Jean-Christophe Pesquet

Jean-Christophe Pesquet
CentraleSupélec | ECP · Center for Visual Computing

About

482
Publications
39,285
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,602
Citations

Publications

Publications (482)
Preprint
We propose a novel Bregman descent algorithm for minimizing a convex function that is expressed as the sum of a differentiable part (defined over an open set) and a possibly nonsmooth term. The approach, referred to as the Variable Bregman Majorization-Minimization (VBMM) algorithm, extends the Bregman Proximal Gradient method by allowing the Bregm...
Preprint
Full-text available
We consider a neural network architecture designed to solve inverse problems where the degradation operator is linear and known. This architecture is constructed by unrolling a forward-backward algorithm derived from the minimization of an objective function that combines a data-fidelity term, a Tikhonov-type regularization term, and a potentially...
Preprint
Full-text available
Transductive few-shot learning has recently triggered wide attention in computer vision. Yet, current methods introduce key hyper-parameters, which control the prediction statistics of the test batches, such as the level of class balance, affecting performances significantly. Such hyper-parameters are empirically grid-searched over validation data,...
Preprint
Independent vector analysis (IVA) is an attractive solution to address the problem of joint blind source separation (JBSS), that is, the simultaneous extraction of latent sources from several datasets implicitly sharing some information. Among IVA approaches, we focus here on the celebrated IVA-G model, that describes observed data through the mixi...
Preprint
Full-text available
Outer approximation methods have long been employed to tackle a variety of optimization problems, including linear programming, in the 1960s, and continue to be effective for solving variational inequalities, general convex problems, as well as mixed-integer linear, and nonlinear programming problems. In this work, we introduce a novel outer approx...
Conference Paper
Full-text available
This paper presents a new approach for classifying 2Dhistopathology patches using few-shot learning. The methodis designed to tackle a significant challenge in histopathology,which is the limited availability of labeled data. By apply-ing a sliding window technique to histopathology slides,we illustrate the practical benefits of transductive learni...
Article
Optical fibres aim to image in-vivo biological processes. In this context, high spatial resolution and stability to fibre movements are key to enable decision-making processes (e.g., for microendoscopy). Recently, a single-pixel imaging technique based on a multicore fibre photonic lantern has been designed, named computational optical imaging usin...
Article
Full-text available
The joint problem of reconstruction/feature extraction is a challenging task in image processing. It consists in performing, in a joint manner, the restoration of an image and the extraction of its features. In this work, we firstly propose a novel non-smooth and non-convex variational formulation of the problem. For this purpose, we introduce a ve...
Article
In multi-photon microscopy (MPM), a recent in-vivo fluorescence microscopy system, the task of image restoration can be decomposed into two interlinked inverse problems: firstly, the characterization of the Point Spread Function (PSF) and subsequently, the deconvolution (i.e., deblurring) to remove the PSF effect, and reduce noise. The acquired M...
Preprint
Transductive inference has been widely investigated in few-shot image classification, but completely overlooked in the recent, fast growing literature on adapting vision-langage models like CLIP. This paper addresses the transductive zero-shot and few-shot CLIP classification challenge, in which inference is performed jointly across a mini-batch of...
Article
Full-text available
Halide perovskite materials offer significant promise for solar energy and optoelectronics yet understanding and enhancing their efficiency and stability require addressing lateral inhomogeneity challenges. While photoluminescence imaging techniques are employed for the measurement of their opto‐electronic and transport properties, going further in...
Article
Automated evaluation of abdominal computed tomography (CT) scans should help radiologists manage their massive workloads, thereby leading to earlier diagnoses and better patient outcomes. Our objective was to develop a machine-learning model capable of reliably identifying suspected bowel obstruction (BO) on abdominal CT. The internal dataset compr...
Article
The multivariate generalized Gaussian distribution (MGGD), also known as the multivariate exponential power (MEP) distribution, is widely used in signal and image processing. However, estimating MGGD parameters, which is required in practical applications, still faces specific theoretical challenges. In particular, establishing convergence properti...
Article
This paper introduces a novel approach for building a robust Automatic Gesture Recognition system based on Surface Electromyographic (sEMG) signals, acquired at the forearm level. Our main contribution is to propose new constrained learning strategies that ensure robustness against adversarial perturbations by controlling the Lipschitz constant of...
Article
The optimization of prediction and update operators plays a prominent role in lifting-based image coding schemes. In this paper, we focus on learning the prediction and update models involved in a recent Fully Connected Neural Network (FCNN)-based lifting structure. While a straightforward approach consists in separately learning the different FCNN...
Preprint
Full-text available
Several decades ago, Support Vector Machines (SVMs) were introduced for performing binary classification tasks, under a supervised framework. Nowadays, they often outperform other supervised methods and remain one of the most popular approaches in the machine learning arena. In this work, we investigate the training of SVMs through a smooth sparse-...
Article
In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The propo...
Preprint
Standard few-shot benchmarks are often built upon simplifying assumptions on the query sets, which may not always hold in practice. In particular, for each task at testing time, the classes effectively present in the unlabeled query set are known a priori, and correspond exactly to the set of classes represented in the labeled support set. We relax...
Preprint
Full-text available
Neural networks have become ubiquitous tools for solving signal and image processing problems, and they often outperform standard approaches. Nevertheless, training neural networks is a challenging task in many applications. The prevalent training procedure consists of minimizing highly non-convex objectives based on data sets of huge dimension. In...
Preprint
Full-text available
Bayesian neural networks (BNNs) have received an increased interest in the last years. In BNNs, a complete posterior distribution of the unknown weight and bias parameters of the network is produced during the training stage. This probabilistic estimation offers several advantages with respect to point-wise estimates, in particular, the ability to...
Preprint
Full-text available
This paper addresses the problem of image reconstruction for region-of-interest (ROI) computed tomography (CT). While model-based iterative methods can be used for such a problem, their practicability is often limited due to tedious parameterization and slow convergence. In addition, inadequate solutions can be obtained when the retained priors do...
Chapter
Stability of a machine learning model is the extent to which a model can continue to operate correctly despite small perturbations in its inputs. A formal method to measure stability is the Lipschitz constant of the model which allows to evaluate how small perturbations in the inputs impact the output variations. Variations in the outputs may lead...
Preprint
Full-text available
The joint problem of reconstruction / feature extraction is a challenging task in image processing. It consists in performing, in a joint manner, the restoration of an image and the extraction of its features. In this work, we firstly propose a novel nonsmooth and nonconvex variational formulation of the problem. For this purpose, we introduce a ve...
Preprint
Full-text available
The core of many approaches for the resolution of variational inverse problems arising in signal and image processing consists of promoting the sought solution to have a sparse representation in a well-suited space. A crucial task in this context is the choice of a good sparsity prior that can ensure a good trade-off between the quality of the solu...
Article
Full-text available
This article introduces a new penalized majorization–minimization subspace algorithm (P-MMS) for solving smooth, constrained optimization problems. In short, our approach consists of embedding a subspace algorithm in an inexact exterior penalty procedure. The subspace strategy, combined with a majoration–minimization step-size search, takes great a...
Article
On account of its many successes in inference tasks and imaging applications, Dictionary Learning (DL) and its related sparse optimization problems have garnered a lot of research interest. In DL area, most solutions are focused on single-layer dictionaries, whose reliance on handcrafted features achieves a somewhat limited performance. With the ra...
Preprint
Classification has been the focal point of research on adversarial attacks, but only a few works investigate methods suited to denser prediction tasks, such as semantic segmentation. The methods proposed in these works do not accurately solve the adversarial segmentation problem and, therefore, are overoptimistic in terms of size of the perturbatio...
Article
Optimization problems arising in signal and image processing involve an increasingly large number of variables. In addition to the curse of dimensionality, another difficulty to overcome is that the cost function usually reads as the sum of several loss/regularization terms, which are non-necessarily smooth and possibly composed with large-size lin...
Article
Full-text available
The stability of neural networks with respect to adversarial perturbations has been extensively studied. One of the main strategies consist of quantifying the Lipschitz regularity of neural networks. In this paper, we introduce a multivariate Lipschitz constant-based stability analysis of fully connected neural networks allowing us to capture the i...
Article
In this article, a neural network (NN) approach is introduced to estimate the nonnoisy speed and torque from noisy measured currents and voltages in induction motors with variable speed drives. The proposed estimation method is comprised of a neural speed–torque estimator and a neural signal denoiser. A new training strategy is introduced that comb...
Article
This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading to increased complexity in the computation of the p...
Article
Lifting-based wavelet transform has been extensively used for efficient compression of various types of visual data. Generally, the performance of such coding schemes strongly depends on the lifting operators used, namely the prediction and update filters. Unlike conventional schemes based on linear filters, we propose, in this paper, to learn thes...
Article
Full-text available
The reconstruction of a volumetric image from Digital Breast Tomosynthesis (DBT) measurements is an ill-posed inverse problem, for which existing iterative regularized approaches can provide a good solution. However, the clinical task is somehow omitted in the derivation of those techniques, although it plays a primary role in the radiologist diagn...
Preprint
Full-text available
In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel. One of our main contributions is the integration of VBA within a neural network paradigm, following an...
Article
Full-text available
Purpose Discretizing tomographic forward and backward operations is a crucial step in the design of model‐based reconstruction algorithms. Standard projectors rely on linear interpolation, whose adjoint introduces discretization errors during backprojection. More advanced techniques are obtained through geometric footprint models that may present a...
Preprint
Full-text available
We introduce a neural network architecture to solve inverse problems linked to a one-dimensional integral operator. This architecture is built by unfolding a forward-backward algorithm derived from the minimization of an objective function which consists of the sum of a data-fidelity function and a Tikhonov-type regularization function. The robustn...
Preprint
Full-text available
Based on its great successes in inference and denosing tasks, Dictionary Learning (DL) and its related sparse optimization formulations have garnered a lot of research interest. While most solutions have focused on single layer dictionaries, the recently improved Deep DL methods have also fallen short on a number of issues. We hence propose a novel...
Article
The goal of this paper is to promote the use of fixed point strategies in data science by showing that they provide a simplifying and unifying framework to model, analyze, and solve a great variety of problems. They are seen to constitute a natural environment to explain the behavior of advanced convex optimization methods as well as of recent nonl...
Article
Full-text available
We propose a method to reconstruct sparse signals degraded by a nonlinear distortion and acquired at a limited sampling rate. Our method formulates the reconstruction problem as a nonconvex minimization of the sum of a data fitting term and a penalization term. In contrast with most previous works which settle for approximated local solutions, we s...
Article
Full-text available
The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then...
Article
We demonstrate the benefit of a novel laser strategy in multiphoton microscopy (MPM). The cheap, simple, and turn‐key supercontinuum laser system with its spectral shaping module, constitutes an ideal approach for the one‐shot microscopic imaging of many fluorophores without modification of the excitation parameters: central wavelength, spectral ba...
Article
Full-text available
We consider the proximal gradient algorithm for solving penalized least-squares minimization problems arising in data science. This first-order algorithm is attractive due to its flexibility and minimal memory requirements allowing to tackle large-scale minimization problems involving non-smooth penalties. However, for problems such as x-ray comput...
Preprint
Full-text available
We introduce a new paradigm for solving regularized variational problems. These are typically formulated to address ill-posed inverse problems encountered in signal and image processing. The objective function is traditionally defined by adding a regularization function to a data fit term, which is subsequently minimized by using iterative optimiza...
Preprint
Full-text available
We propose a method to reconstruct sparse signals degraded by a nonlinear distortion and acquired at a limited sampling rate. Our method formulates the reconstruction problem as a nonconvex minimization of the sum of a data fitting term and a penalization term. In contrast with most previous works which settle for approximated local solutions, we s...
Preprint
Full-text available
Electrical motors are the most important source of mechanical energy in the industrial world. Their modeling traditionally relies on a physics-based approach, which aims at taking their complex internal dynamics into account. In this paper, we explore the feasibility of modeling the dynamics of an electrical motor by following a data-driven approac...
Article
Full-text available
Motivated by structures that appear in deep neural networks, we investigate nonlinear composite models alternating proximity and affine operators defined on different spaces. We first show that a wide range of activation operators used in neural networks are actually proximity operators. We then establish conditions for the averagedness of the prop...