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Abstract. Recently, and contrary to the common belief, Rivest and Silverman argued that the
use of strong primes is unnecessary in the RSA cryptosystem. This paper analyzes how valid
this assertion is for RSA-type cryptosystems over elliptic curves. The analysis is more difficult
because the underlying groups are not always cyclic. Previous papers suggested the use of strong
primes in order to prevent factoring attacks and cycling attacks. In this paper, we only focus
on cycling attacks because for both RSA and its elliptic curve-based analogues, the length of
the RSA-modulus n is typically the same. Therefore, a factoring attack will succeed with equal
probability against all RSA-type cryptosystems. We also prove that cycling attacks reduce to
find fixed points, and derive a factorization algorithm which (most probably) completely breaks
RSA-type systems over elliptic curves if a fixed point is found.
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1. Introduction

The theory of elliptic curves has been extensively studied for the last 90 years. In
1985, Koblitz and Miller independently suggested their use in cryptography [9, 19].
After this breakthrough, elliptic curve-based analogues of RSA cryptosystem were
proposed [10, 4].

RSA-type systems belong to the family of public-key cryptosystems. A public-
key cryptosystem is a pair of public encryption function fx and a secret decryption
function f,}] indexed by a key K and representing a permutation on a finite set
M of messages. The particularity of such systems is that given the encryption
function fg, it is computationally infeasible to recover flzl. Moreover, it might
be suitable that the encryption function does not let the message unchanged, i.e.
given a message m € M, we want that fx(m) # m. This is known as the message-
concealing problem [3]. Simmons and Norris [29] exploited this feature for possibly
recovering a plaintext from the only public information. Their attack, the so-
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called cycling attack, relies on the cycle detection of the ciphertext. This was later
generalized by Williams and Schmid [31] (see also [7, 1]).

There are basically two ways to compromise the security of cryptosystems. The
first one is to find protocol failures [20] and the other one is to directly attack the
underpinning crypto-algorithm. The cycling attack and its generalizations fall into
the second category. So, it is important to carefully analyze the significance of
this attack. For RSA, Rivest and Silverman [25] (see also [16]) concluded that the
chance that a cycling attack will succeed is negligible, whatever the form of the
public modulus n. For elliptic curve-based systems, the analysis is more difficult
because the underlying group is not always cyclic. We will actually give some results
valid for groups of any rank, but we will mainly dwell on the security of KMOV
and Demytko’s system.

The paper is organized as follows. In Section 2, we review KMOV and Demytko’s
system. We extend the message-concealing problem to elliptic curves in Section 3.
Then, we show how this enables to mount a cycling attack on KMOV and De-
mytko’s system in Section 4. We explain how the secret factors can be recovered
thanks to the cycling attack in Section 5. Finally, in Section 6, we give some con-
cluding remarks in order to help the programmer to implement “secure” RSA-type
cryptosystems.

2. Elliptic curves

Let n = pq be the product of two large primes p and ¢, and let two integers a, b
such that ged(4a® + 27b%,n) = 1. An elliptic curve E,(a,b) over the ring Z, is the
set of points (z,y) € Z,, x Z, satisfying the Weierstrafy equation

E,(a,b) :y? = 2* + ax + b, (1)

together with a single element O, called the point at infinity.

Let Ep(a,b) be an elliptic curve defined over the prime field F,. It is well known
that the chord-and-tangent rule [17, § 2.2] makes Ep(a,b) into an Abelian group.
Algebraically, we have:

(i) O, is the identity element, i.e. VP € Ep(a,b), P + O, = P.
(ii) The inverse of P = (z1,y1) is —P = (x1, —y1).

(iii) Let P = (21,91) and Q = (z2,¥2) € Ep(a,b) with P # —Q.
Then P + Q = (z3,y3) where

23 =X —21 — x5 and y3 = Az1 — 23) — Y1, (2)

Nny2 otherwise.
Tr1—I2

3m?+a .
. = if 21 = a9,
with A = { 2y e



The points of E,(a,b) unfortunately do not form an Abelian group. But writing
E,(a,b) for the group given by the direct product E,(a,b) = E,(a,b) x E,(a,b) and
since E,(a,b) C E,(a,b), we can “add” points of E,(a, b) by the chord-and-tangent
rule. For large p and ¢, the resulting point will be a point of E,(a,b) with high
probability [10].

It is useful to introduce some notations. Let P = (p1,p2) € Ey,(a,b). Whenever it
is defined, [k]P will denote P+P +---+ P (k times) on E,(a,b). The z-coordinate
of P will be denoted by x(P). Moreover, since py (the y-coordinate of P) is not
required to compute the z-coordinate of [k]P, we will write [k], p; for x([k]P).

We can now define an analogue of RSA. The public encryption key e is chosen
relatively prime to

Ny, = lcm(#EP(a= b), #E, (a,b)), (3)

and the secret decryption key d is chosen according to ed = 1 (mod N,). To
encrypt a point P € E, (a,b), one computes the ciphertext Q = [e]P. Then, the
authorized receiver recovers P by computing P = [d]Q with his secret key d.

The only problem is to imbed messages as points on a given elliptic curve without
the knowledge of the secret factors p and ¢q. A first solution was proposed by
Koyama, Maurer, Okamoto and Vanstone [10]. Another one was later proposed by

Demytko [4].

2.1. KMOV

KMOV cryptosystem uses a family of supersingular elliptic curves of the form
E,(0,b):y? = 2° +b. (4)

The main property of this system is that if p and ¢ are both congruent to 2 mod 3,
then N,, = lem(p+1, g+1) whatever the value of parameter b. Therefore, to encrypt
a message M = (my,ms), b is chosen according to

b=m2 —m} mod n, (5)
and the ciphertext is given by C = [e]M over the curve E,(0,b). The plaintext is
then recovered by M = [d]C.

Another possibility is to work with elliptic curves of the form FE,(a,0) with p
and ¢ both congruent to 3 mod 4. The first system based on E,(0,b) with p,q = 2
(mod 3) will be referred as Type 1 scheme, and the second one based on E,(a,0)
with p,¢ = 3 (mod 4) as Type 2 scheme. Later, both systems were extended by
Kuwakado and Koyama to form-free primes [12].

2.2. Demytko’s system

Demytko’s system uses fixed parameters a and b. It has the particularity to only
make use of the z-coordinate of points of elliptic curves. It relies on the fact that
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if a number z is not the z-coordinate of a point on an elliptic curve E,(a,b), then

it will be the a-coordinate of a point of the twisted curve E,(a,b) defined as the set
of points (z,y) satisfying

Ey(a,b) :y> =2° +ar +b (6)

where y = uy/v and v is a fixed quadratic non-residue modulo p, together with the
point at infinity. So, N,, is given by

N, = lem(E,(a,b), B, (a, ), E,(a,b), B, (a, b)). (7)

A message m is encrypted as ¢ = [e], m. Then, m is recovered from the ciphertext
cbym=1[d],c.

For efficiency purposes, the original scheme (see [4]) was presented with message-
dependent decryption keys. The length of the decryption key is divided by a factor
of 2, on average. However, in the sequel, we will use the message-independent
description because this simplifies the analysis, and because we are not concerned
with efficiency issues.

3. Concealing-message problem

In [3], Blakley and Borosh showed that there are always at least 9 messages that are
unconcealable (i.e. the ciphertext of a message is exactly the same as the cleartext)
for any RSA cryptosystem. Though this problem is well-known for RSA, nothing
appears in the literature about its elliptic curve-based analogues. Since unconcealed
messages must be avoided, effective criteria are needed for evaluating the concealing
power of these latter systems.

Before analyzing the number of unconcealed messages for elliptic curve-based
systems, we will first give some general group-theoretic results.

LEMMA 1 Let G be an Abelian (multiplicatively written) finite group of order #G.

Consider the map ©, : G = G,z — z*. Then m; permutes the elements of G if

and only if ged(k, #G) = 1. [ ]

THEOREM 1 Let G be an Abelian (multiplicatively written) finite group of rank r
whose generators are gi,gs,...,gr- If 1 : G = G,z — z* permutes the elements
of G, then 7y has exactly

Fix(G, k) = [ ] ged(k — 1, #(g:)) (8)

i=1
fized points.
Proof: Write G = {g{'g5? - g~

0<uz; <#(gi),s=1,...,7}. So,
m(z) =1 <= g](k—l)mggkfl)mz gl e

< (k—1)z; =0 (mod #(g;)) fori=1,2,...,r.

4.



Each equation has ged(k—1, #(g;)) solutions. There are thus [];_, ged(k—1, #(g;))
fixed points by the permutation map 7. [ |

Let p and ¢ be distinct primes and let n = pq. By unconcealed message on
RSA, we mean a message m € Z, so that m® = m (mod n) for a fixed integer e
satisfying 1 < e < ¢(n) and ged(e, ¢(n)) = 1.1 This latter condition ensures that
the exponentiation by e is a permutation map, or equivalently that RSA encryption
is a permutation of Z,,.

COROLLARY 1 Let n = pq be the RSA-modulus and let e be the RSA-encryption
key. Then, the number of unconcealed messages for RSA is given by

Fix(Z,e) = (ged(e —1,p—1) + 1) (ged(e — 1,g — 1) + 1). (9)
Proof: Since Z, = F, U {0} and since 0 is always solution to z° = x (mod p),
Theorem 1 tells that there are (ged(e — 1,p — 1) + 1) fixed points in Z,. Moreover,
since Z,, = Zy x Z4 by Chinese remaindering, the proof is complete. [ |

Note that since p, ¢ and e are odd integers, there are at least 9 unconcealed
messages for the original RSA system. If we exclude to encrypt 0 and 1 (that are
always unconcealable messages), there are at least 6 unconcealed messages.

An elliptic curve Ep(a,b) over the prime field F, is an Abelian group of rank 1
or 2 and of type (n1,ns) [17, Theorem 2.12]. Therefore, we can write E,(a,b) =
Zin, ® ZLn, with ny | nq and na | p — 1. If we call z-fized point a point P € E,(a,b)
such that, when given an integer k, x([k]P) = x(P), then Theorem 1 becomes:

THEOREM 2 Let Ey(a,b) be an elliptic curve over the prime field F,. If

m : Ep(a,b) = Ey(a,b),P — [k]P
permutes Ey(a,b) = 7y, & Ly, then 7, has exactly

Fix(E,(a,b), k) = ged(k — 1,n1) ged(k — 1,n2) (10)
fized points. Furthermore, 7y, has exactly

Fix,(E,(a,b),k) = ged(k —1,n1) ged(k — 1,n90)+
ged(kB+ 1,m1) ged(k + 1,n9) —vp — 1

x-fized points, where vy is the number of points of order 2.

Proof: The first part follows immediately from Theorem 1.
Let P € Ey(a,b). P is a z-fixed point if and only if [k]P =P or [k]P = —P. If
we let Ep(a,b) = {P =[u]R+[v]S |0 <u <ny and 0 < v < ny}, we have

x(mp(P)) =x(P) <= [(kF DulR+[(kF1)v]S =0,

— { (k¥ 1)u

=0 (mod nq)
(kFl)v=0

(mod ny)
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Since O, and points of order 2 are counted twice, we obtain Eq. (11). Indeed,
[k —1]P = [k + 1]P if and only if [2]P = O, m

KMOV Type 1 scheme is based on elliptic curves of the form E,(a,b) with a =0
and p =2 (mod 3). The underlying group is isomorphic to the cyclic group Z,;.
Type 2 scheme uses curves of the form E,(a,b) where b =0 and p =3 (mod 4). In
that case, the underlying group is also isomorphic to Z,y; if a is a quadratic residue
modulo p; and it is isomorphic to ZpT-}—l @ 74 otherwise. From Eq. (10), for an odd

k > 3, we see that, for a given KMOV elliptic curve E,(a,b), there are at least 2
fixed points if E,(a,b) is cyclic and at least 4 fixed points otherwise. These points
correspond to the point at infinity together with the points of order 2. Noting that
the encryption key e is always odd for KMOV, and since the point at infinity is not
used to represent messages, there are at least 1, 3 or 9 unconcealed messages on a
given KMOV elliptic curve E,(a,b). Consequently, the probability that a random
message is unconcealed can be at least 1/n. This has to be compared with 6/n for
the original RSA.

Demytko’s encryption works in a group of the form Géi) X G,(,j) (1<i,5<2),
where GY) = E,(a,b), G = E,(a,b), G\ = E,(a,b) and G\ = E,(a,b).
Writing GS) = Zn(i) S5 Zn(i)7 we define

1,p 2,p
ged(e—1 ,ngzl) ged(e—1 ,n;z})+gcd(e+l ,ngzl) ged(e+1 Jlgl)p)

)(—FiX(G;i)7€) = 5 (12)

and similarly for G,(1'7). Demytko’s system only makes use of the z-coordinate. So,
since the point at infinity is never used for encryption, Theorem 2 indicates that
there are -, ; .oy (x—Fix(Ggf) ,e)— 1)(x—Fix(G,(,'7) ,e)—1) unconcealed messages.? This
number may be equal to 0, and we cannot give general information on the minimal
number of unconcealed messages in Demytko’s system.

For efficiency purposes, the public encryption key e is usually relatively small
(for example, e = 3 or e = 2'6 + 1 are common choices). In all systems, the
number of unconcealed messages depends on expressions of the form (gcd(e +
1,#G,) ged(e £ 1, #Gq)). Therefore, the maximal number of unconcealed mes-
sages is mainly bounded by (e + 1)2. So, if the encryption key is equal to 216 + 1,
then the probability that a message is unconcealed is at most a 10~ 144 for a 512-
bit RSA-modulus and ~ 10729 for a 1024-bit RSA-modulus. Even if the number
of unconcealed messages is small, we will see in the next section how this can be
turned into an active attack.

4. Cycling attack
4.1.  Previous results on RSA

Let ¢ = m® mod n be the ciphertext corresponding to message m, where (e, n) is
the public key. If we find an integer k that satisfies the equation

ek

c¢® =c¢ (mod n), (13)



then we can obviously recover the plaintext m by computing m = ¢ " mod n.

Note that we do not have to factor the public modulus 7, so this might be a serious
failure for the RSA cryptosystem. This attack, firstly proposed by Simmons and
Norris [29], was later extended by Williams and Schmid [31] (see also [7]) in the
following way. Let P(¢) be a polynomial. They showed that if the ciphertext ¢ has
a period such that

W =1 (mod n) (14)

for some integer g, then the plaintext m can be recovered.

4.2.  Generalizing the cycling attack

We can generalize the results of the previous paragraph to any Abelian finite
group G.

THEOREM 3 Let G be an Abelian (multiplicatively written) finite group. Let a
message m € G and let ¢ = m° be the mrrf’s’pnndmg ciphertext, where ged(e, #G) =
1.3 If we find an integer P such that ¢© = 1 in G, then the plaintext m can be
recovered by computing

m =@, (15)

where @ satisfies e =1 (mod P') and P' = P/ ged(e, P).

Proof: Let ¢ = ordg(m), i.e. t is the smallest integer quch that m! = 1 in
G. By Lagrange’s Theorem t | #G and since ged(e, #G) = 1, it follows that
ged(e,t) = 1. So, ¢F = m‘”D = 1 implies that ¢ | eP and thus ¢ | P. Therefore,
Ja € 7 such that P = at and we have m"/® = 1. Moreover, gcd(e,t) = 1 yields
gcd(e P) = ged(e, at) = ged(e, ) | a. Hence, letting P' = P/ ged(e, P), we obtain
mP = 1. Since eQ =1 (mod P'), we can write eQ = §P' + 1 for some integer &,

oP

1
and ¢? = m@ = m* ' m =m. |

We call this theorem the generalized cycling attack. This theorem indicates that
KMOV and Demytko’s system are also susceptible to the cycling attack.

Detecting the integer P is equivalent to the problem of finding a polynomial P ()
and an integer t = g with P = P(g). Moreover, the relation ¢P9) =1 is equivalent
to

P(g9) =0 (mod ordg(c)). (16)

If #G =1, p{" denotes the prime decomposition of group order #G and since
ordg(c) divides #G, Eq. (16) can be reduced to

P(g) =0 (mod pj*), (17)

for all primes p; dividing ordg(c).



Here, we must check that these relations hold by picking up a random polynomial
P(t) and a random integer ¢ = g. This means that the cycling attack depends on
the distribution of such polynomial and of the order of ciphertext c.

Roughly speaking, if the order of G is smooth, we can expect that there are
many elements ¢ € G with small order. So, primes p; in Eq. (17) will be small,
and polynomial P will be more easily found. Consequently, it might be desirable
to impose that #G contains at least one large prime in order to make harder the
cycling attack. We will now analyze in more details this assumption for elliptic
curve-based systems.

4.3.  Application to elliptic curve systems

As previously mentioned, an elliptic curve E,(a,b,) over the prime field F, is not
necessarily cyclic, but isomorphic to Z,,, ®Z,,, with ns | ny and ny | p—1. Therefore,
for analyzing the cycling attack over elliptic curves, we have to estimate the number
of points in E,(a,b) of a given order. If ny =1 (i.e. Ey(a,b) is a cyclic group), then
the number of elements of order d is given by the Euler’s totient function, namely
¢(d). For the general case, we have:

PROPOSITION 1 Let E,(a,b) be an elliptic curve over the prime field F,. If we
write Fp(a,b) =2 Zip, ® Ly, with ny | ny, then the number of elements of order d is
equal to

pi+1
F(d) = ¢(d) ged(d,n2) [ (). (18)
bi
Pi€Qd ny
where Qg n, s the set of primes p; | n2 such that varp, (d) < vary, (n2), and vary, (n)
is the power of p; which appears in the prime decomposition of n.
Furthermore, given the prime factorization of ged(#Ey(a,b),p — 1), F(d) can be
computed in probabilistic polynomial time.

Note that if Qa,,, = 0, then we take [] o (pp—“) =1

i€ ng\ pi
Proof: The first part of the proposition is proved in Appendix A. The second
part follows from Miller’s probabilistic polynomial time algorithm for finding n4

and no (see [17, §5.4]). [ |

We can now derive a lower bound on the number of elements whose order is
divisible by a large prime factor of the order of E,(a,b).

PROPOSITION 2 Let E,(a,b) be an elliptic curve over the prime field F,. Suppose
that #E,(a,b) is exactly divisible by a prime factor l,. If Faiv(l,) denotes the
number of elements of order divisible by ), then

Fanly) = o(t,) #2200 (19)

Iy



Proof: See Appendix B. [ |

This proposition indicates that if we randomly pick up an element in Ey(a,b), it
has order divisible by 1, with probability ¢(I,,)/l, = 1 —1/1,. When 1, is large, this
probability is non-negligible (i.e. really “nearly 1”).

RSA-type cryptosystems over elliptic curves are constructed on groups of the form
E,(a,b), which can be considered as E,(a,b) x E,;(a,b) by Chinese remaindering.
In the sequel, we will suppose that #FE,(a,b) (resp. #FE,(a,b)) contains a large
prime factor I, (resp. I,). With high probability, a random point P, € E,(a,b)
(resp. P, € E,(a,b)) will have order divisible by 1, (resp. I,). Therefore a random
point P on E,(a,b) (represented by P = [P,,P,] by Chinese remaindering) will
have order divisible by {, and [, with high probability.

As we discussed in Paragraph 4.2, the cycling attack is reduced to find a polyno-
mial P and an integer ¢ with ¢”9) = 1 for some ciphertext ¢. For elliptic curves,
this attack becomes “Find a polynomial P and an integer g so that [P(g)]C = O,
for some ciphertext C € E,(a,b)”. Equivalently, this can be formulated by an ex-
pression of the form of Eq. (17). Since the order of ciphertext C is supposed to be
divisible by I, and 1, with high probability, we must have P(g) =0 (mod [,) and
P(g) =0 (mod I;) to mount a successful cycling attack. Williams and Schmid [31]
estimated that these relations are rarely fulfilled except when P(t) = ¢ — 1 and
t = e* for some k. So, we have thus to take care whether or not

¥ =1 (mod 1), (20)

and similarly for prime g. Letting ord,(e) for the smallest integer satisfying
Eq. (20), k¥ must be a multiple of ord;, (e). Consequently, the cycling attack will be
useless if ord;, (e) is large.

NoTE 1 In his fast generation algorithm of secure keys, Maurer [15] suggested to verify
that e('»=1/"i» £ 1 (mod l,) for i = 1,...,s, where I, — 1 = [[*_, r;3% is the prime
decomposition of I, —1. This criteria implies that ord,, (e) must be large and the cycling
attack is not applicable. Another method is to impose that I, — 1 contains a large prime
factor r,. The probability that ord,, (e) is divisible by r, will be then 1 — 1/ry.

Proof: Let I, — 1 = r,[[\_, p{' (with ged(rp,pi) = 1) be the prime decomposi-
tion of I, — 1. The number of elements in Z;‘p whose order divisible by r, is given by

Sgyte=t $(rpd) = $(rp) B, 1,1 $(d) = d(rp) B = (1= 1/ry) #2Z,. m

This is known as the strong primes criteria.

Through this section, we have proven some conditions to preclude cycling attacks.
Putting all together, we have:

THEOREM 4 The cycling attack does not apply against KMOYV if the secret prime
p has the following properties: (i) p+1 has a large prime factor l,, and (ii) ord;, (e)
is large; and similarly for prime q. [ |



THEOREM 5 The cycling attack does not apply against Demytko’s system if the
elliptic curves over Fy, have the following properties: (i) #Ey(a,b) has a large prime

factor 1, and #E,(a,b) has a large prime factor I, and (ii) ord,,(e) and ordlzp(e)
are large; and similarly for prime q. [ |

5. Factoring the RSA-modulus
5.1.  Relation between unconcealed message and cycling attack

For a given ciphertext C € F,(a,b), the cycling attack detects an integer k satis-
fying [e¥]C = C. This is equivalent to the message-concealing problem where the
message is now a ciphertext instead of a cleartext. If E,(a,b) = Zy, , ® Zy, , with
Ny | 11y and if Ey(a,b) = Zy,, , & Ly, , with no 4 | 01 4, from Theorem 2, we know

that there are

Fix(E,(a,b),e*) = ged(ek — 1,n1 ) ged(ek — 1,n4,)- 91

ged(e? — 1,ny ) ged(e® — 1,n9,) (21)
unchanged ciphertexts C via encryption by e*. Moreover, by Eq. (20), [e*]C = C
yields I, | ¥ — 1 for some (large) prime I, dividing #FE,(a,b) = ny ,na,, and
similarly for prime ¢g. So the number of unchanged ciphertexts C is larger than
Iplg.

Suppose that primes p and ¢ were chosen so that both #FE,(a,b) and #E,(a,b)
contain a large prime factor I, and [,, respectively. Then, there may be many
ciphertexts C such that [e¥]C = C, and the corresponding cleartexts can be re-
covered. This means that a cycling attack is really effective when applicable. To
prevent this attack, the designer has also to verify that ord;, (e) (resp. ord,,(e)) is
large (see Theorems 4 and 5).

5.2.  Factoring by means of fixed points

In Section 4, we explained how the cycling attack can recover a plaintext. Here, we
will show that the knowledge of a unchanged ciphertext enables still more, i.e. to
completely break the system by factoring the RSA-modulus n = pq.

This can be illustrated by the elliptic curve factoring method (ECM) [13] intro-
duced by Lenstra. It can basically be described as follows. Suppose that n is the
product of two primes p and ¢. Consider an elliptic curve E,(a,b) over the ring Z,,.
Assume that #E,(a,b) or #E,(a,b) is B-smooth. Then define r = lem(1,2,. .., B)
and choose a random P € E,(a,b) note that [r]P = O,, € E,(a,b). Then com-
pute [r]P in E,(a,b) (and not in Ep(a,b) x E,(a,b) because p and ¢ are unknown).
As mentioned in Section 2, some points are not “realizable” because E,(a,b) is
not a group. During the computation of [r]P, at step i, three situations can oc-
cur: (i) [»]P = O, (mod p) and [r;]P # O, (mod q), (i) [r;]P # Op (mod p)
and [r;]P = O, (mod q), or (iii) [r;]P = O, (mod p) and [r;]P = O, (mod g).
In cases (i) and (ii), the denominator of A in the chord-and-tangent formulas (see
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Eq. (2)) will have a non-trivial factor with n. So n is factored. In case (iii), [r]P
is correctly computed, we obtain [r]P = O,. No factor of n is found and we then
re-iterate the process with another point P or with other parameters a and b.

Let ord,(P) and ord,(P) be the order of point P in Ey(a,b) and E,(a,b), re-
spectively. Let m be a prime. We can write ord,(P) = nfrs, with f, > 0 and
ged(m, sp) = 1, and ord, (P) = wfas, with f, > 0 and ged(w, s,) = 1. Hence, if we
know an integer r of the form r = lem(n?rs,, wfas,)7/ s with ged(7, s) = 1, we must
have [r]P = O,, in E,(a,b). If f, # f,, or without loss of generality f, < f,, then
we define 7' = —7—7-. So, we have ord,(P) | r’ and ord,(P) { r’, or equivalently

[P =0, (modp) and [r']P # O, (mod q) (22)

and we find a non-trivial factor of n similarly as in ECM.

The message-concealing problem or the cycling attack is due to the presence of
fixed points P € E,(a,b) such that [r]P = P. We have r = e and P = M for
message-concealing problem, and r = e* and P = C for the cycling attack. The
knowledge of a fixed point P gives [r — 1]P = O,,. We are then in the conditions
of ECM and the RSA-modulus can be factored with some probability as follows.

[Step 1] Let i + 0. Choose a prime power factor = of r — 1, i.e. =t

mid(r — 1)

[Step 2i] Put s’ < (r —1)/x%.

[Step 3] Compute [r']P in E,(a,b).
If an error occurs (i.e. Eq. (22) is satisfied?), then n is factored. Otherwise,
if i <t theni <« i+ 1 and go to Step 2i; if i =t then go to Step 1.

The next theorem says more about the probability of factoring the RSA-modulus
n using one iteration of this method.

THEOREM 6 Consider KMOV or Demytko’s system. Let Ep(a,b) = Liprpg, @
Ligarp, with 74 B, | 7S, and E,(a,b) = Liprog, ® Lipagp, with 4B, | nfeS,,
and m is prime. Let v, denotes the probability that F, + F, > 2max(A,, A;). If we

know a fized point P # O,, such that [r — 1|P = O,, and if r — 1 is divisible by ,
2(x2 1)

then we can factor the RSA-modulus n = pq with probability at least Vr 2T )

Proof: See in Appendix C. [ ]
Assume for example that v, = 0.5 and that we know a point P such that [r—1]P =
O,. If 2| (r — 1) (which is the most probable case), then our algorithm will find

the secret factors of n with probability at least 15%. Otherwise, we re-iterate the
algorithm with another prime factor = of r — 1.

5.3.  Remark on efficiency
Reconsider the cycling attack [e¥]C = C (mod n). From Eq. (20), k¥ must be a

multiple of both ord;, (e) and ord;, (e) to apply the attack. However, what we ulti-
mately need to factor the modulus n is to find an integer r' such that, for example,
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[r']C = O, (mod p) and [r']C # O, (mod q) (see Eq. (22)); or equivalently, such
that [r' +1]C = C (mod p) and [r' +1]C # C (mod ¢). This means that a cycling
attack just modulo p (or modulo ¢) rather than modulo both primes simultane-
ously enables to factor n. Therefore, k needs to be just a multiple of ord,, (e) or of
ordy, (e), not of both of them. This results in a higher probability of success.

6. Concluding remarks

In Section 4, we proved that if the conditions of Theorems 4 and 5 are fulfilled,
then cycling attacks are useless for elliptic curve-based RSA systems. This is the
elliptic version of the well-known strong primes criteria. For RSA, Rivest and
Silverman [25] claimed that this criteria is not required. They said:

“Strong primes offer little protection beyond that offered by random primes.”

We will now analyze more accurately how valid this assertion is, and if it remains
valid for elliptic curve-based systems. The analogue of Theorems 4 and 5 for original
RSA is:

THEOREM 7 Let n = pq be the RSA modulus and let e be the public encryption
exponent. The cycling attack does not apply against RSA if the secret prime p has
the following properties: (i) p— 1 has a large prime factor l,, and (ii) I, — 1 has a
large prime factor v, (c¢f Note 1); and similarly for prime q. [ |

A prime p satisfying conditions (i) and (ii) of the previous theorem is said to be
a strong prime. Some authors also recommend that (iii) p + 1 has a large prime
factor. Condition (iii) is required in order to protect against the p + 1 factoring
algorithm [30].

In their paper, Rivest and Silverman only consider the primes p and g. They did
not take into account the second condition of Theorem 7.5 Qur analysis is based
on a previous work of Knuth and Trabb-Pardo [11] (see also [22, pp. 161-163]),
whom rigorously calculated the distribution of the largest, second largest, ... prime
factors of random numbers. Also, they have tabulated:

Table 1. Proportion p(a) of (large) numbers N whose largest prime factor is < N1/,

« 1.5 2.0 2.5 3.0 4.0 5.0 6.0 8.0
p(a) 0.594535  0.306853  0.130320 0.048608  0.004911  0.000355 2.10°  3.10°8

We can now more precisely quantify what “large” means in Theorem 7 in order
to prevent cycling attacks. A cycling attack remains to find an integer k such that
e =c (mod n) for some ciphertext ¢, where e is the public encryption key and
n = pq is the RSA-modulus. From k, the plaintext m corresponding to ¢ is then
given by m = """ mod n. However, we noticed in §5.3 that it just suffices to mount
a cycling attack modulo p (instead of modulo n) to factor the RSA-modulus. For

RSA, the secret prime factors are recovered as follows. Suppose that there exists
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an integer k such that ¢&* = ¢ (mod p) and " #e (mod q), then gcd(cek —¢,n)
will give p; and hence ¢ = n/p. Knowing p and g, the secret key d is computed as
d=e ! modlem(p — 1,q — 1) and the plaintext m is then given by m = ¢? mod n.

From Eqgs (17) and (20), if I, denotes the largest prime factor of p — 1, k must be
(with probability 1—1/1,)% a multiple of ord;, (e) to apply the cycling attack modulo
p; we thus have k& > ord;, (e) with probability at least 1 —1/l,. From Knuth and
Trabb-Pardo’s results, we can derive how does a typical integer k look. We note that
an average case analysis makes a sense since the distribution of the largest prime
factor, the second largest prime factor, ... is monotone. The average size of [, is
(p—1)%624 ~ p0-624 [11]; and similarly, the average size of the largest prime factor r,,
of I, —11is (I, — 1)%62% = p0-389_ (Note that we suppose that [, —1 and p— 1 behave
like random numbers. This assumption was confirmed by experimental results using
the LiDIA package [14]: over 1000 000 random 100-bit primes /,,, 423 were such that
l, — 1 was a 20-bit smooth number, that is, a proportion of 0.000423 ~ 10337,
This has to be compared with p(5.0) ~ 10734%.) The average size of the second
largest prime factor 7, of I, —1is (I, —1)°*'® & p®'3! [11]. Hence, since 7,7}, divides
ordy, (e) with probability (1 —1/r,)(1—1/r;) ~1—1/p®'?" (see Note 1), we have
k > rpry, with probability at least (1 —1/1,)(1 —1/p*"*") ~ 1 —1/p"'3!. For a
512-bit RSA modulus n = pgq, this probabhility is already greater than 1 — 10710,
and is greater than 1 — 1072° for a 1024-bit modulus. In summary, we have:

Table 2. T.ower bound K on a typical value for k
such that ¢** = ¢ (mod p) for a t-bit RSA modulus
n = pq.

t 512 bits 768 bits 1024 bits
Lower bound K 1040 1060 1080

Albeit very high, the estimation of the bound K (see Table 2) is quite pessimistic;
in practice, k will be much larger than K and a cycling attack (modulo p) will
have thus fewer chances to be effective. Indeed, if we take into account the third
largest prime ) of [, we have k > r,ryr; with probability at least ~ 1 —1/r); for
example, for a 1024-bit RSA modulus, we have k& > 10%® with probability at least
1 — 1078. More importantly, we only take into account the largest prime factor
I, of p— 1. Let I! be the second largest prime factor of p — 1, its average size is
(p—1)°%1% & p**1%. The ciphertext ¢ has its order divisible I,/; with probability
at least (1 —1/1,)(1 —1/Il) ~ 1 —1/p°2'%. Therefore, from Eq. (17) (see also
Eq. (20)), k is very likely (i.e., with probability (1 —1/1,)(1—=1/I}) ~1—1/p®>'?)
a multiple of lem(ord, (e),ordy (e)). The largest prime factor s, of ;, — 1 has an
average size of (I;, — 1)%9** ~ p*131. So, we have k > r,r),s, with a probability of
at least (1—1/p%219)(1 —1/p%13)2 ~ 1 —2/p%13L; for example, for a 1024-bit RSA
modulus, we have k£ > 10'%° with probability at least 1 — 2 - 10740,

Consequently, k is expected to be very large, and a cycling attack will thus have
very little chance to be successful.

Hasse’s Theorem [27, Theorem 1.1] indicates that #FE,(a,b) € [p+1—2,/p,p+

1+ 2,/p], and we can thus consider that #E,(a,b) = O(p) and p have the same
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bit-size. Therefore, from Theorems 4 and 5, the previous discussion still applies
to elliptic curve-based cryptosystems and the conclusion of Rivest and Silverman
remains valid, i.e. the use of strong primes offers (quasi) no additional security
against cycling attacks.

However, as remarked by Pinch [21], a user might intentionally choose a “weak”
RSA-modulus. Suppose that a user chooses his public RSA-modulus n = pgq so
that a cycling attack is possible. In that case, this user can repudiate a document
by asserting that an intruder has discovered by chance (the probability of a cy-
cling attack is negligible) the weakness. If the use of strong primes is imposed in
standards [8], such arguments cannot be used for contesting documents in court.

In conclusion, from a mathematical point of view, strong primes are not needed,
but they may be useful for other purposes (e.g., legal issues). On the other hand,
since the generation of strong primes is only just a little bit more time consuming,
there is no reason to not use them.
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Notes

1. ¢(n) is the Euler’s totient function and denotes the number of positive integers not greater
than and relatively prime to n.

2. Note that this expression slightly differs from Eq. (11). This is because Eq. (11) counts the
number of z-fixed points; here we have to count the number of z-coordinates that are unchanged
by Demytko’s encryption.

3. This condition is equivalent to m.(z) = z° in G is a permutation map (see Lemma 1).

4. Orif [7'|P # Op (mod p) and [r'|P = O, (mod q) is satisfied.

5. See [25] on p. 17: “Suppose r does not divide ord(e) mod A(N)”. Note also the typo, N should
be replaced by A(N).

6. This is the probability that I, divides ordz=(c) (see Note 1).
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Appendix A

Proof of Proposition 1

LEMMA 2 Let Gy = Zpa & Z,p, where p is a prime and o, are integers with
a> B. If F(pf) denotes the number of elements with order p? in Gp, then

F(p') = ¢(p’) ged(p’,p%) A, (A.1)

where A = (p+ 1)/p if f < B and A =1 otherwise.

Proof: Since G, = Zpa & Z,5, we will represent the elements in G, as (a, b) with
a € Zye and b € Z 5. Moreover, in the sequel, a; (resp. b;) will denote an element
of order p* in Zyo (resp. Z,s).

(i) Suppose f > (. Then elements of order pf are of the form (af,b) for any
b € Z,s. Since there are #(p’) elements of order pf in Z,. and since there are p?
elements in Z s, we have F(p’) = ¢(p;) p” and Eq. (A.1) is satisfied.

(ii) Suppose f = 3. Then elements of order p/ are either of the form (ay,b) for
any b € Z,s or (a;, by) for i =0,..., f — 1. So, we obtain

-1
F(p') = ¢ )p” + Z o) o(p’) = o(p") ¥ +p'") = o(p”) P°A.

(iii) Suppose that f < 3. Then elements of order p/ are of the form (as,b;s) or
(ag,b;) for 0 <i < f—1or (a;,by) for 0 <i < f — 1. Therefore,

f—1 f—1
Fip') = o) o(p’) + Z¢(pf)¢<pi) + Z¢(pi>¢<pf)

) + 260 )"
P (o) +20" ") = o) p" "0+ 1) = 9(p7) T A,

which concludes the proof. [ |

= ¢(p
= ¢(p

PROPOSITION 1 Let E,(a,b) be an elliptic curve over the prime field F,. If we
write Fy(a,b) =2 Zip, ® Ly, with ny | ny, then the number of elements of order d is
equal to

F(d) = 6(d) ged(dine) [ (220), (A.2)

Pi€Qd ny Pi
where Qg n, s the set of primes p; | na such that varp, (d) < vary, (n2), and vary, (n)
is the power of p; which appears in the prime decomposition n.

Note that if Qg4 ,,, = 0, then we take [] pitly — 1,

IJiGQd,ng( Pi
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Proof: Since ny | ny, we can write n, = [[I_, p¢* (a; > 1) and ny = [[}_, p"
(8; > 0). By Chinese remaindering, E,(a,b) is isomorphic to a product of p;-
primary groups of the form Z o: & Zpgl. Consider the group G, = Z i & Zp;_a,-.

By Lemma 2, the number of elements of order p;* in Gy, is equal to
$(p") ged(p!.p") A
Consequently, if d = []_, pl , there are

T

H¢> ) ged(pl’, p)As = ¢(d) ged(d,no) [] A

= ¢(d) ged(d, ns9) H (pi+1)

Pi €Q4d ny Pi

elements of order d in E,(a,b). [ ]

Appendix B
Proof of Proposition 2

LEMMA 3 For any ns | n, we have

> () ged(d,ng)  [1 (EE) = nm,. (B.1)

dln Pi€Qd,ny

Proof: Let the prime decompositions n = [[;_, p{* (a; > 1) and ny = [],_, P
(B; > 0). Since d | n, we can write d = [[/_, p!* with 0 < j; < a;. We define
symbol 6;;, = 1if 1 < j; < B, and §;;, = 0if j; =0 or B; < j; < a;. So, we can

write
I (pﬁl)_ﬁ(pﬁl)%
) Di - Di ’
Pi €Q4d ny i=1
whence
> 6(d) ged(dny) ] (2
dn Pi€Qd ny

Q1 Q2

Y Yy o(1) gcd(np; T [y

Ji= 0]2 0 JT*U =1

S S 3 T et et (B1) ™

j1=0 j>=0 Jr=0i=1 pi

J; ; p;i + 1Y%
—HZcb ) ged(p] mf)(Z]T)

i=135;=0
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Moreover, since

Z é(pl) ged(p )(mp—tl)éjl

Jji=0

—1+Z¢ J'p’ Ly Z é(p

ji=1 =08;+1 (B2)
d 2(j7:—1) i [ C: Ji < i -|
=1+ @i—Dpi+1)Y_ p; +p0 1Y ol) = > swl)
Ji=1 []170 7i=0 J
=14+ @7 = 1) +p (o = p) = o,
we obtain Eq. (B.1). ]

PROPOSITION 2 Let Ey(a,b) be an elliptic curve over the prime field F,. Suppose
that #E,(a,b) is exactly divisible by a prime factor l,. If Faiv(l,) denotes the
number of elements of order divisible by l,,, then

#Ey(a,b) .

Iy

Faiv(lp) = ¢(lp) (B.3)

Proof: We can write Ep(a,b) = Zy, ® Z,, with na | ny. Let #E,(a,b) =
I, [T;_, p;* be the prime decomposition of #E,(a,b). Since ny | ny and since I,
m?d#E (a,b) = ning, it follows that ged(l,,n2) = 1. From Eq. (A.2) and since
o(mn) = ¢(m)p(n) for any coprime integers m,n, we obtain

Faly) = Y Flyd) =Y. l¢(lpd) ged(lpd, ny) 1 (p;—f])]

n i €EQd n
d‘ﬁ Pi€L,d gy

o(ly) Y [cb(d) ged(d,n2) 1 (”"p—f])] :

| i€, d,n,
Ip

Noting that €, 4,n, = Q,n,, we finally obtain Fu;y (I,) = ¢(l,) 7+ L1y by Eq. (B.1),
which concludes the proof. [ |

Appendix C
Proof of Theorem 6

THEOREM 6 Consider KMOV or Demytko’s system. Let Ep(a,b) = Liprpg, ®
Lpapg, with 7' By | 72 S, and By(a,b) = L ryg ® Lpagp, with maB, | 7S,
Let v, denotes the probability that F, + F, > 2max(Ay, 4,). If we know a fized
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point P # O,, such that [r — 1]P = O,, and if r — 1 is divisible by 7, then we can
2(r% 1)

factor the RSA-modulus n = pq with probability at least Vr 2T 1)

Proof: Let 7 be a prime factor of #F,,(a,b). We can write ord,(P) = 7/rs, with
ged(m, sp) = 1 and ord, (P) = wfes, with ged(m,s,) = 1. The probability that n
will be factored is given by the proportion of points P for which f, # f,.

Using the same technique as in the proof of Proposition 2, we can show that the
number of points P € E,(a,b) such that mfr
midord,(P) is given by B,S, F)(rf»), where F(®) (/) denotes the number of
points P such that ord,(P) = n/. Similarly, there are B,S,F(9 (r/a) points P €
E,(a,b) such that 7/
midord,(P). For each point P € E,(a,b) (modulo p) with 7/r
midord,(P), there are

F‘J
> ByS,F (xl)

fq=0
fa# fp

points P € E,(a,b) (modulo ¢) such that 7/ | ord,(P) and f, # f,. The number
N of points P € E, (a,b) with f, # f, is thus equal to

F, Fy
N = B,S,B,S, Z F®) (zfr) Z F@ (gfa)
f»=0 fq=0
faF fp
FP
= B,S,B,S, Z F®) (zfr) {ﬁFﬁAq _ @ (ﬁ.fp)} 7
f»=0

from Eqs (A.1) and (B.2)

Fp
= BpSquSq ﬂ-FP+AP 7TFq+Aq _ Z F(p) (Wfp)F(q) (’Kfp)
,fp:()
Letting Amax = max(A4,,4,) and Ay, = min(A4,, 4,), and defining (5;5) =1if
fp < A, and (5;5) = 0 otherwise, 6;3) =1if f, < A4, and (5;3) = 0 otherwise, we
obtain from Eq. (A.1)

FP
Z F®) (glo)F@) (g fv)

,fp:()
F, 1 (;(fp) i1 (;}q)
= 3" ot god(amte) (TER) " et ) ()
™ ™
fp:()
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=1 + szlqﬁ fp fr < > i’( ¢ fp Amint+fp (ﬂ-_'_ 1)

m
fp=Amin+1
FP
+ Z p(nfr)? pArtAa
fp: max+1
Amin Amax
=1+ (72 —1)? Z e 4 (= 1)% (1 + Amin Z 3(fp—1)
fp=1 fp=Amin+1
Fy,
(r— 1) Ay Z 2(,-1)
fp=Amax+1
_ (2 —1)(x*4min _1) (72 —1) g min (g34max_734min)
=1+ w241 + w24n+1
(ﬂil)ﬂAp+Aq(ﬂ_2F‘p7ﬂ_2Amax)
+ T+1
9 aAmin (72 _1)7 A AP+ AGH2Amax(m—1)n (r—1)nAptAa+2Fp
Bl W P e ey P Y oy Rl Py )

noting that Anin + 3Amax = Ap + Ay + 2Amax. Let 7y, be the probability that
Fp+ F; > 2Anax. Since Fp, F, > 1, F, > A, and F, > A,, the proportion 7 of
points P for which f, # f; is

N pr ) (zfe ) F(9) (n]r)
T= BpSquSqﬂFP+AP+FQ+A‘1 =1 P+AP+F‘1+A‘1
9 7|_4Ami1](ﬂ.271)ﬂ_ nAp+Ag+2Amax(r—1)7 (ﬂ,il)ﬂ,Api»Aq{»QF‘p
o w241 + (m2+1)(m2+7+1) + (m2+7+1)(7+1) w41
- aFrtAp+Fe+Ag
_ 2 _ (71'271)71' _ (=17 o1
2 Yn |:1 (m2+1)n2 (m241)(n2+7+1) (m247+1)(7+1) m+1
4 2 2 2 2 1
o2 2D =
w2 (w2 + 1) w2 (2 + 1)
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