
Revisiting Visual Interface Programming:
Creating GUI Tools for Designers and Programmers

Stéphane Chatty1 Stéphane Sire1 Jean-Luc Vinot2
Patrick Lecoanet2 Alexandre Lemort1 Christophe Mertz1,2

1IntuiLab 2CENA
Prologue 1, La Pyrénéenne 7 avenue Edouard Belin

31372 Labège Cedex, France 31055 Toulouse Cedex, France
{chatty,sire,lemort,mertz}@intuilab.com {lecoanet,vinot}@cena.fr

ABSTRACT
Involving graphic designers in the large-scale development
of user interfaces requires tools that provide more graphical
flexibility and support efficient software processes. These re-
quirements were analysed and used in the design of the TkZ-
inc graphical library and the IntuiKit interface design envi-
ronment. More flexibility is obtained through a wider palette
of visual techniques and support for iterative construction of
images, composition and parametric displays. More efficient
processes are obtained with the use of the SVG standard to
import graphics, support for linking graphics and behaviour,
and a unifying model-driven architecture. We describe the
corresponding features of our tools, and show their use in the
development of an application for airports. Benefits include a
wider access to high quality visual interfaces for specialised
applications, and shorter prototyping and development cycles
for multidisciplinary teams.

KEYWORDS: visual design, vector graphics, SVG, soft-
ware architecture, GUI tools, model-driven architecture

CATEGORIES: H5.2 [Information Interfaces and presenta-
tion] User Interfaces — GUI; D2.11 [Software engineering]
Software Architectures.

INTRODUCTION
The work of graphic designers in user interface projects was
popularised with the Web and desktop interfaces [14]. With
the growing understanding that this work can improve users’
performance and acceptance of new products, it is now sought
in the design of specialised user interfaces, from aircraft cock-
pits to plant supervision systems. For instance, Figure 1 il-
lustrates a graphic designer’s work for air traffic control.

This evolution raises an important engineering issue: how
can companies design and produce such design-intensive soft-
ware at reasonable costs? For standalone applications with
no complex functional core, tools such as Flash and Direc-
tor allow designers to produce high quality products. But

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright c© 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

for more complex software, programmers and designers still
have to choose between cost and flexibility. On the one hand,
pre-designed widgets offered by interface builders are simple
to assemble. However programmers often produce poor lay-
outs, and designers resent the low control over the look and
interaction style. On the other hand, graphical libraries offer
greater flexibility: programmers can reproduce designs pro-
vided by graphic designers within certain limits. But even
then the limits are sometimes too strict for designers, and the
cost of re-coding their work is too high to support both itera-
tive design and a profitable industry.

Figure 1: Visual techniques, when used by graphic
designers, can enrich the message conveyed.

Efficiently involving graphic designers in the production of
interactive software calls for tools that meet the requirements
of both graphic design and software engineering. It requires
graphical capabilities that match the working methods of de-
signers. It also challenges the architecture of common user
interface tools and the notion of predefined widgets, which
were introduced solely for programming purposes.

This article describes these two sets of issues and the solu-
tions that we implemented in TkZinc and IntuiKit. TkZ-
inc is a graphical library provided as a replacement for the
Canvas component in the Tk toolkit [15]. It is available at
www.tkzinc.org. Co-designed with a graphic designer, its
features are aimed at providing programmers with graphical
capabilities and concepts that give them a common vocab-
ulary with designers. IntuiKit is an interface design suite
aimed at making the prototyping and development of multi-
modal user interfaces more accessible to industrial compa-
nies. Its model-driven architecture [10] supports software
engineering processes that involve iterative design and de-

267Volume 6, Issue 2

signers from multiple disciplines. In this paper, we focus
on the features of IntuiKit that are aimed at graphic design-
ers: the use of the Scalable Vector Graphics (SVG) standard
as the graphical model of the environment, and an architec-
ture that focuses on combining the graphical facet of inter-
active components with the other facets that are produced
by programmers. We then illustrate the use of IntuiKit on a
real application, and discuss implementation details, related
work and the limitations and perspectives of our work. All
illustrations in this paper except diagrams are screen shots of
applications created with TkZinc and IntuiKit.

MATCHING DESIGNERS’ WORK
Art does not reproduce the visible; rather, it makes visible.

Paul Klee, 1920

Producing efficient visuals is not just a matter of good taste
and having tools with a rich graphical model. Graphic de-
signers are trained to use methods evolved by artists over
centuries, whatever the media and tools. Understanding those
methods helps selecting which features are most needed by
designers and in what form. That is what guided the develop-
ment of TkZinc: the goal was to make user interface design
an experience similar to illustration design, notwithstanding
the fact that user interfaces are dynamic programs.

Being implemented as a Tk widget, TkZinc benefits from
standard GUI mechanisms: windowing, event management,
etc. The originality of TkZinc lies in its graphical primitives,
chosen and organised as a mix of GUI programming libraries
and drawing tools such as Adobe Photoshop and Illustrator.
All other features, such as the programming interface or dis-
tribution of events to graphical items, are modelled after the
Tk Canvas. The main graphical characteristics of TkZinc are
vector-oriented graphics and visual effects, a 2D scene tree
where groups play an important role, and a graphical model
that includes shape construction, gradients, clipping, trans-
parency and shading. Some of these features are classical
and available in standards such as SVG, whereas others are
more radical or only available in 3D tools such as OpenGL.
In this section we show how they were chosen, through the
observation of visual designers.

When working on a display or a user interface, a designer
takes several types of information into account:

• the characteristics of the media to be used, for instance the
size and resolution of a screen;

• the data to be displayed, which is the main focus of soft-
ware engineers;

• context information, provided by observation or more of-
ten by marketing or internal communication departments:
what is the message to be conveyed to users (as opposed to
mere data display);

• efficiency considerations, based on psychological laws or
know-how.

Designing a display starts with a holistic approach: building
a global picture that conveys the desired message. The goal
is to evoke things known to the user and not to reproduce
them, by tricking the spectator’s eye if necessary. Once this
global picture is defined in their mind, designers work on
solutions to reproduce it, using the available range of visual

elements and techniques. We now examine in more details
the techniques used, and how TkZinc supports them.

A palette of visual techniques
Artists and designers use many ways to convey the mean-
ings they desire: contrasts, harmonies, light, etc. Combin-
ing these signals allows them to communicate data, but also
context, culture or feelings, which contribute to the global
interface usability and performance. The ideal designer’s
palette is made of shapes (including type), colours, textures,
light and rhythm. In practice, they have always had to ap-
proximate it with available tools, whether physical or digital.
For that reason, we observed that designers sometimes use
graphical tools in unexpected ways for programmers. This
has guided the design of many parts of TkZinc.

Revisiting shapes Although our understanding of the world
is made of shapes, our perception of it is not. Usually, artists
do not use “graphical objects” to produce shapes. Graphi-
cal designers sometimes do, when they want to produce high
contrast and visual simplicity. But generally, they rather see
them as “construction lines” used to apply visual effects such
as color strokes, shadows or light which produce the desired
perception. For this reason, TkZinc offers shapes that can be
used both as graphical objects or as geometrical templates.
Furthermore, with graphical models based on objects, de-
signers often lack intuitive notions such as holes and clip-
ping. For that purpose, TkZinc provides two complementary
solutions. Shape operations make it possible to build shapes
by assembling or subtracting other shapes, thus providing so-
lutions for holes. Clipping is also available: a shape can be
used as a clip mask for any graphical object or group.

Figure 2: Complex gradients used to create a rubber-
like appearance (left) or to simulate a 3D design (right)

Revisiting colour Perception is based on contrast, and colour
contrast is the easiest to create. However, designers often
want to use gradients rather than mere colour juxtaposition.
This is why TkZinc provides a rich gradient model, where
gradients can be defined from shapes. That includes linear
and radial gradients, but also conical gradients, and gradi-
ents computed from arbitrary paths. Figure 2 illustrates how
gradients can be used to simulate shapes, perspective effects,
and shadows. The button on the left is made of a circular
black arc filled with a conical gradient, then cloned, trans-
lated and filled with a path gradient. Most shapes and shad-
ows on the right are built with similar techniques.

Rhythm A complement to materials is visual rhythm, pro-
vided for instance by repeated pencil lines or strokes on a
drawing. Rhythm can be provided by filters applied to im-
ages or by line textures (the richer version of dashed lines). It
can also be produced by the cloning and layout of visual ob-
jects along “networks”. TkZinc provides geometrical grids

268

that automatically clone and translate shapes and gradients.
For instance, the top of figure 3 is made of one object built by
mapping a square path on a grid, filled with a pixmap texture.

Figure 3: Rhythm can be obtained by repeating
shapes along networks and combining them

Light The contrast between light and shade is an important
way of signalling information as well as driving the order
in which users read displays. It is also a way to structure
the visual space, make it consistent and create 2-1/2D ef-
fects. The designer in our group likes to manage light as a
“skin” added on top of shapes, colours and textures. For that
purpose, TkZinc offers a combination of groups and trans-
parency, as do recent versions of Adobe Illustrator. Objects
can be hierarchically organised as groups, and a transparency
can be associated to any group, making it behave as a semi-
transparent layer. Figure 1 makes heavy use of groups and
transparency.

Image construction
The above techniques are basic blocks for designers’ work.
However, some images cannot be obtained with a single op-
eration. Oil painting, for instance, involves the progressive
construction of pictures with several layers of paint. Design-
ers are used to building images in several successive opera-
tions. Several features of TkZinc support this process, some-
times perceived as sub-optimal by programmers: rather than
being pre-computed, images are recomputed during the in-
teraction, which allows designers to manage interactive dis-
plays while keeping the appropriate graphical control.

Figure 4: Hierarchical groups, simple transformations,
clipping, shape operations and gradients help shape
the scene light and provide great expressiveness

Shape operations Building some shapes is easier through
the combination of simpler shapes. For that purpose, TkZ-
inc offers a set of algebraic operations on shapes: addition,
subtraction, intersection. Shapes are successively built, filled

with textures or gradients, used to build other shapes, etc.
Objects such as those shown on the left of Figure 4 can also
be built by assembling triangles and shading the resulting tes-
sellation.

Hierarchical structure The successive operations must often
be applied to sets of objects rather than just one object. The
combination of groups, transparency and clip masks that we
described earlier plays an important role in this process. The
picture on the right of Figure 4 is made of four shapes created
from seven circles and a gradient each, which are grouped
and cloned. The cloned group is translated and scaled, then
clipped to produce the “magic lens” effect.

Attenuation and blending The iterative construction of im-
ages involves sequences such as making an operation then
subtly attenuating it on some parts of the display, or making
two shapes and merging them with a superimposed layer that
blends the contours. Groups, gradients and transparency can
be used for that purpose. Filters such as blurring are not yet
available in TkZinc but would also be desirable.

Parametric, interactive displays
Many of the above features are available, though often in dif-
ferent forms, in drawing tools, graphical libraries, SVG play-
ers, and in some UI toolkits. However, one should distin-
guish between drawing and creating representations. What
is needed to create high-quality user interfaces is a set of ob-
jects that can be computed from application data, modified
at run-time, and used to capture users’ action. Dynamicity
is central, and TkZinc allows designers to create dynamic in-
teractive objects, not just draw.

Extreme vector graphics There is a debate in the UI toolkit
community about bitmap and vector graphics: the former
provide pixel-precise control to designers, whereas the lat-
ter offer scalability. The design of TkZinc represents a rad-
ical position in this debate: TkZinc aims at being a vector-
only toolkit (with a slight concession to imported textures
and icons). Graphical objects are made of vectors of course,
but gradients, clips, and grids are also based on geometri-
cal vectors and can be changed at run-time. Similarly, all
vertices of paths and curves can be accessed and changed in-
dividually. No new feature is added to TkZinc if it cannot
be parameterised and related to the geometrical model. The
reason for this choice is interactivity: all graphical constructs
must be able to be bound to evolving data or interaction, and
thus be recomputed at run-time.

Object selection Providing feedback often implies chang-
ing the visual attributes of several objects at the same time.
It is not always possible to put those objects in one group, be-
cause they may be grouped with other objects for other pur-
poses: clipping, blending, etc. Another way of addressing
several objects must be provided. TkZinc provides a system
of tags inspired from Tk [15]: an object can have several tags
and it is possible to apply an operation to all the objects that
share a given tag. We will see that in IntuiKit this system is
extended to full XPath queries.

269Volume 6, Issue 2

GRAPHIC DESIGN AND SOFTWARE ENGINEERING
Augmenting the palette offered by GUI tools to designers is
an important first step. However, in many contexts this is
not enough. First, this leads to a linear production process:
graphic designers do their work, then programmers take over.
Second, this involves a duplication of effort: programmers
have to reproduce part or all of the graphics. We observed
that these two factors often prevent software development
groups from involving graphic designers, because of the re-
lated cost and project management issues.

Wider acceptance of iterative design and graphic design re-
quires solutions that preserve the ability to redesign graphics,
and avoid duplication of effort. The direction we chose in the
design of IntuiKit was to explore software engineering pro-
cesses that give graphic designers a more central role in the
production of software, while preserving the ability of pro-
grammers to structure their code appropriately. Designers
become software producers. Their artwork becomes a new
type of software component that can be managed in its own
way then merged with other components, just like software
components obtained from different source files have to be
merged by compilers and link editors in traditional software
engineering.

IntuiKit is a software suite aimed at designing and proto-
typing multimodal user interfaces, then transferring them to
industrial production. It is not centered around a modality
but rather organised as an execution environment for models
of software components, which makes it closer in many re-
spects to a language interpretor than to a GUI toolkit. With
IntuiKit, a user interface is the result of the instantiation and
combination of several models. These are all provided by ex-
tensions to the core software component model that is used
both for structuring programs and merging models. The set
of models used depends on the type of interface and the pre-
ferred modelling approach: for instance, models of graph-
ical objects and behaviours for GUIs, or speech and gram-
mar rules for speech interfaces. These models can be built
and managed independently, each with the appropriate tools.
They are then loaded by IntuiKit from XML files or instan-
tiated through a programming interface, linked together with
application code or non-modelled UI code, and “executed”.

In this section, we describe and illustrate the parts of IntuiKit
that are central to the involvement of designers in the soft-
ware engineering process: the general architecture and soft-
ware component model, the SVG graphical model, the dis-
crete behaviour model, and how they are combined to pro-
duce applications.

Architecture and components
The central structure of an IntuiKit application is a tree of
Elements and Components. Elements are the nodes of the
tree, and the basic blocks of all models: graphical objects,
windows and behaviours are Elements. The execution of the
application consists of a series of traversals of the tree, in
which elements are activated. Initialisation, rendering and
control flows triggered by events are example of such traver-
sals. A special kind of Element is the Reference, which al-
lows shared objects in the tree. Elements can be declared
as models, making them insensitive to rendering traversals.

Elements can be cloned, thus giving IntuiKit some features
of prototype languages. Elements can be loaded from XML
files. They can be parameterised through a property mech-
anism: they export the names of their properties, which can
be set from Cascading Style Sheets (CSS) files [13]. Refer-
ences can be defined using XPath expressions [20] to select
their target.

Components are Elements that contain children. They imple-
ment encapsulation and parameterisation through a names-
pace system. All element and property names exported by
children are visible to their siblings. These names can in turn
be exported (with an optional renaming) by the parent Com-
ponent to its own siblings and parents. Properties can also be
merged by the parent, which means that two sibling elements
will share the merged property. Control in IntuiKit relies on
a classical event model, in which any Element and Compo-
nent can emit events. Programmers can implement their own
Components in native code. The IntuiKit tree can be under-
stood as an extended scene graph. We prefer to interpret it as
the abstract tree of a language, because it is aimed at struc-
turing software more than rendering graphics.

The core of IntuiKit only provides structuring and commu-
nication mechanisms. All interactive capabilities are pro-
vided by IntuiKit extensions; defining an extension consists
of defining new Element types and their semantics when ren-
dered. Element types can be taken from existing standards, as
are the SVG elements for graphics or VoiceXML for speech.
They can also be defined specifically, as are the finite state
machines that are used below for defining the basic discrete
behaviour of interactive components.

Figure 5: Henry-the-Frenchie

SVG: turning artwork into software
SVG, a recommendation by the World Wide Web consor-
tium, is an XML standard for exchanging vector graphics.
Its object-oriented graphical model covers an important part
of the requirements described earlier in this article, which
makes it a good candidate for storing user interface graph-
ics. SVG is also convenient as a graphical file format: it can
be generated from graphic design tools such as Adobe Illus-
trator or Corel Draw. For these reasons, and despite some
disparities with the features described earlier, the GUI mod-
ule of IntuiKit implements the SVG model, using TkZinc as
its graphical rendering engine. SVG elements are considered
as IntuiKit Elements, and SVG groups as Components. In-
tuiKit offers two equivalent ways for manipulating graphics:
by loading SVG files or through a programming interface.
Using files, one can manage graphics as an independent part

270

of the software, produced for instance with Adobe Illustrator
by saving the artwork in SVG format.

The two fragments of Perl code below show how the GUI
module of IntuiKit is used. The first example uses the pro-
gramming interface and opens a window that displays some
text. It illustrates how the position of Elements in the tree
influences the result just like in a scene graph: the window
(Frame), font and text are added to the root Component in
such an order that the text appears with the appropriate font
in the window.

$root = new Component;

new Frame (-parent => $root);

new Font (-parent => $root, -family => ’Helvetica’);

new Text (-parent => $root, -text => ’EAT!!!’);

$root->run;

The second example illustrates the use of an SVG file. It acts
as a basic SVG player, by adding a window and an Element
to a root Component. This is illustrated in Figure 5 with the
SVG file from a very simple application that we will use in
the rest of this section: a digital pet inspired from a popular
electronic toy. The pet, named Henry-the-Frenchie, is totally
useless and has a simple behaviour: it grumbles when hungry
and can be fed by pressing a button.

$root = new Component;

new Frame (-parent => $root);

$henry = load Element (-parent => $root,

-file => ’henry.svg’);

$root->run;

Considering structured graphics files as a software compo-
nent allows designers to deliver successive versions and thus
to work in parallel with programmers. However, conven-
tions must be established. IntuiKit uses Element names for
that purpose: just like function or component names must
be determined in advance between programmers, SVG ele-
ment names must be agreed upon by designers and program-
mers. As an example, Figure 6 shows an extract of the Adobe
Illustrator palette that represents the artwork for Henry-the-
Frenchie. These layers and groups are saved in SVG as a tree
of groups with the names that were set in the palette. Conse-
quently, the palette reflects the contract passed between the
designer and the programmer.

Figure 6: Structure of the SVG file for Henry

Bringing graphics to life
Programmers must be able to capture events on graphical ob-
jects and change their appearance upon user events or mes-
sages from the functional core. For instance, Figure 7 illus-
trates event flows in the Henry-the-Frenchie application. The
“start eating” and “stop eating” events are generated when
the user depresses and releases the “eat” button. A simplified
functional core (FC) manages an internal numerical value
that grows while the button is depressed, then decreases peri-
odically. The FC emits “increase” and “decrease” events that
correspond to Henry’s status changing from starved to sati-
ated or stuffed and back. The interactive component reacts
upon all events to provide visual feedback.

Describing behaviour is a different facet than graphics. The
core module of IntuiKit provides an event system based on
a classical binding mechanism. A binding associates an ac-
tion with an event source (clock, graphical object, etc) and a
specification (button click, key press, etc); a binding can be
dynamically enabled or disabled. The GUI module that im-
plements the SVG model defines graphical objects as event
sources like the Tk Canvas: when the user clicks, the first
visible object under the mouse with an active binding has
its binding triggered. Bindings on groups can be specified
as “atomic” so that events are detected in all elements of a
group. This binding system provides the foundation for pro-
gramming behaviour as a set of callback functions, or for
using more elaborate models.

increase

start eating

stop eating
User Input Interactive

Component

FC
stop eating

decreasestart eating

Figure 7: Event flows in Henry

The literature provides various models of discrete or contin-
uous behaviour in user interfaces, such as StateCharts, finite
state machines, Petri nets, data flows, constraints, etc. Any
of these models could be offered as a set of Elements in In-
tuiKit, provided that the appropriate semantics are defined
and implemented (some of these models may require im-
provements to the core of IntuiKit). For discrete behaviours,
IntuiKit currently implements finite state machines (FSMs).
Although its limits are well known, this model is rich enough
to define basic interactive components, and it illustrates how
such a model can be combined with graphical Elements. Con-
tinuous behaviours such as scaling or translation are also
available; they rely on the ability of the GUI module to change
the attributes of SVG elements once they are instantiated.

Finite state machines: IntuiKit defines FSMs as a set of
states and a set of transitions labelled with event specifica-
tions and actions. When in a state, a binding is activated
for each outgoing transition. Actions include traditional call-
backs and event emission. Event specifications can refer to
all Element names that are visible from the FSM (the names
exported by its siblings). This makes it possible to asso-
ciate behaviours to events occurring on graphical Elements
defined in the same Component.

271Volume 6, Issue 2

IntuiKit FSMs are local to their parent Component. They
can be used to store its state and to emit events or trigger
callbacks when certain sequences of events occur. They can
also be used for basic graphical feedback by triggering the
display and hiding of graphical Elements that are associated
to its states. This takes advantage of a method often used
by graphical designers who use Adobe Photoshop to build
behaviours in Web pages: they store the different states of
their objects into different layers and manually simulate the
transitions by turning the visibility flag of the different layers
on and off. IntuiKit offers this possibility by using property
merging and the Switch Element.

Figure 8: The FSM-Switch pair for Henry’s stomach

Switches: In SVG, a Switch is a special group that renders
only one of its children depending on the value of a variable
of the run-time context, such as the preferred user language.
IntuiKit extends the semantics of the Switch, by defining an
implicit property named “branch” that controls which child
of the Switch will be rendered. If the Switch is present in the
same Component as a FSM, one can synchronise the Switch
and the FSM by merging the “branch” property of the Switch
and the “state” property of the FSM: when the FSM changes
state, it triggers a partial traversal of the tree, and the Switch
is rendered according to its new active branch.

Figure 9: The complete IntuiKit tree for Henry

Figure 8 shows the FSM-Switch pair used for Henry’s stom-
ach. The FSM receives “increase” and “decrease” events
from the FC. It is associated with a Switch that activates the
group containing the appropriate picture for Henry. Figure 9
gives a more complete view of the tree, and shows another
aspect of combining models. Switches control the rendering
of all their children, including FSMs. When a FSM is not
rendered by its parent Switch, its event bindings are disabled
and its state memorised. This provides control similar to that
of hierarchical FSMs, and it is used at two levels of depth for

Henry: it can be Idle or Eating (first FSM), and Starved, Sati-
ated or Stuffed (second FSM) when Idle. The code fragment
below illustrates the creation of the tree with XPath refer-
ences, FSMs, including event specification, and the merging
of properties which synchronises a FSM and a Switch.

$eat_model = $svg->find(-ref => ’.//Eating’);

$eat_model->clone(-parent => $Henry);

...

$switch = new Switch(-parent => $Henry,

-branches => { ’eating’ => ’../Eating’,

...

$fsm = new FSM(-parent => $Henry,

-states => [’eating’, ’idle’],

-transitions => {

{-from => ’idle’, -to => ’eating’,

-on => [$eat_button, ’StartEating’]},

...

$Henry->merge(-names => [$fsm->state, $switch->branch]);

Adjusting parameters
User interface environments must support the management
of parameters: colours, text labels, etc. In IntuiKit, this is
obtained with CSS: all properties defined by Elements can
be set from a style sheet file. For instance, let us assume that
the Functional Core (FC) of Henry is implemented in Perl as
a Component, and that the values of its “appetite” and “di-
gestion” control its internal algorithms. The corresponding
properties would then be defined as follows:

package FC;

use Component;

sub new {

my $self = new Component;

$self->define(-name => ’appetite’, -default => ’10’);

$self->define(-name => ’digestion’, -default => ’5’);

...

Then, the functional component could be created as follows:

$root = new Component (-name => ’Henry’);

$fc = new FC (-parent => $root, -name => ’fc’);

And finally, the properties could be changed with the follow-
ing style sheet file:

Henry/fc {

appetite: 50;

digestion: 44;

}

IMPLEMENTATION
TkZinc is a free software graphical library distributed by
CENA since 1998. Aimed at prototyping, it is built as a
widget in the Tcl-Tk environment, and can be used from
the Tcl, Python and Perl scripting languages. Its core struc-
ture is coded in C and originally based on the X Window
System. Many advanced visual features of TkZinc require
OpenGL. TkZinc runs on Windows, Linux and Mac OSX.
Initially developed for safety-critical displays, TkZinc has
good CPU performance and reliability: earlier versions of

272

TkZinc were used in operational air traffic control worksta-
tions from 1998 to 2003 for interactive displays composed
of thousands of graphical objects. Benchmarking against the
Java-based Batik SVG player revealed that TkZinc was more
than 10 times faster when loading and displaying a figure
made of 2600 curves amounting to 84000 vertices.

IntuiKit is developed and distributed by IntuiLab since 2003.
It offers a prototyping environment programmed and accessi-
ble in Perl, that has been used to develop car displays, touch-
screen-based workstations for various domains, as well as
prototype multimodal applications. It runs on Linux and
Windows. A C port accessible in C++ and Java and aimed
at small devices and production code is under development.

EXAMPLE APPLICATION
IntuiKit is used to develop prototypes or pre-operational prod-
ucts in various domains: automotive, aerospace, manufactur-
ing, telecommunications and defence. This has given us the
opportunity to test the concepts described in this article on
real applications. Four graphic designers were involved in
the projects, one at a time. Some had no previous experience
of working with programmers. In all cases the collabora-
tion was remote, meetings being reserved for participatory
design sessions. These experiences allowed us to refine the
proposed process and communication conventions between
project managers, graphic designers and programmers. They
also provided data to assess the gains brought by the chosen
architecture in terms of schedules and effort.

We now describe the development of a departure manager
for airports, which was designed and developed over a pe-
riod of a few weeks in late 2003. It is a good example of how
professional applications can benefit from giving designers
more expressive power, and of the work process supported
by our choice of software architecture. A company had de-
veloped algorithms to optimise the sequence of departures
for controllers who guide taxiing aircraft. Air traffic con-
trollers are known to be very demanding professional users,
and the company wanted to embed their algorithms in touch-
screen workstations that would both provide excellent usabil-
ity and seduce users and decision makers. The application
was meant for pre-operational tests, and consequently had to
offer full functionality. The company also had a very tight
schedule because they wanted to exhibit the product at a pro-
fessional convention so as to gain customers. This deadline
obviously played a key role in the organisation of the project.

The project team was composed of two programmers (one
being the lead interface designer and the other a domain ex-
pert), and a graphic designer. The project started with a dis-
count participatory design session that produced a paper pro-
totype for every interface to be built in the project. Figure 10
shows one of the prototypes. This prototype served as the
reference for all further developments on the interface, in
several ways. First, the layout of the different parts of the
interface was the result of collective work and served as the
basis for future composition work by the graphic designer.
Second, all parts of the prototype were given a name: static
parts (“printer”, “column”, “timeline”, etc) as well as a tem-
plate name for dynamic parts (“strip”, “plan”). The names
served as a basis for informal communication between par-

Figure 10: The paper prototype that served as a refer-
ence for group work

ticipants, who never met again until the end of the project.
Third, immediately after the session the lead interface de-
signer decomposed the prototype into a tree of components,
starting with the top-level parts. This tree represented the ar-
chitecture of the application, both in terms of software com-
ponents and graphical components. She used the tree as a
collective contract and interface between project actors, es-
pecially between UI programmers and the graphic designer.

From then on, the programmers and the graphic designer
worked independently, contacts being limited to clarification
questions or visual design proposals and feedback. The de-
signer started working on the general impression he wanted
to convey, and tested ambiances, colours, harmonies, tex-
tures, etc. Figure 11 gives a sample of his work.

Figure 11: The designer’s work on “the global picture”

Meanwhile, programmers used the reference component tree
to code the application. For each component they defined
the behaviours, the computations, and the connection to the
functional core. They also created basic graphics, which
were needed for testing the code. They used a professional
drawing tool to produce some of the graphics, others being
coded with the IntuiKit Perl API. The result of their work is
shown in Figure 12. The application was of very limited vi-
sual quality, but sufficient to test its usability as well as the
connection to the functional core, implemented as a server.

Three to four weeks before the deadline, the designer had fin-
ished maturing the design and preparing his elements: fonts,
patterns, etc. He was then ready to produce graphical el-

273Volume 6, Issue 2

Figure 12: The application with programmer-made graphics

ements to replace the placeholders made by programmers.
Having a computer equipped with IntuiKit and being regu-
larly sent new versions of the application, he was able to test
the elements in context himself: for that, he just had to drop
SVG files in the appropriate places. When satisfied with the
result, he sent the SVG files to the programmers by email.
Figure 13 shows two SVG designs that are perfectly equiva-
lent from the application’s point of view, though not exactly
equivalent for the user.

Figure 13: Detail: two skins for the “strips”

Finally, after a period of design, test, feedback, redesign, and
integration, the final graphics were produced a few days be-
fore the deadline. The very low cost of integrating graphics
as well as the ability to work in parallel allowed for these
very late iterations while programmers were busy testing and
debugging the application. This process allowed every actor
of the project to manage time in their own way to work until
the last limit, without excessive tension. The final result is
shown in Figure 14. As a final note, the product was a great
success with potential users and customers at the exhibition,
and its interface was perceived by all as an important com-
petitive advantage. This is one more empirical proof of the
potential of graphic design for professional systems and the
importance of supporting it.

DISCUSSION AND PERSPECTIVES
Practical experience with TkZinc and IntuiKit such as the
one we just described has evidenced both benefits and re-
maining limitations. The most obvious benefit of using rich
graphical models is the visual quality of the resulting user
interfaces, when designed by professionals. But we con-

sider the efficiency gains as equally important. The project
described above has allowed us to compare figures with a
project of similar size and complexity executed by the same
team a few months earlier without Intuikit. The earlier project
involved the same effort by the graphic designer (15 days)
and the same amount of non-graphical UI code (15 kloc). It
was built with a more traditional process: the designer pro-
duced visual elements that the programmers reproduced with
their programming language (Perl, used in object-oriented
style). We have observed three major improvements in the
execution of the second project with IntuiKit:

• a 20-30% reduction in programming effort, obtained by
avoiding the re-coding of graphics;

• a 50-70% reduction in overall project length, obtained with
the parallel production process, even though a pipe-line
process was set up in the earlier project to incorporate vi-
sual elements as they were produced;

• a reduction in coordination costs that we did not measure
but that we estimate at 50-70% in terms of number and
duration of telephone calls.

We also have identified several limitations and possible im-
provements:

• Freeing graphic designers from certain constraints has a
major impact on performance: they create much more com-
plex visual representations. Between the two projects men-
tioned above, memory use has more than doubled (from
30 Mb to 70 Mb with IntuiKit). Similarly, graphical per-
formance becomes an issue again, even with recent GPUs.
Animations in the application illustrated in Figure 14 are
not smooth enough with low-end GPUs.

• The standard SVG format does not support all types of
blending between layers, neither does TkZinc. Some de-
signers consider that as a constraint, since they use blend-
ing in their iterative construction of visual effects. An op-
tion might be to support SVG extensions provided by some
graphical tools.

• IntuiKit does not yet support SVG filters, which could be
useful to designers especially in terms of rhythm and light.
However, performance issues would have to be monitored.

• Some of the features of TkZinc are lost when using In-
tuiKit and SVG. That forces a trade off between devel-
opment cost and visual richness. Evolutions of the SVG
standard could help avoid that trade off.

• The use of OpenGL in TkZinc provides expressiveness and
performance. However, extra care had to be taken when
implementing features with OpenGL and there still are a
few conceptual flaws caused by it. OpenGL is not primar-
ily aimed at 2D graphics design, and some operations lead
to inappropriate results as far as visual designers are con-
cerned: lack of pixel-precise control in certain cases, and
unnatural results for certain colour combinations.

IntuiKit was tested successfully on projects where the ini-
tial iterative design was done with low-fidelity prototypes,
and production started once the general structure of the in-
terface was decided upon. It has not been tested for early
design phases. Regarding the response of teams, experience
showed that many programmers are not yet used to program-
ming user interfaces as components communicating through
events, and require some training. Once familiar with this no-

274

Figure 14: The final application, after full integration

tion, programmers exposed to IntuiKit seem to have no prob-
lem with the manipulation of FSMs. Designers enjoyed the
process, and some wanted to go further. The supported pro-
cess confines them to the role of providing visual elements,
when they could define part of the behaviour of visual ele-
ments: visual styles that would define what a progress bar
would look like for the whole range of values, for instance.
We are considering the use of rules or constraints [18], as
well as data-flow techniques inspired from [4], [9] or [5].

Future work also includes the implementation of new mod-
els. For GUIs, that would include layout, non-linear geomet-
ric transformations, and animation. Finally, access for non-
programmers would require tools for building models, when
no commercial tools are already available. This includes a
graphical editor for building behaviours and associating them
to graphics. This could also include other techniques from
the literature to build or infer models, such as programming
by demonstration.

RELATED WORK
Although mostly aimed at 3D rendering, the wide availability
of OpenGL-capable graphics cards stimulates the introduc-
tion of richer 2D tools. For instance, the new Java 1.5 adds
OpenGL-based rendering for Java2D. Similarly, the scene
graph of 3D toolkits such as Open Inventor [21] has also in-
spired the design of toolkits for programming post-WIMP
user interfaces [2, 1, 11]. The focus of these toolkits is on
providing extendable architectures for developing novel in-
teraction and visualisation techniques. Ubit for instance is
based on a scene graph model for combining visual elements

with behavioral elements and layout elements [11]. These
elements are defined in a declarative C++ style, and thus are
not accessible to graphic designers. CPN2000 is a graphi-
cal Petri net editor [1]. It has been built with a program-
ming toolkit that supports transparency and non-rectangular
windows rendered with OpenGL, and uses SVG to display
icons. Many SVG renderers such as the Batik toolkit [19]
are available, as well as SVG extensions to existing toolkits.
Most of them are limited to displaying graphics and do not
provide programmers with access to graphical objects so as
to manage interaction. Similarly, little consideration is given
to work processes and the role of graphic designers.

Previous work on involving graphic designers in the produc-
tion of user interfaces can be analysed according to the level
of flexibility given to designers. At one end are designer-
made widgets that can be reused by programmers. In the
middle are tools that incorporate designers’ know-how for
producing semi-automated designs: the Kandinsky system [6]
provides programmers with templates they can transform for
presenting data; the Kinetic typography engine [12] encap-
sulates animation techniques from cartoons. At the other
end, Hudson et al [7, 8] propose solutions for splitting wid-
gets into several pixmap zones. That allows programmers to
choose among the library of pixmaps proposed by designers,
while remaining able to resize widgets at will. By using vec-
tor graphics, the IntuiKit GUI module avoids the problem of
resizing. In addition, by not relying on a predefined set of
widgets, it gives the designers total control over the look and
behaviour of interactors, but does not support the creation

275Volume 6, Issue 2

of themes. With IntuiKit, designers produce the graphical
part of the interface, rather than providing styles for graph-
ical objects built by programmers. The two approaches can
be combined.

Regarding software architecture, IntuiKit can be compared
to the model-driven tools that use the XML format [17]. The
closest are the XUL [3] and XAML widget sets, which allow
vendors to provide variants of widgets as long as they im-
plement the specification. IntuiKit is more oriented towards
post-WIMP interfaces and allows one to freely manipulate
graphical objects and behaviours, whereas XAML widgets
are provided as compiled C# code. Current efforts by the
W3C are aimed at extending SVG with other markup lan-
guages such as XForms [16] for describing behaviour, but
put less stress than IntuiKit on separating concerns.

CONCLUSION
We have described the design and features of the IntuiKit in-
terface design suite and its graphical engine TkZinc aimed at
supporting designers’ needs when developing user interfaces.
The features of TkZinc allow programmers to better match
the work of designers. The architecture of IntuiKit, based on
the combination of models, allows teams to manage graph-
ics separately from behaviour and other software concerns
and then merge them into a structured tree of components. It
organises the collaborative work of designers and program-
mers. The SVG format, though sometimes restrictive, is key
to this process because it allows designers to use their own
tools to produce parts of the interface. The architecture of
IntuiKit helps bridge the gap between iterative design and
software engineering cycles, and is ready for integrating new
models and making them available to development groups.

ACKNOWLEDGEMENTS
Frédéric Lepied (now with Mandrakesoft), Dominique Ruiz
and Stéphane Valès contributed to the implementation of TkZ-
inc and IntuiKit. Yves Rinato (Intactile Design) designed the
departure manager, which is shown with the kind permission
of Sofréavia. Michel Beaudouin-Lafon was of great help in
improving earlier versions of this paper.

REFERENCES
1. M. Beaudouin-Lafon and H. M. Lassen. The archi-

tecture and implementation of CPN2000, a post-WIMP
graphical application. In Proceedings of the ACM UIST,
pages 181–190. ACM Press, 2000.

2. B. Bederson, J. Meyer, and L. Good. Jazz: an extensi-
ble zoomable user interface graphics toolkit in Java. In
Proceedings of the ACM UIST, pages 171–180, 2000.

3. D. Boswell, B. King, I. Oeschger, P. Collins, and
E. Murphy. Creating Applications with Mozilla.
O’Reilly, Sept. 2002.

4. S. Chatty. Extending a graphical toolkit for two-handed
interaction. In Proceedings of the ACM UIST, pages
195–204. Addison-Wesley, Nov. 1994.

5. P. Dragicevic and J.-D. Fekete. Input device selection
and interaction configuration with icon. In Proceed-

ings of HCI-IHM 2001, pages 543–448. Springer Ver-
lag, Sept. 2001.

6. J. Fogarty, J. Forlizzi, and S. E. Hudson. Aesthetic in-
formation collages: generating decorative displays that
contain information. In Proceedings of the ACM UIST,
pages 141–150, 2001.

7. S. E. Hudson and I. Smith. Supporting dynamic down-
loadable appearances in an extensible user interface
toolkit. In Proceedings of the ACM UIST, pages 159–
168, 1997.

8. S. E. Hudson and K. Tanaka. Providing visually rich
resizable images for user interface components. In Pro-
ceedings of the ACM UIST, pages 227–235, 2000.

9. R. Jacob, L. Deligiannidis, and S. Morrison. A software
model and specification language for non-WIMP user
interfaces. ACM Transactions on Computer-Human In-
teraction, 6(1):1–46, 1999.

10. J. W. Jespersen and J. Linvald. Investigating user in-
terface engineering in the model driven architecture. In
Proceedings of the Interact 2003 Workshop on Software
Engineering and HCI. IFIP Press, Sept. 2003.

11. E. Lecolinet. A molecular architecture for creating ad-
vanced GUIs. In Proceedings of the ACM UIST, pages
135–144, 2003.

12. J. C. Lee, J. Forlizzi, and S. E. Hudson. The kinetic
typography engine: an extensible system for animating
expressive text. In Proceedings of the ACM UIST, pages
81–90, Oct. 2002.

13. H. W. Lie and B. Bos. Cascading style sheets, design-
ing for the Web. Addison-Wesley, 1999.

14. K. Mullet and D. Sano. Designing Visual Interfaces.
Prentice Hall, 1995.

15. J. K. Ousterhout. Tcl and the Tk toolkit. Addison-
Wesley, 1994.

16. A. Quint. SVG and XForms: A primer. IBM develop-
erWorks, Nov. 2003.

17. N. Souchon and J. Vanderdonckt. A review of XML-
compliant user interface description languages. In Pro-
ceedings of DSV-IS 2003, pages 377–391. Springer-
Verlag, 2003.

18. P. Szekely and B. Myers. A user interface toolkit based
on graphical objects and constraints. In Proceedings of
OOPSLA, pages 36–45. ACM Press, 1988.

19. The Apache XML project. Batik SVG Toolkit.
http://xml.apache.org/batik/, 2004.

20. W3C Recommendation 16 November 1999.
XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, 1999.

21. J. Wernecke. The Inventor Mentor, programming
object-oriented 3D graphics with Open Inventor, Re-
lease 2. Addison-Wesley, 1994.

276

