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Abstract— This paper proposes a system capable of auto-
matically detecting occlusions of roadway traffic milestones,
with the goal of improving the detection performance of these
signals and decreasing the missing rates. To this purpose, we
propose a matching system based on the well-known CNNs
for image retrieval and extend it with a novel weak learning
algorithm that fits better our problem and application scenario.
Our results demonstrate that our proposal improves the results
of the baseline CNN and outperforms traditional approaches
as SIFT.
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ing, Weak Learning, Contrastive Loss.

I. INTRODUCTION
Efficient transport infrastructure greatly contributes to eco-

nomic development and provides indisputable social benefits.
Since 2010, over 20.000 lives have been saved on the
roads exclusively due to the ETSC’s PIN programme in
the European Union [1]. However, an extra of 8470 deaths
could have been prevented if the original budget planning
had been rigorously followed. Road maintenance is a really
expensive task. Even though roughly more than half of
the infrastructure investment of a country is employed in
the maintenance of the roadways, it is still insufficient [2].
Moreover, the future advent of self-driving cars will require
smarter roads and cheaper ways to constantly maintain them.

A critical factor in road maintenance is the assurance of
an adequate traffic signaling. If there are inconsistencies or
missing signals, the risk of accident drastically increases. In
the GPM’s research group of UC3M we are currently work-
ing on developing a system that automatically detects traffic
signals such as delineator posts or edge milestones. The goal
of this system is to spot any kind of disrepair in the signals,
e.g. they are absent or broken, in order to refurbish them and
increase the driving safety. However, this paper is not focused
on the detection of these signals but on the identification of
cases in which they are occluded by front objects such as cars
or trucks, with the objective of decreasing the missing rate
of the detector and thus improving the performance. Trying
to directly detect some signs in cities can be challenging as
the number of cars is usually large and so is the probability
of occlusion. Thus, developing a system capable of finding
hidden signs is essential for the task at hand. Figure 1 shows
a common scenario where this situation occurs: an overtaking
on the left. Hopefully, our research will help to automate
arduous common chores in the maintaining of the roadways,
improving their sustainability and reducing the labor costs
to a high degree.

We propose to address this problem as follows: given some
sets of video sequences that belong to the same roadway
but were recorded in different days, the goal is to compare
them frame-to-frame in order to determine correspondences
between images that could contain the same traffic signal.
Hence, for some certain location (in a latitude-longitude GPS
pair format fetched from the video metadata) where a signal
should have been detected but was not, nearby frames of
different days are compared by means of an image matching
system so that the unseen signal can be finally labeled as
missing or present. Thus, we tackle the problem similarly to
a CBIR (Content-based Image Retrieval) scheme where most
akin images from a determined database need to be retrieved
for some input queries. The main difference lies in the fact
that in our problem we just need to retrieve the most similar
image, instead of having to accurately spell out the whole
ranking of them. Note that this matching system is required
and essential for the motif, since we cannot fully trust GPS
coordinates to detect occlusions due to the location error
inherent to the GPS sensor embedded in the camera system.
Concretely, the problem is accentuated in those cases where
the traffic signals are pretty close to each other so that there
is no way to discern between them just by inspecting the
GPS data.

Next, we list our main contributions of the project that
will be presented throughout the paper:

• We have built an image matching pipeline to address
the occlusion detection problem.

• We have designed a weak learning approach that adapts
better to our real problem in which only the most similar
image has to be detected and data labels are noisy (due
to GPS errors).

• We have compared our approach with the baseline
and other traditional reference methods based on local
descriptors.

The rest of the paper is organized as exposed along the
next lines. Section II reviews two of the most influential
algorithms - SIFT and CNNs - in the history of computer
vision. In Section III we present the database of the project.
Section IV exposes the proposed system, explaining which is
the CNN baseline and what is the weak learning approach we
used to improve it. Section V presents the experimental setup
of the project as well as the evaluation metric and results.
Conclusions and future lines of research are drawn in Section
VI. Finally, Appendix I looks over the time management of



Fig. 1: Top: Image where a car is occluding a landmark on the left side of the road. Bottom: Image from a different day
of the same spot of the roadway that does not present any landmark occlusions.

the project.

II. RELATED WORK

Human vision is a tremendously complex and powerful
system. By visualizing an image for just a time instant
our visual system is able to perceive and deduce a large
amount of information about it; we are not only able to
classify different objects that appear in the image, but to
precisely detect their boundaries or even to answer context-
related questions apparently effortlessly [3]. Thus, the action
of comparing different images and analyzing the common
matching features remains trivial for our brain. However, this
seems a really hard task for a computer that only interprets
images as matrices of real numbers.

The simplest approach one could think of is just frame
differencing in a pixel-wise way. Following this, different
images should return high score values (large differences)
whereas similar images should return low ones. Predictably,
this method is very far from reaching human performance
since it doesn’t take into account the variability (i.e. view-
point, scale, rotation and illumination variations, occlusions,
etc.) of the items that appear in the image nor their physical
nature.

A huge variety of algorithms have appeared since the 60s
[4] in order to imitate our brain’s behavior. Nevertheless
and broadly speaking, algorithms in computer vision can
be classified into two general groups: local feature based
methods and CNN based methods.

Local feature based methods. Local feature methods are
based on the detection and description of distinct patterns

within the images like edges, corners or blobs. These struc-
tures are commonly denominated as local features and are
the basis of many computer vision algorithms [5]. Famous al-
gorithms s.a. Canny edge detector [6], Harris corner detector
[7]) or SIFT (Scale-Invariant Feature Transform) [8] belong
to this group. In the following paragraphs, we will focus on
the explanation of SIFT due to its historical importance [9]
[10].

SIFT was published by David G. Lowe in 2004 and it
is an algorithm capable of detecting and describing the most
relevant local features of an input image. The main advantage
of SIFT that supposed a breakthrough versus older feature
detectors is its scale-invariant nature. Traditional methods
were robust to limitations such as illumination, translation
(e.g. Canny edge detector) and even rotation changes (e.g.
Harris corner detector). However, all of them resoundingly
failed when trying to detect and describe setups of different
dimensions or scales. SIFT easily solves this problem by
construction, as it finds local features or keypoints in a space
of different scales (a.k.a. scale-space [11]). In its original
formulation, SIFT finds the keypoints by identifying blobs
in the image. Blobs are not concrete points but local regions
where visual properties such as color or illumination remain
constant. The first blob detector ever designed was the LoG
(Laplacian of Gaussian) [12]. However, to speed up the de-
tection process, SIFT uses the DoG (Difference of Gaussians)
[13] instead, which is essentially an approximation of the
LoG operator. It greatly eases the implementation of the
scale-space as it is based on the consecutively building of
gaussian filters that can be re-used to obtain the DoG spaces
by just differencing them. Keypoints, alongside the scales
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Fig. 2: Database scheme. Columns show different road locations whereas rows indicate different recording days. The first
row is the query day and it always presents car occlusions.

where they appear, are then collected by obtaining the DoG
extrema and refined with a peak threshold parameter that
filters out the smallest ones.

Even though DoG scheme has been widely used in the
computer vision community, it has been proven that subse-
quent formulations that use different blob detectors, specially
affine-covariant ones, generally achieve better results [14]
[15]. Affine-covariant refers to the detection of regions whose
shapes proportionately change with affine transformations
[16]. Thus, they offer a reliable keypoint detection even
under large viewpoint shifts. Hessian-Laplace [17] [18] is
an example of these kind of methods. It not only singles out
keypoints in the scale-space but also their elliptical regions.
The detection of the interest points is carried out by finding
the extrema of the hessian matrix, as second derivatives
provide intense responses to ridges and blobs. Scales are
chosen by applying the laplacian operator to the detected
keypoints over different scales and selecting the scale that
provides the maximum value (commonly known as charac-
teristic scale [19]). Lastly, the shape of the elliptical region
is procured by obtaining the eigenvalues (normally with an
iterative estimation algorithm [20]) of the second moment
matrix (a.k.a. autocorrelation matrix). This matrix depict the
gradient distribution of a keypoint in its neighborhood and
it is calculated for every keypoint. Both detectors, DoG and
Hessian-Laplace are designated to be a baseline for CNN
methods and are compared in section V in terms of accuracy
and computational efficiency.

Regarding the description of the keypoints, the original
SIFT descriptor has been shown to be very robust, attaining
competitive results in several benchmarks [21]. It associates
a 128-dimensional vector to every keypoint by analyzing its

surroundings with a HOG (Histogram of Oriented Gradi-
ents) procedure. Once the keypoints have been described, a
matching scheme can be set by just calculating the euclidean
distances between feature vectors.

The revolution of deep learning. Deep learning methods
started to become popular in the 2010s, specially after 2012
when the architecture AlexNet [22] won the ILSVRC com-
petition by a great margin, achieving unprecedented results
in the field of image classification. This milestone carried out
a paradigm shift in computer vision towards deep learning.
Since then, most of the research has been focused on
developing convolutional neural networks, which have been
proven to outperform (in both, accuracy and computational
efficiency) local feature based methods in many scenarios
such as object detection or image classification. In image
retrieval and feature matching problems, CNN architectures,
specially finetuned ones, have achieved competitive results in
a lot of benchmarks (e.g. Holidays or Ukbench datasets) [23]
[24] [25] even though there are some cases where algorithms
like SIFT still obtain slightly better accuracy scores at the
expense of higher memory costs [26].

Besides efficiency benefits, one of the main advantages
of deep learning approaches is the ability of automatically
learn features, as opposed to hand-crafted local feature
engineering. Convolutional layers are able to learn the filters
by themselves via the training process which usually leads
to a better generalization as long as the training datasets are
big enough. Also, transfer learning - or the process by which
the weights learned by a determined network when solving a
different problem are re-used for solving a new problem into
consideration - has helped to popularize CNNs in the recent
years since it allows to build and train accurate models much
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Fig. 3: Sequence outline.

faster and with a considerably smaller amount of data.

III. DATABASE DESCRIPTION

In this section, we explain the database of the project as
well as the corresponding processing that allowed it to be
generated.

Video recording and pre-processing. The database of
the project is composed of six 4K (i.e. 3840 × 2160 px)
videos recorded with a GoPro camera from the same roadway
route (of roughly 25 km) but in different days. Thus, each
video was recorded with different illumination conditions.
Regarding meteorological conditions, only one of them was
recorded in a rainy environment. Due to the enormous frame
resolution and for practical reasons, videos were additionally
trimmed and cropped in their vertical dimension, resulting in
horizontal videos of size 3840 × 400 px that point out the
center of the carriageway.

Car detection. One of the recordings was selected as
the query video or the video where occlusions of traffic
milestones are supposed to happen. Then, we automatically
detected all the cars present in the video that could be
occluders by virtue of a Faster R-CNN network trained on
PASCAL VOC [27] and whose backbone was ResNet-50
[28]. Faster R-CNN is a multi-stage object detector algorithm
(in contrast to one-shot detectors s.a. YOLO [29]) that
first generates interest regions via a RPN (Region Proposal
Network) and then classifies and detects the discernible
items of each of these regions, giving out as output their
corresponding bounding boxes and object scores. We picked

up those frames that had at least one car detection with a
probability score greater than thscore = 0.999. Thereby, we
ensured that the probability of false alarm remains minimal
so that the number of bad car annotations for training the
models is insignificant.

Database alignment. Next, we made assignments be-
tween the frames of the query video and the frames of all
the other videos by calculating their corresponding haversine
GPS distances [30] and selecting those frames that obtained
the minimum distance. Previously to this step, a linear inter-
polation between the GPS data and the frames was carried
out, since their corresponding rates were recorded differently
(18 and 30 Hz, respectively). All of these processes resulted
in a database with six videos of 6000 frames each, aligned
with each other, deriving in a total number of 36000 images.
An example of this database is shown in Figure 2. Each
column is a different GPS spot of the roadway whereas rows
indicate the day images were recorded. Note that images of
the first row are query images and always show at least one
car occlusion, which is usually an overtaking on the right or
on the left, the most typical scenario of occlusion.

Sequence grouping. Ultimately, frames were grouped into
different non-overlapping video sequences. Each of these
represent the occurrence of one traffic milestone or landmark,
from the point where it begin to be visually distinguishable to
the point where it fully disappears. In total, 200 consecutive
sequences of frames were created. These sequences were
automatically selected by analyzing the speed metadata from
the GoPro accelerometer, resulting in groups of 20-60 frames
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Fig. 4: Matching scheme between subsets Sq and Si. Images q and i∗ are supposed to obtain the highest similarity score
as they represent the same road location.

(depending on the speed). This organization of the dataset
into groups of frames is essential for the evaluation of the
system as well as for the training process. Figure 3 displays
this scheme, where a sequence of video is shown with a size
up to 60 frames.

IV. PROPOSED SYSTEM
In this section, we explain the methods we used to assess

if the images taken from the recordings of different videos
represent the same traffic milestone. This problem can be
outlined similarly to a general image retrieval problem that
consists of two main steps: feature extraction and feature
matching. We used a deep learning approach to solve it.

A. Problem statement
The problem can be defined as follows. Let Sq be a subset

of Nq frames that have been picked from the query video
and let Si be a subset of Ni frames that belong to a set of
corresponding aligned groups in the dataset. Then, given a
specific query image q ∈ Sq , the goal of the project lies in
finding its most visually similar image i∗ ∈ Si (see Figure
4). Hence, if there is a signal in i∗ in the area where a
car was detected, we can establish the correspondence and

assume that the car is occluding it. Conversely, if there is
no signal in that area of i∗, we can assume that there is
no signal present in that location, so it may be a possible
missing landmark.

B. A baseline CNN system for image matching

To find similarities between images we first need to extract
features or information from them that we can actually
compare. This can be achieved by means of any of the
algorithms introduced in Section II. In our case, we chose
ResNet-101 [28] as the CNN algorithm to extract features
from. Our choice is based on the fact that residual networks
have become one of the most prosperous deep learning
networks in the recent years [31] [32], as they solve the
degradation problem, a common problem that makes very
deep networks work worse as the number of layers increases.
This is solved by adding skip connections to some layers of
the network, which end up learning not only their inputs
but also the residual of their outputs. Thus, in the extreme
case where the parameters of a certain residual layer are all
zeroes, the network can simply learn the identity (the input)
and hence the information of that layer is not lost through
the resting deeper layers of the network, which additionally
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Fig. 5: Siamese learning scheme.

alleviates the problem of vanishing gradients [33] [34] when
backpropagating in the training process.

Baseline CNN. ResNet-101 is a fully convolutional net-
work [35] (i.e. there are no fully connected layers) made
up of 101 layers, including standard convolutional layers,
as well as skip connections, activation functions and pooling
layers in between. Activation functions are located after each
of the convolutional layers and are used in order to add non-
linearities to the network, which naturally breaks the linearity
of the model, making it capable of solving non-linearly
separable problems. The activation function it uses is the
ReLU [36] which makes zero all negative values within the
output volume, molding it into a non-negative tensor. Pooling
layers allow to control the spatial dimensionality of the
model, diminishing overfitting, reducing the computational
cost and easing the management of the data structures within
the layers. They also provide translation invariance to a
certain degree [37]. ResNet-101 uses several max-pooling
layers throughout the network which help extracting the
sharpest (lower-level) features of the images.

Architecture for image retrieval and training proce-
dure. Apart from max-pooling, an special pooling layer is
the located at the end of the architecture, after the last convo-
lutional layer. It is usually the mechanism that transforms the
last activation volume into a manageable feature vector that
can be used in a matching system. In our case, we scale down
the activation volume by utilizing the GeM [38] [39] as the
subsampling method. Let Xo be the output tensor of the last
convolutional layer, after passing through its corresponding
ReLU so that every value of X is not negative. From there
on, the 3-dimensional tensor Xo can also be discerned as a
set, XoK , composed of K 2-dimensional tensors of shape
Wo × Ho (a.k.a. feature maps), where K is the number of
learning filters of the last layer. Then, the output of the GeM
pooling layer is a feature vector, f = [f1 . . . fk . . . fK ]

>, that
can be written as:

fk(x) =

(
1

|Xk|
∑
x∈Xk

xpk

) 1
pk

(1)

Note that when pk → ∞ it performs the same operation
as the max-pooling layer, whilst if pk → 0 it acts as
an average-pooling one by taking the average of each of
the 2-dimensional tensors instead of the maximum value.
Additionally, the parameter pk can be learned via the training
process, which have been proven to return very good results
[40].

Concerning the training of the model, we followed a
siamese two-branch architecture approach. Both branches
use the same ResNet-101 model and hence share the same
parameters. Each of them receive a different image as input
so that output vectors are also different and can be compared
in order to determine their visual similarity.

We use the contrastive loss [41] to assure that semantically
akin images are embedded close together. Given an input pair
(a, b) with labels Y (a, b) ∈ {0, 1} where 0 denotes a negative
pair and 1 a positive one, the contrastive loss between images
a and b can be defined as:

L(a, b) =


1
2D(a, b)2, if Y (a, b) = 1

1
2 (max{0, τ −D(a, b)})2, if Y (a, b) = 0

(2)

where D(a, b) = ‖f(a) − f(b)‖ refers to the euclidean
distance between the output vectors of the contrasted images,
f(a) and f(b), after passing through the GeM pooling layer
and being normalized. The constant τ is a parameter that
establishes the margin that the distance of a non-matching
pair has to surpass in order to be ignored by the loss. Thus,
if the pair is a negative pair and the distance between the
images is large enough, the loss is zero. In the case that the
pair is positive, the loss is zero if and only if the distance
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between both images is also zero. This is illustrated in the
scheme of Figure 5. The margin parameter is a key parameter
in siamese learning as it avoids that the network learns trivial
solutions (e.g. predicting zero for every output vector so that
distances are always zero).

Accordingly, pairs of images were picked up from the
training set and labels were assigned to each of these
pairs to distinguish between matching and non-matching
pairs. For this purpose, we created a dataset of tuples of
images composed of positives and negatives from different
days. More concretely, the tuples consist of one query, five
positives and six negatives.

The query corresponds to a frame of the sequence from
the query day into consideration. Positives are those images
that belong to the same sequence as the query, i.e. to the
approximately same road location. Contrariwise, negatives
are images that do not belong to the same sequence as
the positives or the query. Specifically, negatives are hard-
negatives [42], which are non-matching images that have the
smallest feature vector distance among all the dataset except
for the sequence in consideration. This implies that negatives
are usually images that reside in contiguous sequences, as
these are the hardest to distinguish w.r.t. the images of the
sequence at issue. However, since this is not always true due
to illumination changes, hard-negatives cannot be a priori
hand-crafted and need to be re-calculated in every epoch of
the training procedure. For each of the positives and for the
query, a negative is brought back from the database, giving
out a total of six negatives per tuple.

Image representation and matching. In test, our system
works as follows: given an input image, the output of the
system characterizes it in the form of a feature vector or a
descriptor, f , of 2048 elements, where each of these elements
is the generalized mean of their respective feature mapping
of the last convolutional layer (see eq. (1)). Now, the need
arises for determining a similarity metric that can be used to
compare output global descriptors. By defining a similarity
metric, we can compare images all-versus-all and calculate
their corresponding similarity scores so that the highest one
corresponds with the most alike image to a certain query.
The matching procedure is rather simple when using neural
networks since the similarity metric can be defined as just the
euclidean distance between the global descriptors. So, small
distances will imply high scores whereas large distances
mean that images are very different.

C. Weak loss learning
In this subsection, we describe the approach we followed

in order to beat the baseline CNN. The goal of our novel
weak learning proposal is twofold:
• To fit our particular task in which the query is required

to be matched only to the most similar image.
• To adapt to an scenario in which labels are approximate

and noisy (due to the GPS error).
We base our approach on the temporal structure of

the video sequences. Assuming a perfect frame alignment
(i.e. no GPS errors), let us first divide positive images

into three subgroups according to their location within
the sequences: nearest-positives, near-positives and border-
positives. Nearest-positives are positive frames that are not
further than two frames from the central query. Near-
positives are positives that are close to the central query
in the range of 2-5 frames of distance, depending on the
sequence size. Lastly, border-positives are those positives
that are located in the boundaries of the sequence. The visual
similarity between the central query and them is the minimal
one within the entire sequence due to the lower degree of
overlapping. From the five positives of the tuples, one of
them is a nearest-positive, two of them are near-positives
and the another two stand for border-positives.

The final loss that is passed to the network during back-
propagation can be thought as an additive compendium of
the individual contrastive losses between the query and the
positive and negative examples that coexist within the same
tuple. Thus, we can describe the total loss vector per tuple
with the following expression:

Ltuple = [Lp1
. . .LpP

Ln1
. . .LnN

] =
[
Lp Ln

]
(3)

where Lpz with z ∈ {1, . . . , P} is the contrastive loss
between the query and positive image pz . Analogously, Lnz

with z ∈ {1, . . . , N} is the contrastive loss between the
query and negative nz . P and N are the total number of
positives and negatives of the tuple, respectively. Note that
this loss vector can be interpreted as an ensemble of two
other vectors, Lp and Ln, which are the loss vectors of the
positive and negative pairs.

Now, let us define the statement min {v, k} as the k-
th smallest element of the vector v in such a way that
min {v, 1} refers to the standard minimum operator. Then,
the weak positive loss per tuple can be described by the
following expression:

Lwp = wo min {Lp, 1}+ w1

P1+1∑
k=2

min {Lp, k} +

+ w2

P1+P2+1∑
k=P1+2

min {Lp, k}
(4)

with P1 and P2 correspondingly being the number of near
and border-positives within the tuple. Variables w0, w1 and
w2 are constant parameters that weight each of the terms of
the equation. Empirically, we set w0 = 1, w1 = 0.8 and
w2 = 0.05. In this way, we expect that the model hopefully
ends up learning that the first element of the equation (i.e. the
minimum value of Lp) corresponds to the nearest-positive,
whereas the other two elements correspond to the near
and border-positives, respectively. Note that by following
this procedure, only the gradient of the first element is
entirely passed backwards through the network during the
training process, whilst the gradients of the other elements
are considerably weakened. Concretely, if training is going
good, the network will only pass a 5% of the gradients of
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Fig. 6: Weak loss scheme.

border-positives, which are the positives that differ the most
with respect to the central query. Therefore, the network is
able to gain a better understanding of the different types
of positives and thus a better ability to distinguish between
consecutive frames. Notice that for this to work, weights
have to be initialized in such a way that the network can
make relatively good predictions from the beginning of the
training. This makes our approach ideal for the finetune of
deep neural networks that have been already trained in larger
datasets.

Lastly, the final total loss is defined by the sum of the
positive weak loss and the individual negative losses, as
stated below in eq. (5). An scheme of the whole procedure
is shown in Figure 6 with a graphical breakdown of each of
the losses.

Lweak = Lwp + Ln1
+ · · ·+ LnN

(5)

V. EXPERIMENTS AND RESULTS

In this section, we explain the experimental setup and the
metric we employed to evaluate the project. We also present
the results in the last subsection.

A. Experimental setup and compared algorithms
The experiments carried out during the course of the

project were performed over a validation set composed of

five random seeded video pieces of 1.5 km each, which
approximately represent the 25% of the whole dataset (refer
to Section III). Both, SIFT and CNN methods were tested
over this dataset. The remaining 75% was mainly used to
train and finetune the CNN models.

We have chosen the following reference methods:
• SIFT. We used SIFT as the baseline for the CNN

methods. We evaluated the two feature detectors we
described in Section II - DoG and Hessian-Laplace with
peak threshold values of 10 and 100, respectively. We
stuck with the original SIFT descriptor in both cases as
the principal way to describe features.

• Trained ResNet-101 models. We tested two different
trained ResNet-101 models, one based on ImageNet
[43] and the other based on SfM [40], a monument
database of popular cities from Flickr. Their goal is to
serve as a reference for the finetuning of the network.
It’s important to remark that the second model was
already trained in a matching setup by following a
siamese approach whereas the first one was trained in
a classification scheme.

• Finetuned ResNet-101 model. We finetuned the SfM
ResNet-101 model following an standard learning ap-
proach. It is the model that will be compared with our
weak approach.

Learning setup. For training, we employed Adam [44]
instead of SGD [45] as the optimization algorithm since
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Fig. 7: mACC@F evolution plot for different values of F .

Algorithm mACC@60

SIFT (DoG detector) 82.80%
SIFT (Hessian-Laplace affine detector) 86.91%

ResNet-101 (trained on ImageNet) 75.42%
ResNet-101 (trained on SfM) 84.30%

ResNet-101 (finetuned from SfM) 89.01%
ResNet-101 (finetuned from SfM) + Weak Loss 92.58%

TABLE I: mACC@60 results table.

it seems a little more stable with residual networks like
ResNet-101. We used an initial learning rate equal to lr0 =
5 · 10−8 with exponential decay lr = lr0 exp(−0.01ep)
over each epoch ep, momentum 0.9 and weight decay of
10−4. In addition, we used a constant margin of 0.85 for the
contrastive loss.

Due to the massive resolution of the road images and in
order to not exceed out GPU’s memory (in our case, 11 GB
Nvidia 1080 Ti), images had to be resized to 1536 × 160
px during training (i.e. images were downsampled in a 2.5
factor). No letterbox or any additional fill resizing was
needed due to the fully convolutional nature of the network
that manages non-square images without having to alter inner
filter dimensions. Additionally, we set the batch size to 1
as this is the maximum size we could elect that handles a
moderate number of positive and negative pairs as well as an
acceptable resolution. Choosing a larger number of batches
would have returned in getting a less noisy estimation of

the gradients. Nonetheless, we prioritized choosing a high
resolution rather than a large number of batches since resolu-
tion limits much more the performance due to the horizontal
nature of our video sequences. Note that this is only done
during training in order to avoid memory problems; during
inference the resolution of the images remains intact. Lastly,
training is performed for 30 epochs and 1500 queries are
analyzed in each of these epochs (we randomly shuffled the
queries). As each query is associated to a tuple of positives
and negatives (5 positive and 6 negatives), a total of 12
images are processed per batch.

B. Procedure
Evaluation was carried out by adopting the accuracy as

the main performance metric of the system. There are a lot
of metrics we could have used s.a. the mAP or the F1-Score.
The mAP is a very common metric in many image retrieval
and object detection problems and scenarios. It is a really
meticulous metric that allows to globally evaluate how good
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Algorithm Inference time

SIFT (DoG detector) 0.0175 ms
SIFT (Hessian-Laplace affine detector) 0.0821 ms

ResNet-101 0.0082 ms

TABLE II: Unit inference times for SIFT and ResNet-101.

the system does at retrieving a set of queries by taking into
account the whole ranking of comparisons. However, for
our specific problem, it is not so important to retrieve the
whole ranking of scores but just the first entry of it, as that
is the frame that we will use to draw conclusions about the
occlusions. Thereby, given a video in which an occlusion was
detected, instead of comparing that sequence with the whole
database (with all the videos from different days), it results
more appropriate to implement the inverse comparison in an
iterative way; pick up the interest frame from a video of a
different day, treat it as if it were the query, compare it with
the frames of the video where an occlusion was detected and
finally take the most similar image (the first of the ranking).
If this image is the occluded one, matching can be settled and
we can corroborate if the landmark was missing or present.
Otherwise, a video from another day may be taken in order
to repeat the process and re-assess the possible occlusion.
Since we only take into consideration the first position of
the ranking, our evaluation metric resembles more to the
accuracy score than to the mAP. Concretely, we make use of
the mACC (Mean Accuracy), which can be written according
to the following expression:

mACC =
1

Nvid

Nvid∑
vid=1

1

Nday

Nday∑
day=1

ACCvid(day) (6)

where ACCvid(day) refers to the accuracy score obtained
for video vid between a certain day and the day where
the occlusions occurred, Nday is the number of evaluated
days (Nday = 5) and Nvid is the total number of validation
video pieces (Nvid = 5). It’s important to remark that we do
not evaluate on the whole dataset but just on the validation
videos in an individual way, i.e. a different accuracy value
is obtained for each video and then all the accuracies are
merged into a final average score. We split the evaluation
into different videos because we consider that evaluating
them jointly is a really unrealistic scenario as a GPS location
error of more than 1.5 km is rather improbable.

The accuracy score itself can be defined as the ratio be-
tween the number of successes and the total number of query
comparisons within the video. We consider as successes or
right guesses those cases where the first image of the ranking
belongs to the same sequence (see Figure 3) as the analyzed
query. Additionally, we studied how much the size of the
sequences affects the performance of the algorithms so that
sequences were re-defined by a different number of frames,
from 5 to 60, taking as reference the central frame. Hence, we
define the mACC@F as the mACC evaluated on sequences
of a size equal to F frames. For instance, if we are evaluating

the mACC@5 score, we only take as ground-truth the central
frame of the sequence plus the two contiguous frames at the
right and left sides. For those cases where F is larger than
the original size of the sequence, we just take the entire
sequence as the ground-truth at issue.

C. Results
In this subsection we show and analyze the results of

the experiments discussed previously. Figure 7 shows the
mACC@F results attained with each of the six proposed
methods. As expected, all the algorithms obtain higher accu-
racy scores as the number of frames per sequence increases.
All curves present low scores at F = 5 frames, as this is
the margin where the inherent GPS error lies. Note that the
accuracy rapidly grows until reaching configurations of about
F = 30 frames, where the performance keeps increasing but
in a steadier way. This is the point where most algorithms
start to correctly match the semantic information of the
videos. Table I shows the maximum mACC values of each of
the algorithms, which are attained for F = 60 frames. This
table is essential, as it demonstrates how good the algorithms
perform when the original sequences are used as ground-
truth.

From the plot, we can observe that ResNet-101 trained
on ImageNet (red curve) is the model that works the worst
by a large margin, due to the fact that its weights come
from a too generic semantic problem. The SIFT method
that uses the DoG detector (cyan curve) is in the second to
last position. ResNet-101 trained on SfM (magenta curve) is
placed next in the ranking. Its performance is very similar to
SIFT with Hessian-Laplace detector (yellow curve), although
this one wins by a little when F is large. As expected, SfM
dataset relates better than ImageNet to our image matching
problem. Lastly, we can see that best results are attained
when finetuning the network with the SfM initialization.
Finetuning allows the network to learn specific features
of our problem (e.g. roadway boundaries or different tree
patches) and hence improve the performance. Concretely, at
mAP@60, our weak learning approach (blue curve) works
slightly better, obtaining a mACC of 92.58%. This implies
an improvement of +3.57% with respect to the finetuning
SfM baseline (green curve).

From inspection, we realized that most of the errors of
the system come from the algorithms failing at detecting
occlusions when comparing the images with the rainy day
of the database. Thus, training the models with a larger and
more diverse dataset should help to alleviate these problems
so that magnitudes closer to 100% can be reached.

Regarding the computational efficiency of the algorithms,
CNNs outperform both SIFT methods. Unit inference times
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can be found in Table II. These represent how long each
algorithm took to extract the features of two frames and
accordingly match them, within a comparison of a video
piece of 100 images. SIFT made use of a GPU parallelization
speed-up in order to compete with CNN models. Still,
Hessian-Laplace SIFT is an order of magnitude below the
neural network approach in terms of computational effi-
ciency.

VI. CONCLUSIONS

In this paper, we presented a system that is capable of
automatically detecting occlusions of traffic milestones by
analyzing and comparing road images from videos that were
recorded in different days. We tackled the problem as a
feature matching problem where the most similar image for
a given query has to be retrieved so that correspondences
between images with and without occlusions can be realized.
Traditional computer vision methods such as SIFT were
compared with deep learning CNN models in order to
establish a performance reference baseline. Evaluation was
addressed by using the mACC@F metric which depends on
the number of chosen frames F of the sequences. Results
have shown that the SfM finetuned ResNet-101 architecture
performs the best in both, accuracy and computational effi-
ciency. We managed to outperform every proposed baseline
with a novel weak learning approach that fits better our se-
quential problem. It obtained a mACC@60 score of 92.58%,
which we consider that is a sufficiently high score as to apply
the system in a real scenario.

Regarding the future lines of research, it would be very
useful to train the system with a bigger dataset, specially one
with a wider variety of meteorological conditions. Learning
an illumination transformation that could relate to different
meteorological scenarios would be incredibly convenient too.
In addition, new training configurations and modifications of
well-known loss functions s.a. the triplet loss [46] could be
tested and compared with our weak approach in order to
further assess the performance of our system.

APPENDIX I
MASTER’S THESIS DEVELOPMENT TIME

In this Appendix we specify the time spent on each of the
steps taken in the development of the project, according to
the normative of the UC3M Master studies.

1) The project started in November 2018. We dedicated
the first months of the project - from November 2018
to February 2019 - to record the roadways in order to
create an initial database of videos from different days.

2) From February to June, we built the object detector
system capable of finding traffic milestones.

3) From June to July, we processed the videos in order to
create an image matching experimental dataset. During
this lapse of time, we carried out the detection of
the cars, the GPS alignment and the creation of the
sequences that compose the dataset.

4) August was dedicated mainly to build the global
matching system.

5) Finally, in September we were able to improve the
results already obtained by finetuning the CNNs with
a novel weak learning approach.
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ABBREVIATIONS

Adam Adaptive Moment Estimation.
CBIR Content-based Image Retrieval.
CNN Convolutional Neural Network.
DoG Difference of Gaussians.
ETSC European Transport Safety Council.
GeM Generalized Mean.
GPM Grupo de Procesado Multimedia -

Multimedia Processing Group.
GPS Global Positioning System.
GPU Graphics Processing Unit.
HOG Histogram of Oriented Gradients.
ILSVRC ImageNet Large Scale Visual

Recognition Challenge.
LoG Laplacian of Gaussian.
mACC Mean Accuracy.
mAP Mean Average Precision.
PIN Road Safety Performance Index.
ReLU Rectified Linear Unit.
RPN Region Proposal Network.
SfM Structure-from-Motion.
SGD Stochastic Gradient Descent.
SIFT Scale-Invariant Feature Transform.
UC3M Universidad Carlos III de Madrid.
VOC Visual Object Classes.
YOLO You Only Look Once.
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