
Generalized Arc Consistency
for Global Cardinality Constraint

Jean-Charles R�EGIN
ILOG S.A.

9, rue de Verdun BP 85

94253 Gentilly Cedex { FRANCE

e-mail : regin@ilog.fr

Abstract

A global cardinality constraint (gcc) is speci�ed in
terms of a set of variables X = fx1; :::; xpg which take
their values in a subset of V = fv1; :::; vdg. It con-
strains the number of times a value vi 2 V is assigned
to a variable in X to be in an interval [li; ci]. Car-
dinality constraints have proved very useful in many
real-life problems, such as scheduling, timetabling, or
resource allocation. A gcc is more general than a con-
straint of di�erence, which requires each interval to be
[0; 1]. In this paper, we present an e�cient way of im-
plementing generalized arc consistency for a gcc. The
algorithm we propose is based on a new theorem of
ow theory. Its space complexity is O(jXj � jV j) and
its time complexity is O(jXj2 � jV j). We also show
how this algorithm can e�ciently be combined with
other �ltering techniques.

Introduction

Constraint satisfaction problems (CSPs) form a sim-

ple formal frame to represent and solve certain prob-

lems in arti�cial intelligence. They involve �nding val-

ues for problem variables subject to constraints on

which combinations are acceptable. The problem of

the existence of solutions to the CSP is NP-complete.

Therefore, methods have been developed to simplify

the CSP before or during the search for solutions.

Arc consistency is one of the most basic and useful

such method. Several algorithms achieving arc con-

sistency have been proposed for binary CSPs (Mack-

worth 1977; Mohr & Henderson 1986; Bessi�ere 1994;

Bessi�ere, Freuder, & R�egin 1995) and for n-ary CSPs

(Mohr & Masini 1988a). Only limited work has been

carried out on the semantics of constraints. (Mohr &

Masini 1988b) have described an improvement of the

algorithm AC-4 for special constraints introduced by

a vision problem; (Van Hentenryck, Deville, & Teng

1992) have studied monotonic and functional binary

constraints; (Nuijten 1994) has proposed several �l-

tering algorithms for constraints found in scheduling

problems; and (R�egin 1994) has given an e�cient way

Mo Tu We Th ...

peter D N O M

paul D B M N

mary N O D D

...

A = fM,D,N,B,Og, P = fpeter, paul, mary, ...g
W = fMo, Tu, We, Th, ...g
M: morning, D: day, N: night B: backup, O: day-o�

Figure 1: An Assignment Timetable.

of implementing generalized arc consistency for con-

straint of di�erence. In this work, we are interested

in a special case of n-ary constraints: global cardinal-

ity constraints (gcc), for which we propose a �ltering

algorithm.

A gcc is speci�ed in terms of a set of variables

X = fx1; :::; xpg which take their values in a subset

of V = fv1; :::; vdg. It constrains the number of times

a value vi 2 V is assigned to a variable in X to be in

an interval [li; ci]. Gccs arise in many real-life prob-

lems. For instance, consider the example derived from

a real problem and given in (Caseau, Guillo, & Levenez

1993) (cf. Figure 1). The task is to schedule managers

for a directory-assistance center, with 5 activities (set

A), 7 persons (set P ) over 7 days (set W ). Each day,

a person can perform an activity from the set A. The

goal is to produce an assignment matrix that satis�es

the following global and local constraints:

� global constraints restrict the assignments. First,

for each day we may have a minimumand maximum

number for each activity. Second, for each week, a

person may have a minimum and maximum num-

ber for each activity. Thus, for each row and each

column of the assignment matrix, there is a global

cardinality constraint.

� local constraintsmainly indicate incompatibilities

between two consecutive days. For instance, a morn-



peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

Figure 2: An example of global constraint of cardinal-

ity.

ing schedule cannot be assigned after a night sched-

ule.

There are two ways for trying to handle the global

constraints:

� By representing each global constraint by an n-ary

constraint and by using the generalized arc consis-

tency algorithm GAC-4 (Mohr & Masini 1988a) to

�lter them. This �ltering e�ciently reduces the do-

mains, but its complexity depends on the length and

the number of all admissible tuples. That number

can be exponential because these global constraints

are more general than di�erence constraints; there-

fore, GAC-4 cannot be used in pratice even for small

problems.

� By representing each global constraint by as many

min/max constraints as the number of involved ac-

tivities. Now, these min/max constraints can be

easily handled with, for instance, the atmost/atleast

operators proposed in (Van Hentenryck & Deville

1991). Such operators are implemented using local

propagation. But as it is noted in (Caseau, Guillo, &

Levenez 1993): \The problem is that e�cient reso-

lution of a timetable problem requires a global com-

putation on the set of min/max constraints, and not

the e�cient implementation of each of them sepa-

rately." Hence, this way is not satisfactory.

In order to show the di�erence in global and local

�ltering, consider a gcc associated with a day (cf �gure

2). The constraint can be represented by a bipartite

graph called a value graph (left graph in Figure 2).

The left set corresponds to the person set, the right

set to the activity set. There exists an edge between

a person and an activity when the person can perform

the activity. For each activity, the numbers between

parentheses express the minimum and the maximum

number of times the activity has to be assigned. For

instance, John can work the morning or the day but

not the night; one manager is required to work the

morning, and at most two managers work the morning.

We recall that each person has to be associated with

exactly one activity.

Local �ltering deletes no values. Now, we can care-

fully study this constraint. Peter, Paul, Mary, and

John can work only in the morning and during the

day. Moreover, morning and day can be assigned to-

gether to at most 4 persons. Thus, no other persons

(i.e. Bob, Mike, nor Julia) can perform activities M

and D. So we can delete the edges between Bob, Mike,

Julia and D, M. Now only one possibility remains for

Bob: N, which can be assigned at most once. There-

fore, we can delete the edges fmike,Ng and fjulia,Ng.
This reasoning leads to the right graph in Figure 2.

It corresponds to the achievement of generalized arc

consistency for the constraint.

In this paper we present an e�cient way of imple-

menting generalized arc consistency for the gcc in order

to bene�t from its pruning performances.

First, we give some preliminaries on graphs, con-

straint satisfaction problems and ows. Then, we

present an algorithm checking the consistency of a gcc.

We introduce a new theorem in ow theory. From it,

we propose a very simple algorithm for achieving gener-

alized arc consistency. We show how this new �ltering

algorithm can be easily and e�ciently combined with

other �ltering techniques. Finally, we recapitulate our

conclusions.

Preliminaries

Graph

The following de�nitions are due to (Tarjan 1983).

A directed graph or digraph G = (X;U ) consists of a

vertex set X and an arc set U , where every arc (u; v) is

an ordered pair of distinct vertices. An oriented graph

is a digraph having no symmetric pairs of arcs. We

will denote by X(G) the vertex set of G and by U (G)

the arc set of G.

An arc (u; v) leaves u and enters v. A path in a graph

from v1 to vk is a sequence of vertices [v1; v2; :::; vk] such

that (vi; vi+1) is an arc for i 2 [1; :::; k�1]. The path is

simple if all its vertices are distinct. A path is a cycle

if k > 1 and v1 = vk.

CSP

A �nite constraint satisfaction problem (CSP) P =

(X;D; C) is de�ned as a set of n variables X =

fx1; :::; xng, a set of �nite domains D = fD1; :::; Dng
where Di is the set of possible values for variable xi,

and a set C of constraints between variables.

Let Xi;:::;k be a subset of X. A tuple of values from

Di; :::; Dk is called a tuple of Xi;:::;k. For instance, if

a 2 Di, b 2 Dj and c 2 Dk, then (a; b; c) is a tuple of



Xijk. A constraint C is de�ned on a set of variables

X(C) = fxi; :::; xkg by a subset of the Cartesian prod-

uct Di� :::�Dk (i.e. a set of tuple, denoted by T (C)).

With C a constraint:

D(C) denotes the union of domains of variables of

X(C) (i.e. D(C) = [i2X(C)Di).

k = jX(C)j denotes the arity of C.

d denotes the cardinality of D(C).

Moreover, we will denote by #(a; P ) the number of

occurences of the value a in the tuple P .

For convenience, we introduce the concepts of con-

sistency and arc consistency for one constraint.

Let P = (X;D; C) be a CSP, C 2 C be a constraint,

x be the ith variable of X(C), and a be a value of x:
� C is consistent i� T (C) 6= ?.
� a is consistent with C i� 9P 2 T (C) such that a

appears at the ith position in P .
� C is arc consistent i� 8xi 2 X(C); 8a 2 Di; a is

consistent with C.
� P is arc consistent i� 8C 2 C , C is arc consistent.

The arc consistency for n-ary constraints is usually

called generalized arc consistency.

The value graph (Lauri�ere 1978) of an n-ary

constraint C is the bipartite graph GV (C) =

(X(C); D(C); E) where (xi; a) 2 E i� a 2 Di. This

graph establishes an obvious correspondence between

any tuple of any n-ary constraint and a special set of

edges in the value graph.

Proposition 1 Let C be a constraint. Every tuple of

T (C) corresponds to a set S of edges in GV (C) such

that every vertex xi 2 XC is an end1 of exactly one

edge in S.

Throughout this paper, we are interested in global

cardinality constraints (gcc). They are de�ned by the

minimal and the maximal number of times the values

of D(C) must appear in each tuple of the constraints.

The minimal and the maximal number of occurences

of each value can be di�erent from the others. More

formally we have:

De�nition 1 A global cardinality constraint is a

constraint C in which each value ai 2 D(C) is associ-

ated with two positive integers li and ci and
T (C) = f P such that P is a tuple of X(C)

and 8ai 2 D(C) : li � #(ai; P ) � cig

In previous work (R�egin 1994), we have proposed

an e�cient implementation to achieve generalized arc

consistency for the di�erence constraints. These con-

straints can be de�ned by prescribing, in the previous

1u and v are the ends of the edge fu; vg.

de�nition, each lower bound to be 0 and each upper

bound to be 1. So, a gcc is more general than a di�er-

ence constraint. Moreover, the �ltering we have pro-

posed is based on matching theory in a bipartite graphs

(which can be viewed as a specialization of ow the-

ory). Hence, in order to be more general, we introduce

ow theory and show how it can help to e�ciently im-

plement generalized arc consistency for a gcc.

Flows

Flow theory was originally developed by Ford and

Fulkerson (Ford & Fulkerson 1962).

Let G be an oriented graph for which each arc (u; v)

is associated with two positive integers l(u; v) and

c(u; v). The number c(u; v) is called the capacity of

the arc (u; v) and l(u; v) the lower bound.

A ow in G is a function f satisfying the following

two conditions:
� For any arc (u; v), f(u; v) represents the amount

of some commodity that can \ow" through the arc.

Such a ow is permitted only in the indicated direction

of the arc, i.e., from u to v.
� A conservation law is observed at each of the

vertices2:

8v 2 X(G) :
P

u f(u; v) =
P

w f(v; w).

We will consider two problems of ow theory:
� the feasible ow problem: Does there exist a ow

in G that satis�es the capacity constraint, that is,

8(u; v) 2 U (G) : l(u; v) � f(u; v) � c(u; v) ?
� the problem of the maximum ow for an arc (u; v):

Find a feasible ow in G for which the value of f(u; v)

is maximum. This problem is also called maximum

ow from v to u, and f(u; v) is called the value of such

a ow.

If lower bounds are equal to zero, note that a maxi-

mum ow for any arc always exists; otherwise there is

not necessarily a feasible ow.

The following theorem shows the interest of integral

capacities and integral lower bounds:

Theorem 1 (Flow Integrality Theorem) If

all the capacities and all the lower bounds are inte-

gers and if there exists a feasible ow, then for any arc

(u; v) there exists a maximum ow from v to u which

is integral on every arc in G.

Consistency of a gcc

From a gcc C we propose to build a particular oriented

graph, denoted by N (C). Then, we show that a gcc is

consistent i� there is a special ow in this graph.

2For convenience, we assume f(u; v) = 0 if (u; v) 62
U(G).



orientation

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

t s

O (0,2)

Figure 3: The value network of the gcc given in Figure

2.

De�nition 2 Let C be a gcc; the value network of

C is the oriented graph N (C) with capacity and lower

bound on each arc. N (C) is obtained from the value

graph GV (C), by:
� orienting each edge of GV (C) from values to vari-

ables. For such an arc (u; v): l(u; v) = 0 and c(u; v) =

1.
� adding a vertex s and an arc from s to each value.

For such an arc (s; ai): l(s; ai) = li and c(s; ai) = ci.
� adding a vertex t and an arc from each variable to

t. For such an arc (xi; t): l(xi; t) = 0 and c(xi; t) = 1.
� adding an arc (t; s) with l(t; s)=0 and c(t; s)=1.

We will denote by � the number of arcs in U (N (C)).

Figure 3 gives an example of a value network. All

arcs are oriented from s to t. For clarity, the arc (t; s)

is omitted.

Proposition 2 Let C be a gcc of arity k and N (C)

be the value network of C; the following two properties

are equivalent:
� C is consistent;
� there is a maximum ow from s to t in N (C) of

value k.

proof: First, note that no ow from s to t in N(C) can
have a value greater than k because this value can be ob-
tained only if all arcs entering t are saturated.

Suppose C is consistent. So, T (C) 6= ?. Let us consider
P 2 T (C). We can build a function f in N(C) as follows:

(a) 8xi 2 X(C); f(xi; t) = 1;

(b) 8xi 2 X(C); f(a; xi) = 1 if a appears at the ith

position in P ; otherwise, f(a; xi) = 0;
(c) 8aj 2 D(C); f(s;aj) = #(aj; P ).

It is easy to check that this function satis�es the con-
servation law and the capacity constraint. Furthermore,P

ai
f(s;ai) = k.

On the other hand, suppose there is a feasible ow f

from s to t of value k integral on every arc in N(C) (by

Theorem 1, a maximum ow integral on every arc al-

ways exists when a feasible ow exists), so
P

x
f(x; t) = k

orientation

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

t s

O (0,2)

2
2

0

1

1

Figure 4: An infeasible ow from s to t.

Orientation : bold edge

thin edge

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

t s

O (0,2)

Figure 5: The residual graph for the ow given in Fig-

ure 4.

and 8xi 2 X(C) : f(xi; t) = 1. By the conservation

law,
P

a
f(a; xi) =

P
w
f(xi; w) = f(xi; t) = 1. Since

f is integral on every arc, there is exactly one aj for

each xi 2 X(C) such that f(aj; xi) = 1. Thus, the set

of arcs such that f(aj; xi) = 1 corresponds to a set of

edges in the value graph, and by Proposition 1, this cor-

responds to a tuple of X(C). By the capacity constraint:

8ai 2 D(C) : li � f(s;ai) � ci, and by the conservation law

f(s; ai) =
P

x
f(ai; x) � ci, therefore li � #(ai; P ) � ci,

and C is consistent.2

This proposition gives us a way to compute the con-

sistency of a gcc. Now the problem is the search for a

maximum ow from s to t in N (C).

Computation of maximum ow

This presentation is inspired by (Lawler 1976; Berge

1970; Tarjan 1983; Ford & Fulkerson 1962).

Let G be an oriented graph for which each arc is

associated with a lower bound and with a capacity,

(t; s) be an arc in G, and f be a ow from s to t in G.

The residual graph for f , denoted by R(f), is the

digraph with the same vertex set as in G. The arc set



of R(f) is de�ned as follows:

8(u; v) 2 U (G):
� If f(u; v) < c(u; v), then (u; v) 2 U (R(f)) and

res(u; v) = c(u; v)� f(u; v). Such an arc (u; v) will be

denoted by a+.
� If f(u; v) > l(u; v) then (v; u) 2 U (R(f)) and

res(v; u) = f(u; v) � l(u; v). Such an arc (v; u) will be

denoted by a�.

res(u; v) is called the residual capacity of (u; v) inR(f).

The residual capacity of p a path in R(f), denoted by

res(p), is the minimum value of res(u; v) for each arc

(u; v) of p. A+(p) (resp. A�(p)) is the set of arcs a+

(resp. a�) of p.

Intuitively, an arc a+ = (u; v) can receive res(u; v)

units of commodity, and an arc a� can give res(u; v)

units of commodity. Thus, if we �nd p a simple path in

R(f) from x to y which does not contain (x; y) and if

f(y; x) < c(y; x), then we can augment f along p to get

a ow f
0 from x to y in G with f 0(y; x) = f(y; x)+val,

where val = min(res(p); res(y; x)). To ensure f 0 is a

ow, it is de�ned as follows:

8(u; v) 2 A
+(p) : f 0(u; v) = f(u; v) + val;

8(v; u) 2 A
�(p) : f 0(u; v) = f(u; v) � val;

f
0(y; x) = f(y; x) + val

For all other arcs (u; v) in U (G): f
0(u; v) =

f(u; v).

Moreover, if f is feasible, then so is f 0.

We will say that there exists an augmenting path p

from s to t for f i� f(t; s) < c(t; s) and p is a simple

path from s to t in R(f) which does not contain (s; t).

Figures 4 shows a ow from s to t, and Figure 5

shows its residual graph. The number over an arc (s; a)

indicates the value of f(s; a). In absence of such num-

ber, a bold arc means the value 1 for the ow, while a

thin arc represents the value 0. (s;N; bob;D; john; t)

is an augmenting path from s to t for f . (For clarity

the arcs (t; s) and (s; t) are omitted.)

In the next section, we will assume a feasible ow

from s to t is known. In a latter section, we will show

how such a feasible ow can be computed.

Computation of a ow from s to t from a feasible

ow

Theorem 2 A ow f from s to t is maximum if and

only if there is no augmenting path from s to t for f .

proof: See page 99 in (Tarjan 1983), for instance.2

This Theorem gives a way to construct a maximum

ow from s to t by an iterative improvement, the aug-

menting path method of Ford and Fulkerson: begin

with any feasible ow f0 from s to t and look for an

augmenting path from s to t for f0. If there is none,

f0 is maximum. If, on the other hand, we �nd such a

path p, then augment f0 along p to get a ow f1 from

s to t. Now look for an augmenting path from s to

t for f1 and repeat this process. Terminate if fk is a

maximum ow.

The question that still remains is that of determining

a feasible ow.

Computation of a feasible ow The method is

similar to the previous one (see page 139 in (Lawler

1976)). Suppose f is an infeasible ow. Pick an arc

(y; x) such that f(y; x) < l(y; x). Find p an augment-

ing path from x to y for f . Augment f along p to get

a ow f
0; set f = f

0 and repeat until f(y; x) � l(y; x).

Then repeat for another arc for which the ow is infea-

sible. If, at some point, there is no augmenting path

for the current ow, then a feasible ow does not exist.

Otherwise, the obtained ow is feasible.

The zero ow (8(u; v) 2 U (G) : f(u; v) = 0) can be

used to start the computation in the absence of another

initial ow.

Complexity

Corollary 1 Let C be a gcc. The augmenting path

method of Ford and Fulkerson �nds a maximum ow

f
� from s to t in N (C) or proves there is none in O(k�)

which is less than or equal to O(k2d).3

proof: The search for p an augmenting path, called an

augmenting step, can be computed in O(� + k + d), for

instance, by a breadth-�rst search. All lower bounds and

all capacities are integers, so res(p) is an integer strictly

greater than 0. Hence, each augmentation increases the

value of the ow for the considered arc by at least 1.

For the computation of a maximum ow from a feasible

ow, the number of augmenting steps is clearly bound

by O(f�(t; s)) � O(k). For the computation of a feasi-

ble ow,
P

a
l(s; a) � k (else there is no solution); so at

most
P

a
l(s; a) augmenting steps are needed. Therefore,

the consistency of a gcc C can be checked in O(�k) �

O(k2d).2

This complexity is good in regard to the space

complexity (O(kd)) and to the complexity obtained

to check the consistency of one di�erence constraint

(O(kd
p
k)).

In general, Ford and Fulkerson's method is not ef-

�cient, because if the capacities are large integers,

the value of a maximum ow may be large, and

the augmenting path method makes many augmenta-

tions. Furthermore, if the capacities are irrational, the

method may not halt. In our case, since the value of

a maximum ow from s to t is less than the number

of vertices in N (C), and because most of lower bounds

are 0, the complexity of Ford and Fulkerson's algorithm

3We recall that k=jXCj, d=jD(C)j and �=jU(N(C))j.



Orientation : bold edge

thin edge

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

t s

O (0,2)

The residual graph for a maximum ow from s to t.

Orientation : bold edge

thin edge

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

t s

O (0,2)

Arcs joining two vertices that belong to the same strongly

connected components in the residual graph.

Figure 6:

is acceptable. For our problem, indeed, no other algo-

rithm leads to a complexity lower than O(�k). How-

ever, Dinic's algorithm (Dinic 1970) should give the

best results in pratice.

Generalized arc consistency for gcc

Let f be a ow from x to y in a graph G. If we

�nd p, an augmenting path from x to y for f , we

know that the value of f(y; x) can be augmented by

min(res(p); res(y; x)). Similarly, if we �nd p, a sim-

ple path from y to x in R(f) which does not con-

tain (y; x), and if f(y; x) > l(y; x), then f can be

reduced along p to get a ow f
0 with f

0(y; x) =

f(y; x) � min(res(p); res(y; x)). Furthermore, if f is

feasible, then so is f 0. We will say that there exists

a reducing path p from t to s for f i� f(t; s) > l(t; s)

and p is a simple path from t to s in R(f) which does

not contain (t; s). The following theorem is similar to

Theorem 2:

Theorem 3 A ow f from s to t is minimum if and

only if there is no reducing path from t to s for f .

Let R(f) � f(s; t)g denote the residual graph for f

minus the arc (s; t). We introduce a new Theorem in

ow theory:

Theorem 4 Let G be an oriented graph for which each

arc is associated with two positive integers; f be an

arbitrary maximum ow in G from s to t; and (u; v)

an arc in G. For all maximum ows f 0 in G from s

to t, f 0(u; v) = f(u; v) if and only if (u; v) and (v; u)

are not contained in a simple cycle in R(f) � f(s; t)g
involving at least 3 vertices.

proof: (v; u) is not contained in a cycle in R(f)�f(s; t)g
involving at least 3 vertices means that there is no aug-
menting path from u to v for f . So, by Theorem 2, f is
also a maximum ow from u to v.

(u; v) is not contained in a cycle in R(f)�f(s; t)g involv-

ing at least 3 vertices means that there is no reducing path

from v to u for f . So, by Theorem 3, f is also a minimum

ow from u to v. 2

Consider C, a gcc, f a maximumow from s to t in

N (C), and an arc (a; x) which leaves a value and enters

a variable such that f(a; x) = 0. Then, by construction

of R(f), (x; a) does not belong to R(f). So, by the

previous theorem, if (a; x) is not contained in a cycle

in R(f), then for all maximum ows f� from s to t

in N (C), f�(a; x) = 0. Thus, a is not consistent with

C. Moreover, an arc is contained in a cycle i� it leaves

and enters two vertices belonging to the same strongly

connected components (cf. Figure 6). Hence, we have

the following corollary:

Corollary 2 Let C be a consistent gcc and f be a

maximum ow in N (C) from s to t. A value a of

a variable x is not consistent with C if and only if

f(a; x) = 0 and a and x do not belong to the same

strongly connected component in R(f) � f(s; t)g.

The search for strongly connected components of a

graph can be done in O(m + n) for a graph with m

edges and n vertices (Tarjan 1972). Consequently:

Corollary 3 For one consistent gcc, generalized arc

consistency can be achieved in O(� + k + d).

Combination with other �ltering

The deletion of values for one gcc can involve modi�-

cations for the other constraints. Consider again the

example given in Figures 1 and 2, and R another gcc

de�ned by a row. Suppose the previous �ltering ap-

plied to R leads to the removal of value M from the

domains of the variables peter and paul. The con-

straint C also is modi�ed, because edges fpeter, Mg
and fpaul, Mg have been deleted from its value graph.

Then, it is interesting to achieve again generalized arc

consistency for C. But, we can do better than entirely

repeat the previous algorithm because C was consis-

tent before the deletions. Thus, a maximum ow f

from s to t in N (C) is known. This ow can be used



to search for a maximal ow from s to t in N 0(C), the

network obtained after the deletions.

Corollary 4 Let C be a consistent gcc; f be a max-

imum ow from s to t in N (C); N 0(C) be the new

value network of C obtained by removing V values

from domains of variables. A maximum ow from s to

t in N
0(C) can be computed in O(V jU (N 0(C))j) and

generalized arc consistency for C can be achieved in

O(V jU (N 0(C))j+ jU (N 0(C))j+ k).

proof: Let D0(C) be the value set of N 0(C). Consider the
ow f 0 de�ned in N 0(C) by:

8ai 2 D0(C) : f 0(ai; xj) = f(ai; xj)

8ai 2 D
0(C) : f 0(s; ai) =

X

(ai;xj )2U(N(C0))

f(ai; xj)

8xj 2 X(C) : f 0(xj; t) =
X

(ai;xj )2U(N(C0))

f(ai; xj)

f
0(t; s) =

X

(s;ai)2U(N(C0))

f(s; ai):

Let � =
X

ai2D
0(C)s:t:f 0(s;ai)<l(s;ai)

(l(s;ai)� f
0(s; ai)): The com-

putation of f 00 (a feasible ow from s to t from f 0) needs

at most � augmenting steps. Furthermore f 00(t; s) �

f 0(t; s) � �, so the computation of f� (a maximum ow

from s to t in N 0(C)) requieres at most f(t; s)� f 0(t; s)+ �

steps. Since f 0(t; s) � f(t; s) � V and � � V , f� can be

computed in O(V + f(t; s)� f(t; s) + V + V ) steps. Hence

the consistency of C can be checked in O(V jU(N 0(C))j).2

Therefore, if all constraints are combined, the total

complexity of several stages of generalized arc consis-

tency for one global cardinality constraint will never

exceed O(k2d2).

Conclusion

In this paper we have presented a �ltering algorithm for

global cardinality constraints in CSPs. This algorithm

can be viewed as an e�cient way of implementing gen-

eralized arc-consistency for this kind of constraint. It

exploits the pruning performance of the previous con-

dition with a low complexity. In fact, for one gcc C,

its space complexity is O(jX(C)jjD(C)j) and its time

complexity is O(jX(C)j2jD(C)j). Moreover, we have

proved a new Theorem in ow theory. This Theorem

is general and should be used for global �ltering of

others constraints.

Acknowledgments

We thank Pascal van Hentenryck and Jean-Fran�cois

Puget for helpful discussions.

References

Berge, C. 1970. Graphe et Hypergraphes. Paris:

Dunod.

Bessi�ere, C.; Freuder, E.; and R�egin, J.-C. 1995. Us-

ing inference to reduce arc consistency computation.

In Proceedings of IJCAI'95, 592{598.

Bessi�ere, C. 1994. Arc-consistency and arc-

consistency again. Arti�cial Intelligence 65(1):179{

190.

Caseau, Y.; Guillo, P.-Y.; and Levenez, E. 1993. A

deductive and object-oriented approach to a complex

scheduling problem. In Proceedings of DOOD'93.

Dinic, E. 1970. Algorithm for solution of a problem of

maximum ow in a network with power estimation.

Soviet Math. Dokl. 11:1277{1280.

Ford, L., and Fulkerson, D. 1962. Flows in Networks.

Princeton: Princeton University Press.

Lauri�ere, J.-L. 1978. A language and a program for

stating and solving combinatorial problems. Arti�cial

Intelligence 10:29{127.

Lawler, E. 1976. Combinatorial Optimization: Net-

works and Matroids. Holt, Rinehart and Winston.

Mackworth, A. 1977. Consistency in networks of

relations. Arti�cial Intelligence 8:99{118.

Mohr, R., and Henderson, T. 1986. Arc and path

consistency revisited. Arti�cial Intelligence 28:225{

233.

Mohr, R., and Masini, G. 1988a. Good old discrete

relaxation. In Proceedings of ECAI-88, 651{656.

Mohr, R., and Masini, G. 1988b. Running e�-

ciently arc consistency. Syntactic and Structural Pat-

tern Recognition F45:217{231.

Nuijten, W. 1994. Time and Resource Con-

strained Scheduling: A Constraint Satisfaction Ap-

proach. Ph.D. Dissertation, Eindhoven University of

Technology.

R�egin, J.-C. 1994. A �ltering algorithm for con-

straints of di�erence in CSPs. In Proceedings of

AAAI-94, 362{367.

Tarjan, R. 1972. Depth-�rst search and linear graph

algorithms. SIAM Journal of Computing 1:146{160.

Tarjan, R. 1983. Data Structures and Network Al-

gorithms. CBMS-NSF Regional Conference Series in

Applied Mathematics. 97{113.

Van Hentenryck, P., and Deville, Y. 1991. The car-

dinality operator: A new logical connective for con-

straint logic programming. In Proceedings of ICLP-

91, 745{759.

Van Hentenryck, P.; Deville, Y.; and Teng, C. 1992.

A generic arc-consistency algorithm and its special-

izations. Arti�cial Intelligence 57:291{321.


