level of the
auditory system. However, the auditory structures were differen-
tially affected by noise. The responses in the CNIC did not
change up to a 0 dB SNR, decreasing only at a �10 dB SNR. This
was not the case in the other auditory structures where the
responses decreased either at a 110dB SNR (MGv and CN) or
at a 0 dB SNR (A1 and VRB).

Figure 8C–F summarizes the effects of masking noise on the
different parameters quantifying neuronal responses. Masking
noise significantly reduced the evoked firing rate in each auditory
structure already at the110dB SNR (Fig. 8C; one-way ANOVA:
FCN(3,1995) = 309.33, FCNIC(3,1543) = 220.64, FMGv(3,1047) = 155.07,
FA1(3,1415) = 96.27; p, 0.001; with post hoc paired t tests,
p, 0.05), except in VRB.

At the subcortical level, masking noise strongly reduced the
CorrCoef values in CN and MGv at the highest SNR (110dB)
tested here (Fig. 8D; one-way ANOVA: FCN(3,1884) = 382.22,
FMGv(3791) = 155.82, p, 0.001; with post hoc paired t tests,
p, 0.05), whereas in the CNIC, this reduction was significant
only at the 0 dB SNR (one-way ANOVA: FCNIC(3,1357) = 154.12,
p, 0.001; with post hoc paired t tests, p, 0.05). At the cortical
level, the CorrCoef values were significantly reduced in A1 at the
110 dB SNR and in VRB at the 0 dB SNR (one-way ANOVA:
FA1(3,1093) = 60.83, FVRB(3335) = 29.56, p, 0.001; with post hoc
paired t tests, p, 0.05).

At the subcortical level, noise reduced the MIIndividual values,
but again, there was a marked difference between the CNIC and
the other subcortical structures: the MIIndividual mean value in
CN and MGv was significantly reduced at the110dB SNR (Fig.
8E; one-way ANOVA: FCN(3819) = 56.75, FMGv(3621) = 63.61,
p, 0.001; with post hoc paired t tests, p, 0.05), whereas the
MIIndividual value in the CNIC was only significantly reduced at
the 0 dB SNR (one-way ANOVA: F(3,1078) = 32.08, p, 0.001;
with post hoc paired t tests, p, 0.05). At the cortical level, noise
significantly reduced the average MIIndividual in A1 only at the
�10dB SNR (one-way ANOVA: F(3649) = 9.49, p, 0.001; with
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(200ms before each acoustic stimulus). At the population level, the discrimination perform-
ance significantly decreased only for 10 frequency bands in subcortical structures and did not
decrease in cortical areas.

Figure 7. Vocoding effects on the MIPopulation growth functions in each auditory structure. A–E, The curves display the average growth functions of the MIPopulation for each structure in each
vocoding condition (indicated by a gradient colors) in CN (A, in black), CNIC (B, in green), MGv (C, in orange), A1 (D, in blue), and VRB (E, in purple). In each structure, the vocoding slightly
reduced the MIPopulation values. At the cortical level, the reduction induced by vocoding was similar at 38 and 20 bands, then a stronger reduction was observed at 10 bands. At the thalamic
level, there was almost no change in the growth function of the MIPopulation with 38- and 20-band vocalizations, but there was a large decrease in MIPopulation with the 10-band vocoded stimuli.
In the CNIC, the vocoding only induced a reduction of the MIPopulation for 20 and 10 bands; a similar scenario was observed at the CN level.
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Figure 8. Noise strongly reduces neuronal responses in all structures, but to a lesser extent in the central nucleus of the inferior colliculus. A, From left to right, raster plots of responses
of four original whistles (Original) and their noisy versions embedded in the vocalization-shaped stationary noise at three SNRs:110, 0, and �10 dB. The gray part of rasters corresponds
to evoked activity. From bottom to top, neuronal responses were recorded in CN, CNIC, MGv, A1, and VRB. For each example, the values of the BF (in kHz) and of the BW (in octaves)
obtained when testing the responses to pure tones are indicated on the left side. For each example, the mean evoked firing rate (in spikes/s) obtained in each condition is indicated below
the rasters. The green dashed box indicates a typical example of CNIC neuronal responses that are resistant to the noise addition. B, PSTHs of each neuronal response presented in A. For
each neuronal recording, the four PSTHs of the original and noisy conditions have been overlayed. The gray part of the PSTHs corresponds to evoked activity. C–F, The mean values (6SEM)
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post hoc paired t tests, p, 0.05), whereas the average MIIndividual
in VRB remained unchanged (Fig. 8E).

The effects of masking noise on the network discrimination
performance were quantified with the MIPopulation (Fig. 8F). At
the cortical level, there was a significant reduction of MIPopulation
values only at the �10dB SNR (one-way ANOVA: FA1(3111) =
16.63, FVRB(3,23) = 11.41, p, 0.001; with post hoc paired t tests,
p, 0.05), whereas there was a significant decrease in CN already
at the 110dB SNR (one-way ANOVA: FCN(3127) = 51.49,
p, 0.001; with post hoc paired t tests, p, 0.05). In MGv and
CNIC, neuronal populations still displayed the highest discrimi-
nation performance, although the decrease in MIPopulation value
was significant at the 0 dB SNR (one-way ANOVA: FMGv(3,67) =
41.59, FCNIC(3115) = 22.59, p, 0.001; with post hoc paired t tests,
p, 0.05).

Note that, in VRB, the CorrCoef and MIPopulation were much
more decreased in the noise conditions than in the vocoding
conditions, suggesting that the lack of significant decreases in
vocoding conditions was not a “floor effect” due to the low initial
values.

The evolution of the MIPopulation as a function of the number
of simultaneous multiunit recordings in the different structures
(Fig. 9A–E) revealed that, regardless of the number of neurons
considered, noise effects were similar up to the 0 dB SNR: the
population curves in CNIC and MGv grew up relatively rapidly
and reached higher values than the curves obtained in CN and in
the two cortical areas. At the �10 dB SNR, the MIPopulation from
the CNIC remained higher (regardless of the number of neurons
considered) than in the other structures, whereas there was no
increase of the MIPopulation with the number of neurons in VRB.

One puzzling result came from the fact that on average, the
values of MIIndividual and MIPopulation decreased more for CN
recordings than for the two subsequent subcortical relays.

However, at least 20% of the CN recordings at the 110 dB SNR
maintained MIIndividual values .1 bit (Fig. 10A, red curves) and
MIPopulation values .1.5 bits (Fig. 10C, red curves), suggesting
that a subpopulation of CN neurons was still able to send infor-
mation about the vocalization identity at higher brainstem cen-
ters. This also suggests that the discrimination performed by a
group of a fixed number of neurons deteriorates with noise faster
in the CN and, consequently, more CN neurons are necessary to
obtain an equivalent amount of information observed in CNIC.

The distributions of the TFRP parameters (best frequency,
bandwidth, response duration, response strength) from this spe-
cific subpopulation of CN neurons did not differ from the neu-
rons exhibiting MIIndividual values ,1 bit at the 110dB SNR in
terms of best frequency and bandwidth, but significantly differ in
terms of response duration and response strength (x 2 tests,
p, 0.05; Fig. 10B). More precisely, the CN recordings exhibiting
higher MIIndividual values at 110dB SNR had longer duration
responses and stronger evoked firing rates to pure tones.

A more general question is to evaluate whether the TFRP
characteristics in the different auditory structures (Fig. 11A,
examples) influenced the noise effects quantified by the
MIIndividual values (Fig. 11B,C). As indicated in Figure 11, there
was no relationship between the best frequency values and the
changes in MIIndividual values (Fig. 11B) and no relationship
between the frequency bandwidth and the changes in MIIndividual
values (Fig. 11C). Thus, in all structures, the noise-induced alter-
ations in MIIndividual values seem to be independent from the
characteristics of pure tone responses.

To summarize, masking noise differently impacted the dis-
crimination performance of neurons at the subcortical and corti-
cal levels. Although cortical neurons were more resistant to
changes in noise level, the thalamic and collicular neurons main-
tained higher MI values, with the CNIC neurons displaying the
highest discrimination performance both at the individual and
population level in the most challenging condition (i.e., at the
�10dB SNR).

Alteration of slow amplitude modulations as one of the
factors explaining the changes in neuronal discrimination
Masking noise produced spectrotemporal degradations: it
reduced the AM cues in the different audio frequency bands,
introduced irrelevant envelope fluctuations, and altered the TFS
of the sound. Tone vocoding removed almost all the TFS but
also progressively filtered out the fast AM. As a vast literature
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represent the noise effects on the evoked firing rate (in spikes/s; C), the temporal reliability
represented by the CorrCoef value (D), the neuronal discrimination assessed by MIIndividual (in
bits; E), and by MIPopulation (in bits; F) with populations of nine simultaneous multiunit
recordings in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue), and VRB (in pur-
ple; one-way ANOVA, p, 0.05; with post hoc paired t tests, *p ,0.05). The evoked firing
rate corresponds to the total number of action potentials occurring during the presentation
of the stimulus minus spontaneous activity (200 ms before each acoustic stimulus). At the
population level, the discrimination performance significantly decreased in all structures
when the SNR decreased, with on average the CNIC populations still able to discriminate two
of four stimuli (MIPopulation value,.1 bit).

Figure 9. Noise effects on the MIPopulation growth functions in each auditory structure. A–E, The curves display the noise effects on the MIPopulation growth functions for each structure and at
each SNR (indicated by a gradient colors) in CN (A, in black), CNIC (B, in green), MGv (C, in orange), A1 (D, in blue), and VRB (E, in purple). In general, background noise largely altered the
growth functions of the MIPopulation in each structure (but to a lesser extent in the CNIC). In the CN, noise induced a stronger reduction of the MIPopulation, which was clearly a function of SNR.
In the CNIC, noise induced SNR-dependent reduction in the MIPopulation values, the reduction being modest at a 110 and 0 dB SNR but more important at a �10 dB SNR. In the MGv, noise
progressively lowered the curves of the MIPopulation. In the cortex, the MIPopulation growth functions were not strongly impacted except at the�10 dB SNR.
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demonstrated that slow AM cues are crucial for speech understand-
ing in normal and degraded conditions (Houtgast and Steeneken,
1985; Drullman et al., 1994; Drullman, 1995; Shannon et al., 1995;
Dubbelboer and Houtgast, 2007; Jørgensen and Dau, 2011), we
quantified the alterations of AM cues (due to masking noise and to
vocoding) and looked for potential relationships with the alterations
in neural discrimination (MIPopulation) in the five structures.

The AM spectra obtained in vocoding and noise conditions
showed that the AM cues were attenuated compared with the
original condition (Fig. 12A). The 110dB SNR condition pro-
duced a flattening of the AM modulation spectrum, which was
further accentuated in the 0 and �10dB SNR conditions. In
these two most degraded conditions, noise also introduced non-
relevant fluctuations at high rates. In contrast, vocoding pre-
served the general shape of the AM spectra while progressively
filtering out the AM fluctuations.

We investigated the relationships between these degradations
of AM cues and neural discrimination (MIPopulation) in the five
structures for each experimental condition (Fig. 12B). More pre-
cisely, for all conditions, Figure 12B shows the changes in
MIPopulation for each auditory structure as a function of the
attenuation of AM cues (computed as the mean modulation
index between 1 and 20Hz). Figure 12B reveals that in all struc-
tures other than the CN, MIPopulation is barely affected as long as
the reduction of the AM index (Dmodulation index) remains
,25%; beyond this limit, the MIPopulation is reduced (i.e., at the 0
and �10dB SNR). The straightforward conclusion is that the
reduction of slow AM cues is one of the factors controlling the
decrease in MIPopulation at the cortical and subcortical levels. In
the cochlear nucleus, the decrease in the MIPopulation is much
larger than in the other structures, suggesting that the alteration
of AM cues has more impact on the MIPopulation at the most

Figure 10. A subpopulation of CN neurons maintains good neuronal discrimination performance at a110 dB SNR. A, Waterfall plot shows the mutual information (MIIndividual; in bits) as a
function of temporal resolution (1–256 ms) for the CN recordings at110 dB SNR. The recordings are ranked by the mean MI value obtained for all bin sizes. Note that at this particular SNR,
20% of the CN recordings still maintained MIIndividual values above 1 bit, indicating that some CN neurons still send information about the vocalization identity at higher brainstem centers such
as the CNIC. B, Distributions of the TFRP parameters (best frequency, bandwidth, response duration, and response strength) for the two neuronal populations in CN depending of the MI value
(in gray; MI � 1 bit; in black, MI, 1 bit). Note that there were significant differences in terms of response duration and response strength. C, The curves display the individual and average
growth functions of the MIPopulation for the simultaneous CN recordings at the110 dB SNR. Note that despite the fact that the mean MIPopulation value was much lower than in the original con-
dition (Fig. 4B1),;20% of the simultaneously recorded populations reached a value of 1.5 bits with nine neurons or fewer (red curved lines).
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peripheral level. Alternatively, one should keep in mind that the
neuronal discrimination in noise can be based on other acoustic
cues such as the FM cues (in particular pitch cues), spectral regu-
larity, and harmonicity cues, and the simultaneous rising slope of
energy across channels. Thus, in the cochlear nucleus, but also in
the other structures, the strong decrease in MIPopulation can
potentially result from alterations of one, or several, of these
parameters.

Dissecting the contributions of each of these parameters to
neuronal discrimination and its decrease in degraded conditions
will require manipulations of controlled stimuli in independent
conditions. Confirming that the slow AM cues are the main fac-
tor for discrimination in degraded conditions could theoretically
be achieved by keeping the exact same AM cues and modifying
only one of the acoustic parameters listed above. Using a compu-
tational model of the peripheral auditory system will help to esti-
mate the respective representations of the envelope and temporal

fine structure after acoustic degradations (Moon et al., 2014;
Wirtzfeld et al., 2017). For example, the search for “equivalent”
experimental conditions in terms of amounts of neural degrada-
tion of AM and FM cues could be performed by using the FAME
vocoder (Zeng et al., 2005) to alter systematically AM and FM
parameters (i.e., cutoff frequency, modulation strength, modula-
tion phase) of the vocalizations used as stimuli. The results of
this type of experiment should also be generalized with other cat-
egories of guinea pig calls and other types of communication
sounds from other species, and should be included in other types
of masking noises.

Discussion
Here, we demonstrated that for each acoustic distortion, subcort-
ical neurons displayed the highest level of discrimination per-
formance of natural vocalizations, either at the collicular level (in

Figure 11. No relationship between the mutual information and the parameters of TFRPs (the BF and BW) at each stage of the auditory system. A, Typical examples of TFRP recorded in
VRB, A1, MGv, CNIC, and CN. These TFRPs are examples of responses to pure tones, and the first column also corresponds to the same neurons as those presented in Figures 3, 5, and 7. From
left to right, the maximal firing rate (in spikes/s) was 100 and 220 in VRB, 195 and 200 in A1, 460 and 420 in MGv, 315 and 250 in CNIC, and 340 and 330 in CN. From these TFRPs, we
extracted parameters such as the best frequency (in kHz), the bandwidth (in octaves), the response duration (in ms), and the response strength (in spikes/s). B, Noise effect on neuronal dis-
crimination (MIIndividual, bits) according to the BF. Scattergrams of the MIIndividual values obtained at the110 dB SNR as a function of the MIIndividual values obtained with the original vocaliza-
tions based on neuronal responses recorded in CN, CNIC, MGv, A1, and VRB. We separated the recordings in three groups according to the best frequency: BF , 5 kHz (in red), 5 � BF �
15 kHz (in blue), and BF. 15 kHz (in green). MIIndividual mean values are represented with a black cross. C, Noise effect on neuronal discrimination (MIIndividual, bits) according to the BW.
Scattergrams of the MIIndividual values obtained at the110 dB SNR as a function of the MIIndividual values obtained with the original vocalizations based on neuronal responses recorded in CN,
CNIC, MGv, A1, and VRB. We separated the recordings in three groups according to the bandwidth: BW� 2 octaves (in red), 2 � BW � 4 octaves (in blue), and BW� 4 octaves (in green).
MIIndividual mean values are represented with a black cross. Note that, in all structures, the decrease in MIIndividual value from the original conditions to the110 dB SNR occurred, whatever the
BF and the BW values.
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masking noise conditions) or at the thalamic level (in vocoder
conditions). More precisely, background noise markedly reduces
neural discrimination performance in all auditory structures with
larger effects in the cochlear nucleus, whereas the vocoder induced
little effect in each auditory structure. Interestingly, the discrimi-
nation performance of cortical neurons was less impacted, making
these neurons more robust to all acoustic alterations. Moreover,
the comparison of neural data collected in response to noisy versus
vocoded vocalizations suggests that the transmission of slow
(,20Hz) amplitude modulation information is one of the factors
contributing to the neural discrimination decrease in noise at the
cortical and subcortical levels.

Subcortical structures represent natural vocalizations more
precisely than primary and nonprimary cortical areas
In contrast with previous cortical studies, which have quantified
the discrimination between calls that belong to different categories
making the discrimination easy for cortical neurons (Narayan et
al., 2006, 2007; Ter-Mikaelian et al., 2013; Ni et al., 2017), we used
four vocalizations that belong to the same category making the
discrimination more difficult for cortical neurons. We showed
that on average subcortical populations discriminated the original
vocalizations better than cortical populations. Moreover, smaller
populations of subcortical neurons compared with cortical ones
were sufficient to discriminate between the stimuli used in this
study. These results corroborate the finding by Chechik et al.
(2006) that the MGB and A1 responses contain 2- to 4-fold less in-
formation than the responses of IC neurons. Here, the discrimina-
tion performance in MGv was closer than the ones displayed by
the other subcortical structures. A potential explanation is that
Chechik et al. (2006) recorded from all MGB divisions, including
the medial and dorsal divisions, whereas our thalamic recordings
were limited to MGv and exhibited tonic responses to vocaliza-
tions similar to those observed in the CNIC and the CN (Figs. 3A,

5A). The stimulus sets also differ, as we used four utterances of the
same category (the whistle), whereas Chechik et al. (2006) used
chirps from three birds and variants of these stimuli, leading
potentially to an easier classification between groups of stimuli
compared with our protocol. An interesting result was that the
optimal bin size for computing MI was similar for all structures
(8ms bin; Fig. 2B). Importantly, with a smaller or a larger bin, the
mutual information would have been underestimated, but this
would not have changed the differences reported here: whatever the
bin size, subcortical neurons will still discriminate better in the orig-
inal vocalizations than in the cortical areas (Fig. 2B). Potentially, the
optimal bin size depends more on the stimuli durations than on the
auditory structure. When computing mutual information from IC,
MGB, and A1 neuronal responses, Chechik et al. (2006) usually
found an optimal bin size of 4ms, which was different from that in
our study, probably because their stimulus durations are shorter
than our stimuli (67–111ms vs 280–363ms, respectively). Recently,
we also found shorter optimal bin sizes when computing MI with
shorter (12–65ms) communication sounds (Royer et al., 2019).

Our original stimuli differed in terms of temporal envelope,
and, as a consequence, the most efficient way to discriminate
them is probably to follow the time course of AM cues. It is well
known that when progressing from the lower to the upper stages
of the auditory system, the ability of neurons to follow AM cues
considerably changes (Joris et al., 2004; Escabí and Read, 2005).
Brainstem neurons phase lock on AM modulations up to hun-
dreds of hertz (Frisina et al., 1990; Rhode and Greenberg, 1994),
whereas thalamic neurons do so for a few tens of hertz
(Creutzfeldt et al., 1980; Preuss and Müller-Preuss, 1990) and
cortical neurons do so for even lower rates (Schreiner and Urbas,
1988; Gaese and Ostwald, 1995). As a consequence, subcortical
neurons, (but not cortical ones) can follow the largest and fastest
AM cues (7–15Hz) contained in the original vocalizations (Fig.
12A, peak of the black curve in AM spectra). This likely explains
why subcortical neurons better discriminate the original stimuli

Figure 12. Reduction of slow AM cues as one of the factors explaining the neuronal discrimination performance at the subcortical and cortical levels. A, Vocoding and noise effects on the
AM spectra. The plot represents the averaged modulation spectra of the four original vocalizations (in black), vocoded vocalizations (Voc38, Voc20, and Voc10: red, green, and blue, respectively,
solid lines), and vocalizations in noise at three SNRs (110, 0, and �10 dB: red, green, and blue respectively, dashed lines). Vertical black dashed line corresponds to the maximum frequency
(20 Hz) selected for the data analysis. B, Percentage of DMIPopulation as a function of Dmodulation index computed for each structure from mean MIPopulation or mean modulation index values
obtained in all adverse conditions and mean values in the original condition. Each dot represents neuronal data (DMIPopulation) in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue),
and VRB (in purple). Polynomial curves fitting all acoustic conditions have been generated (color lines). In all conditions (vocoding or noise), there is a limit of AM reduction from which the
DMIPopulation decreases in cortical and subcortical structures.
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both at the individual and population levels. Cortical neurons
only follow the weakest and slowest AM cues (1–5Hz) of the
original vocalizations, which potentially explains why cortical
neurons weakly discriminate the original stimuli and tend to
encode them as a single category (Mesgarani et al., 2014).

Alterations of slow amplitude modulation cues is one of the
factors explaining the changes in cortical and subcortical
discrimination
Previous studies using vocoded vocalizations reported that corti-
cal responses were not drastically reduced even with two fre-
quency bands (Nagarajan et al., 2002; Ranasinghe et al., 2012;
Ter-Mikaelian et al., 2013; Aushana et al., 2018). At the level of
A1, studies have pointed out the relationships between the noise
impact on the cortical and behavioral discrimination perform-
ance. In bird field L (homologous to A1), neuronal responses to
song motifs were strongly reduced by three types of masking
noises, and the neural discrimination performance was progres-
sively reduced when the SNR decreased, in parallel with the behav-
ioral performance (Narayan et al., 2007). Our VRB results are
reminiscent of those obtained in area NCM (homologous to a sec-
ondary area) where feedforward inhibition allowed the emergence
of invariant neural representations of target songs in noise condi-
tions (Schneider and Woolley, 2013). Similar to the results in the
study by Ranasinghe et al. (2012), our IC neuronal responses were
found to be resistant to drastic spectral degradations.

Only one study directly compared the impact of vocoding
and masking noise on cortical responses to vocalizations
(Nagarajan et al., 2002). In this study, auditory cortex responses
were robust to spectral degradations even in response to 2-band
vocoded vocalizations. Also, broadband white noise reduced
neuronal responses at 0 dB SNR. Last, temporal envelope degra-
dations strongly reduced the evoked firing rate and the neural
synchronization to the vocalization envelope. Importantly, band-
pass filtering the vocalizations between 2–30Hz did not reduce
firing rate and neural synchronization to the vocalization enve-
lope. This is in agreement with the following results in our con-
ditions: when the Dmodulation index (computed between 1 and
20Hz) revealed modest AM alterations, there was little effect on
the neuronal discrimination, but when the AM alterations
reached approximately �20–30%, the neuronal discriminations
were reduced (Fig. 12B). Thus, our results are consistent with the
hypothesis that one of the factors constraining auditory discrimi-
nation at the cortical and subcortical levels is the fidelity of trans-
mission and processing of slow AM cues.

When quantifying how different noise levels alter neuronal
coding in the auditory system, it was found that the neural repre-
sentation of natural sounds becomes progressively independent
of the level of background noise from the auditory nerve to the
IC and A1 (Rabinowitz et al., 2013). It was proposed that this tol-
erance to background noise results from an adaptation to the
noise statistics, which is more pronounced at the cortical than at
the subcortical level. In agreement with this study, we found that
populations of cortical neurons (A1 and VRB) were more resist-
ant to noise than subcortical ones. However, we did not observe
a monotonic evolution of resistance to noise in the auditory sys-
tem: at the subcortical level, the discrimination performance of
CN neuronal populations drastically dropped as early as110dB
SNR, the populations of CNIC neurons maintained the highest
discrimination performance even at the �10 dB SNR, and those
of thalamic neurons largely decreased at 0 dB SNR, whereas cort-
ical neurons showed the lowest discrimination performance at
all SNRs but were more robust to noise. In the IC, previous work

showed that background noise changes the shape of the temporal
modulation transfer function of individual neurons from band-
pass to lowpass (Lesica and Grothe, 2008). The CNIC is a mas-
sive hub receiving probably the highest diversity of inhibitory
and excitatory inputs (Malmierca, 2004; Ayala et al., 2016), and
potentially the large diversity of these inputs allows this structure
to extract crucial temporal information about the stimulus tem-
poral envelope, even at a relatively low SNR.

Limitations of the study
We previously did not find evidence for higher cortical discrimi-
nation in awake animals compared with anesthetized animals
(Huetz et al., 2009): with normal and reversed whistle stimuli,
the percentage of cortical cells with significant MI values was
higher in anesthetized (71%) than in awake animals (44%; Huetz
et al., 2009, their Table 1). In addition, the Hmax value (equiva-
lent of MI) was higher in anesthetized than in awake animals
(0.38 vs 0.24; Huetz et al., 2009, their Table 2). Last, the trial-to-
trial temporal reliability of cortical cells to whistle calls was not
different in anesthetized and awake guinea pigs (anesthetized,
0.48; vs awake, 0.42; Huetz et al., 2009, their Fig. 8). A recent
study (Town et al., 2018) revealed that the cortical discrimination
performance between vowels observed in awake animals using
acoustic degradations were similar in anesthetized animals
(Bizley et al., 2009). Therefore, based on these two studies, the
cortical discrimination performance can only be slightly lower or
similar in awake compared with anesthetized animals. At the
subcortical level, it seems that there is not a large difference
between the phase-locking properties of neurons in anesthetized
and awake animals (Joris et al., 2004). Temporal properties of IC
neurons are only mildly affected by anesthesia (Ter-Mikaelian et
al., 2013), indicating that collicular neurons will still be far better
than cortical ones to follow the 10–20Hz temporal cues con-
tained in the four vocalizations. Together, these studies suggest
that the hierarchy between cortical and subcortical structures in
discriminating communication sounds should be more pro-
nounced or should remain the same in awake animals.

Another limitation of the present study lies in the use of a lim-
ited set of stimuli that is restricted to the same four whistles.
However, the four whistles used here were clearly representative of
our whole database of whistles in terms of frequency range, dura-
tion, range of frequency, and amplitude modulations. Changing the
four whistles from one recording to another can help in generalizing
the results, but the main advantage of using exactly the same four
whistles is that from one recording to the next, and from one struc-
ture to another, we were sure that the same acoustic cues were avail-
able for the neural discrimination. However, the whistles are a
subset of the guinea pig repertoire, and therefore the present results
may not generalize to other communication sounds, and larger sets
of stimuli should be used to confirm that the slow AM cues control
the neural discrimination. Even if amplitude modulations seem the
main cues for speech understanding (Drullman et al., 1994;
Shannon et al., 1995), other factors (the pitch, the frequency modu-
lation, the harmonicity cues) can also be involved.

As our results are based on multiunit recordings, we do not
know whether the same number of neurons was present in the
cluster recordings from the different structures, and whether the
individual discrimination performances of the cell types found in
each structure are equivalent. On the other hand, the MI evaluated
here is the reflection of a local computation performed by a small
population of individual neurons, which gives us a good estima-
tion of the whole discrimination performance of a given structure.
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Functional implications
In humans, speech sounds (such as phonemes) showing similar
acoustic properties trigger similar responses and are represented
as a single category in the superior temporal gyrus (Mesgarani
et al., 2014). As already proposed by Chechick and Nelken
(2012), auditory cortex neurons extract abstract auditory entities
rather than detailed spectrotemporal features. Obviously, this
urges the definition of the acoustic features that form a category
of auditory objects. It is relatively easy to delimit broad categories
such as environmental sounds, animal vocalizations, music, and
speech (Singh and Theunissen, 2003; Gygi et al., 2004, 2007;
Woolley et al., 2005; Gygi and Shafiro, 2013) in terms of modula-
tion cues, but within these categories, defining invariant features
is a difficult task. Here, the use of vocalizations belonging to the
same category of the guinea pig repertoire (i.e., “whistles”) may
explain both the relatively poor discrimination abilities of corti-
cal neurons compared with subcortical neurons and the robust-
ness of cortical responses to vocoding and background noise.

From the present study, it appears that the subcortical structures
engage significantly more neurons (20–40%) with high discrimina-
tion performance than the cortical areas (2–3%; Fig. 5A), confirm-
ing that the neural code is rather sparse at the cortical level
(Hromádka et al., 2008), which might not be the case at the subcort-
ical level. However, it is also possible that top-down projections
coming from auditory cortex and reaching the thalamus, inferior
colliculus, and cochlear nucleus (Jacomme et al., 2003; Malmierca
and Ryugo, 2011) influence the neural discrimination at the sub-
cortical level, especially in awake, behaving, animals. Thus, we can
envision that in behaving animals, learning-induced cortical plastic-
ity also contributes to enhancing the subcortical neural discrimina-
tion via the corticofugal projections. Further studies are required to
determine to what extent these subcortical representations influence
auditory abilities in animals and humans.
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