Jayaraman J. Thiagarajan

Jayaraman J. Thiagarajan
Lawrence Livermore National Laboratory | LLNL · Computing Applications and Research Department

PhD

About

214
Publications
26,984
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,913
Citations
Introduction
Jayaraman J. Thiagarajan is a Computer Scientist in the Center for Applied Scientific Computing at the Lawrence Livermore National Laboratory (California, USA). His research interests are in the areas of machine learning, computer vision, natural language modeling, data analysis, and signal processing. He has published over 100 peer-reviewed conference and journal articles, and has co-authored two books. He is the PI for a project on high-dimensional sampling and a Co-PI on multiple research efforts pertinent to machine learning and computer vision.

Publications

Publications (214)
Preprint
Full-text available
To be successful in single source domain generalization, maximizing diversity of synthesized domains has emerged as one of the most effective strategies. Many of the recent successes have come from methods that pre-specify the types of diversity that a model is exposed to during training, so that it can ultimately generalize well to new domains. Ho...
Preprint
Full-text available
Data science and technology offer transformative tools and methods to science. This review article highlights latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS). A large amount of data and machine learning algorithms go hand in hand. Most plasma data, whether experimental, observational or computatio...
Article
Many problems in science and engineering require making predictions based on few observations. To build a robust predictive model, these sparse data may need to be augmented with simulated data, especially when the design space is multi-dimensional. Simulations, however, often suffer from an inherent bias. Estimation of this bias may be poorly cons...
Article
With the growing complexity of computational and experimental facilities, many scientific researchers are turning to machine learning (ML) techniques to analyze large scale ensemble data. With complexities such as multi-component workflows, heterogeneous machine architectures, parallel file systems, and batch scheduling, care must be taken to facil...
Article
Full-text available
The rapid adoption of artificial intelligence methods in healthcare is coupled with the critical need for techniques to rigorously introspect models and thereby ensure that they behave reliably. This has led to the design of explainable AI techniques that uncover the relationships between discernible data signatures and model predictions. In this c...
Preprint
Full-text available
Unsupervised domain adaptation (UDA) aims to transfer and adapt knowledge from a labeled source domain to an unlabeled target domain. Traditionally, subspace-based methods form an important class of solutions to this problem. Despite their mathematical elegance and tractability, these methods are often found to be ineffective at producing domain-in...
Article
Ion Channel sensors have several applications including DNA sequencing, biothreat detection, and medical applications. Ion-channel sensors mimic the selective transport mechanism of cell membranes and can detect a wide range of analytes at the molecule level. Analytes are sensed through changes in signal patterns. Papers in the literature have desc...
Preprint
Full-text available
Domain generalization (DG) methods aim to develop models that generalize to settings where the test distribution is different from the training data. In this paper, we focus on the challenging problem of multi-source zero-shot DG, where labeled training data from multiple source domains is available but with no access to data from the target domain...
Article
Reliable and rapid non-invasive testing has become essential for COVID-19 diagnosis and tracking statistics. Recent studies motivate the use of modern machine learning (ML) and deep learning (DL) tools that utilize features of coughing sounds for COVID-19 diagnosis. In this paper, we describe system designs that we developed for COVID-19 cough dete...
Preprint
Full-text available
In this paper, we develop a Wasserstein autoencoder (WAE) with a hyperspherical prior for multimodal data in the application of inertial confinement fusion. Unlike a typical hyperspherical generative model that requires computationally inefficient sampling from distributions like the von Mis Fisher, we sample from a normal distribution followed by...
Preprint
Full-text available
We present $\Delta$-UQ -- a novel, general-purpose uncertainty estimator using the concept of anchoring in predictive models. Anchoring works by first transforming the input into a tuple consisting of an anchor point drawn from a prior distribution, and a combination of the input sample with the anchor using a pretext encoding scheme. This encoding...
Preprint
Explanation techniques that synthesize small, interpretable changes to a given image while producing desired changes in the model prediction have become popular for introspecting black-box models. Commonly referred to as counterfactuals, the synthesized explanations are required to contain discernible changes (for easy interpretability) while also...
Preprint
Full-text available
Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous...
Preprint
Full-text available
Artificial intelligence methods such as deep neural networks promise unprecedented capabilities in healthcare, from diagnosing diseases to prescribing treatments. While this can eventually produce a valuable suite of tools for automating clinical workflows, a critical step forward is to ensure that the predictive models are reliable and to enable a...
Conference Paper
Full-text available
Autistic college students face significant challenges in college settings and have a higher dropout rate than neurotypical college students. High physiological distress, depression, and anxiety are identified as critical challenges that contribute to this less than optimal college experience. In this paper, we leverage affordable mobile and wearabl...
Article
Full-text available
Dataset shift refers to the problem where the input data distribution may change over time (e.g., between training and test stages). Since this can be a critical bottleneck in several safety-critical applications such as healthcare, drug-discovery, etc., dataset shift detection has become an important research issue in machine learning. Though seve...
Article
Full-text available
Interpretability has emerged as a crucial aspect of building trust in machine learning systems, aimed at providing insights into the working of complex neural networks that are otherwise opaque to a user. There are a plethora of existing solutions addressing various aspects of interpretability ranging from identifying prototypical samples in a data...
Preprint
Full-text available
Many problems in science, engineering, and business require making predictions based on very few observations. To build a robust predictive model, these sparse data may need to be augmented with simulated data, especially when the design space is multidimensional. Simulations, however, often suffer from an inherent bias. Estimation of this bias may...
Preprint
Full-text available
Unsupervised deep learning methods for solving audio restoration problems extensively rely on carefully tailored neural architectures that carry strong inductive biases for defining priors in the time or spectral domain. In this context, lot of recent success has been achieved with sophisticated convolutional network constructions that recover audi...
Preprint
Full-text available
With increased interest in adopting AI methods for clinical diagnosis, a vital step towards safe deployment of such tools is to ensure that the models not only produce accurate predictions but also do not generalize to data regimes where the training data provide no meaningful evidence. Existing approaches for ensuring the distribution of model pre...
Preprint
Full-text available
Performance analysis has always been an afterthought during the application development process, focusing on application correctness first. The learning curve of the existing static and dynamic analysis tools are steep, which requires understanding low-level details to interpret the findings for actionable optimizations. Additionally, application p...
Chapter
The use of AI-driven predictive models to identify patterns that can act as biomarkers for different neuropathological conditions is becoming highly prevalent. In particular, the recent advances in representation learning techniques provide unprecedented opportunities to understand, diagnose, and eventually treat a gamut of neurological conditions,...
Preprint
Full-text available
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation)...
Article
Full-text available
Predictive models that accurately emulate complex scientific processes can achieve speed-ups over numerical simulators or experiments and at the same time provide surrogates for improving the subsequent analysis. Consequently, there is a recent surge in utilizing modern machine learning methods to build data-driven emulators. In this work, we study...
Article
Full-text available
In the past few years, Generative Adversarial Networks (GANs) have dramatically advanced our ability to represent and parameterize high-dimensional, non-linear image manifolds. As a result, they have been widely adopted across a variety of applications, ranging from challenging inverse problems like image completion, to problems such as anomaly det...
Preprint
Full-text available
Large-scale numerical simulations are used across many scientific disciplines to facilitate experimental development and provide insights into underlying physical processes, but they come with a significant computational cost. Deep neural networks (DNNs) can serve as highly-accurate surrogate models, with the capacity to handle diverse datatypes, o...
Preprint
Full-text available
Through the use of carefully tailored convolutional neural network architectures, a deep image prior (DIP) can be used to obtain pre-images from latent representation encodings. Though DIP inversion has been known to be superior to conventional regularized inversion strategies such as total variation, such an over-parameterized generator is able to...
Preprint
Full-text available
A crucial aspect of managing a public health crisis is to effectively balance prevention and mitigation strategies, while taking their socio-economic impact into account. In particular, determining the influence of different non-pharmaceutical interventions (NPIs) on the effective use of public resources is an important problem, given the uncertain...
Preprint
Full-text available
Calibrating complex epidemiological models to observed data is a crucial step to provide both insights into the current disease dynamics, i.e.\ by estimating a reproductive number, as well as to provide reliable forecasts and scenario explorations. Here we present a new approach to calibrate an agent-based model -- EpiCast -- using a large set of s...
Chapter
The wide-spread adoption of representation learning technologies in clinical decision making strongly emphasizes the need for characterizing model reliability and enabling rigorous introspection of model behavior. In supervised and semi-supervised learning, prediction calibration has emerged as a key technique to achieve improved generalization and...
Article
Full-text available
Effective patient care mandates rapid, yet accurate, diagnosis. With the abundance of non-invasive diagnostic measurements and electronic health records (EHR), manual interpretation for differential diagnosis has become time-consuming and challenging. This has led to wide-spread adoption of AI-powered tools, in pursuit of improving accuracy and eff...
Preprint
Deep predictive models rely on human supervision in the form of labeled training data. Obtaining large amounts of annotated training data can be expensive and time consuming, and this becomes a critical bottleneck while building such models in practice. In such scenarios, active learning (AL) strategies are used to achieve faster convergence in ter...
Preprint
Graph Neural Networks (GNNs), a generalization of neural networks to graph-structured data, are often implemented using message passes between entities of a graph. While GNNs are effective for node classification, link prediction and graph classification, they are vulnerable to adversarial attacks, i.e., a small perturbation to the structure can le...
Preprint
Full-text available
With increasing reliance on the outcomes of black-box models in critical applications, post-hoc explainability tools that do not require access to the model internals are often used to enable humans understand and trust these models. In particular, we focus on the class of methods that can reveal the influence of input features on the predicted out...
Article
We adapt a technique, known in the machine learning community as transfer learning, to reduce the bias of computer simulation using very sparse experimental data.
Article
Full-text available
In many fields of science and engineering, we frequently encounter experiments or simulations datasets that describe the behavior of complex systems and uncovering human interpretable patterns between their inputs and outputs via exploratory data analysis is essential for building intuition and facilitating discovery. Often, we resort to 2D embeddi...
Preprint
Full-text available
State-of-the-art under-determined audio source separation systems rely on supervised end-end training of carefully tailored neural network architectures operating either in the time or the spectral domain. However, these methods are severely challenged in terms of requiring access to expensive source level labeled data and being specific to a given...
Preprint
Full-text available
Predictive models that accurately emulate complex scientific processes can achieve exponential speed-ups over numerical simulators or experiments, and at the same time provide surrogates for improving the subsequent analysis. Consequently, there is a recent surge in utilizing modern machine learning (ML) methods, such as deep neural networks, to bu...
Preprint
Full-text available
Automated diagnostic assistants in healthcare necessitate accurate AI models that can be trained with limited labeled data, can cope with severe class imbalances and can support simultaneous prediction of multiple disease conditions. To this end, we present a novel few-shot learning approach that utilizes a number of key components to enable robust...
Preprint
The wide-spread adoption of representation learning technologies in clinical decision making strongly emphasizes the need for characterizing model reliability and enabling rigorous introspection of model behavior. While the former need is often addressed by incorporating uncertainty quantification strategies, the latter challenge is addressed using...
Article
Full-text available
Neural networks have become the method of choice in surrogate modeling because of their ability to characterize arbitrary, high-dimensional functions in a data-driven fashion. This paper advocates for the training of surrogates that are 1) consistent with the physical manifold, resulting in physically meaningful predictions, and 2) cyclically consi...
Article
Sampling one or more effective solutions from large search spaces is a recurring idea in machine learning (ML), and sequential optimization has become a popular solution. Typical examples include data summarization, sample mining for predictive modeling, and hyperparameter optimization. Existing solutions attempt to adaptively trade off between glo...
Article
With rapid adoption of deep learning in critical applications, the question of when and how much to trust these models often arises, which drives the need to quantify the inherent uncertainties. While identifying all sources that account for the stochasticity of models is challenging, it is common to augment predictions with confidence intervals to...
Research
Results from 10,000 simulations of inertial confinement fusion experiments performed at the National Ignition Facility. These data were designed as a test case for cutting edge scientific machine learning model development; each simulation outputs a set of scalars, hyperspectral X-ray images along multiple lines of site, and multiple timeseries. Th...
Preprint
Full-text available
The hypothesis that sub-network initializations (lottery) exist within the initializations of over-parameterized networks, which when trained in isolation produce highly generalizable models, has led to crucial insights into network initialization and has enabled computationally efficient inferencing. In order to realize the full potential of these...
Preprint
Neural networks have become very popular in surrogate modeling because of their ability to characterize arbitrary, high dimensional functions in a data driven fashion. This paper advocates for the training of surrogates that are consistent with the physical manifold -- i.e., predictions are always physically meaningful, and are cyclically consisten...
Preprint
Full-text available
In the past few years, generative models like Generative Adversarial Networks (GANs) have dramatically advanced our ability to represent and parameterize high-dimensional, non-linear image manifolds. As a result, they have been widely adopted across a variety of applications, ranging from challenging inverse problems like image completion, to being...
Preprint
Full-text available
With the growing complexity of computational and experimental facilities, many scientific researchers are turning to machine learning (ML) techniques to analyze large scale ensemble data. With complexities such as multi-component workflows, heterogeneous machine architectures, parallel file systems, and batch scheduling, care must be taken to facil...
Preprint
Full-text available
Exploiting known semantic relationships between fine-grained tasks is critical to the success of recent model agnostic approaches. These approaches often rely on meta-optimization to make a model robust to systematic task or domain shifts. However, in practice, the performance of these methods can suffer, when there are no coherent semantic relatio...
Conference Paper
Full-text available
The era of extremely heterogeneous supercomputing brings with itself the devil of increased performance variation and reduced reproducibility. There is a lack of understanding in the HPC community on how the simultaneous consideration of network traffic, power limits, concurrency tuning, and interference from other jobs impacts application performa...
Article
Modern data analysis pipelines are becoming increasingly complex due to the presence of multiview information sources. While graphs are effective in modeling complex relationships, in many scenarios, a single graph is rarely sufficient to succinctly represent all interactions, and hence, multilayered graphs have become popular. Though this leads to...