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REVIEW

Fatty acid synthase (FASN) as a therapeutic target in breast cancer
Javier A. Menendeza,b and Ruth Lupuc,d

aProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; bGirona
Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, Girona, Spain; cDepartment of Medicine and Experimental Pathology, Mayo
Clinic, Rochester, MN, USA; dMayo Clinic Cancer Center, Rochester, MN, USA

ABSTRACT
Introduction: Ten years ago, we put forward the metabolo-oncogenic nature of fatty acid synthase
(FASN) in breast cancer. Since the conception of this hypothesis, which provided a model to explain
how FASN is intertwined with various signaling networks to cell-autonomously regulate breast cancer
initiation and progression, FASN has received considerable attention as a therapeutic target. However,
despite the ever-growing evidence demonstrating the involvement of FASN as part of the cancer-
associated metabolic reprogramming, translation of the basic science-discovery aspects of FASN block-
ade to the clinical arena remains a challenge.
Areas covered: Ten years later, we herein review the preclinical lessons learned from the pharmaceu-
tical liabilities of the first generation of FASN inhibitors. We provide an updated view of the current
development and clinical testing of next generation FASN-targeted drugs. We also discuss new clinico-
molecular approaches that should help us to convert roadblocks into roadways that will propel forward
our therapeutic understanding of FASN.
Expert opinion: With the recent demonstration of target engagement and early signs of clinical activity
with the first orally available, selective, potent and reversible FASN inhibitor, we can expect Big pharma
to revitalize their interest in lipogenic enzymes as well-credentialed targets for oncology drug devel-
opment in breast cancer.
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1. Introduction

Three decades after Otto Warburg ignited interest in how
metabolism in tumor cells differs from that in normal cells in
terms of exacerbated glycolytic carbon flux [1], Medes et al.
(1953) were the first to show that tumors could also convert
glucose or acetate into de novo synthesized lipids at a rela-
tively low, but similar rate to that found in major lipogenic
tissues such as liver [2]. It was not until the mid-1980s, how-
ever, that the prevailing notion that rapidly growing tumors
obtain all their lipids performed by lipogenic host tissues in a
non-cell autonomous manner evolved into a new paradigm
where cancer cells, in a cell autonomous manner, seemed to
generate at least a portion of their fatty acid (FA) content
through de novo biogenesis [3]. A landmark study by
Kuhajda et al. (1994) established that OA-519, a prognostic
molecule in tumors from patients with breast cancer with
markedly worsened prognosis, was actually a key, rate-deter-
mining enzyme for de novo FA biogenesis, namely fatty acid
synthase (FASN) [4].

Upregulation of FASN accompanies the natural history of
most human cancers, including breast carcinomas. FASN acti-
vation is an early and near universal hallmark of most human
carcinomas and their precursor lesions [5–7], and is increased
in a stage-dependent manner that is associated with wor-
sened patient survival [8–17]. A FASN status-prognosis

relationship strongly suggests that FASN-catalyzed endogen-
ous lipogenesis should confer growth and survival advantages
to cancer cells. Similar to other molecular facets of deregu-
lated cellular metabolism in tumor tissue, the lipogenic role of
FASN in tumors has been perceived as an indirect, secondary
phenomenon triggered by upstream signaling pathways (e.g.
PI3K-AKT-mTOR and MAPK) commonly activated by different
cancer-driven genetic lesions (Figure 1) [18–21]. The notion
that FASN overexpression/hyperactivation is only required to
support oncogene-directed anabolic proliferation and survival
[22–26] has been challenged by the recognition that FASN
signaling can regulate not only cell proliferation, cell survival,
cell adhesion, extracellular matrix (ECM) organization, migra-
tion, and invasion, but also the expression and activity of
oncogenic proteins closely related to malignant transforma-
tion (Figure 1) [27]. The ability of FASN-catalyzed endogenous
lipogenesis to interact with and regulate multiple cancer-con-
trolling networks [27–30] along with the discovery that FASN
overexpression suffices to drive malignant-like phenotypes in
epithelial cells [31,32] led to the suggestion in 2007 that FASN
can operate as an oncogene-like factor [33–35].

Since the conception of the metabolo-oncogenic nature of
FASN 10 years ago [35], which provided a molecular frame-
work to explain how FASN signaling might cell-autonomously
regulate cancer initiation and progression, FASN has received
considerable attention as a therapeutic target. While several
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different FASN inhibitors have been developed and compre-
hensively characterized in molecular and cell-based preclinical
studies, most of the inhibitors described in the literature
should be viewed as tool compounds rather than clinically
valuable oncology drugs [36–39] (Figure 2). Despite ever-
growing evidence demonstrating the involvement of FASN
signaling in metabolic reprogramming in cancer, translating
the basic science-discovery aspects of FASN blockade to the
clinical arena has remained an elusive challenge until recently.
The pharmaceutical liabilities of first-generation FASN-target-
ing compounds are beginning to be circumvented with the
discovery of next-generation FASN inhibitors with optimized
pharmacological properties and in vivo tolerability [40,41]. One

of them, the first oral, selective, and potent reversible FASN
inhibitor TVB-2640, has recently entered clinical trials
(Figure 2).

Here, we review the clinico-molecular lessons learned from
the pharmaceutical liabilities of first-generation FASN inhibi-
tors in the last decade, and provide an update on the current
development and testing of next-generation FASN-targeted
drugs. We also discuss new clinico-molecular approaches
that should help to turn potential roadblocks into roadways
to propel forward our therapeutic understanding of FASN in
breast cancer.

2. First-generation FASN inhibitors: more pitfalls
than promises

A quick search for FASN and breast cancer on PubMed.gov
today yields a listing of almost 300 publications, 180 of them
since 2007. The impression that arises from the literature is
that substantial research efforts have been focused in devel-
oping strategies to target FASN in breast cancer. Indeed, a
variety of FASN inhibitors aimed to exploit the lipogenic
dependency of breast cancer have been developed in the
last decade (Figure 3).

2.1. Cerulenin and C75

The natural product cerulenin, an antibiotic originally isolated
from Cephalosporium caerulens, was one of the first com-
pounds found to inhibit FASN activity, by forming an adduct
with an active-site cysteine in the FASN β-ketoacyl-synthase
domain [45]. Cerulenin inhibits proliferation and induces pro-
grammed cell death in breast cancer cells in vitro, and delays

Article highlights

● The lipogenic enzyme FASN is part of the metabolic reprogramming
cancer hallmark.

● Most of the first generation FASN inhibitors described in the literature
should be viewed as tool compounds rather than clinically valuable
oncology drugs.

● The apparent discrepancy between bench findings and the awaited
bedside effects has remained an elusive challenge until recently.

● We are celebrating the fact that next generation FASN-targeted drugs
with optimized pharmacological properties and in vivo tolerability has
just entered the clinic.

● We anticipate that additional FASN inhibitors will be integrated into
an expanding pipeline of targeted drugs based on an ever-growing
understanding of the FASN biology-breast cancer association.

● We can expect big pharma to revitalize their interest in lipogenic
enzymes as well-credentialed targets for oncology drug development
in breast cancer.

This box summarizes key points contained in the article.

Figure 1. The metabolo-oncogenic nature of FASN in breast cancer: Breast cancer cells might exhibit increasing autonomy in maintaining an aberrant metabolic
phenotype including hyperactivation of FASN signaling because proto-oncogenes and tumor-suppressors originated through evolution as early components of
metabolic regulation networks. Breast cancer-associated FASN might therefore be viewed as an evolutionary conserved consequence of the metabolic rewiring that
is upstream programed by oncogenic gain-of-function events and the loss of tumor-suppressors. A new developing paradigm begins to support the notion that
activation of FASN signaling coupled to well-known cancer-related metabolic alterations such as the activation of the glycolytic Warburg effect and of biosynthetic
nodes within mitochondria can be better understood in terms of upstream metabolic facilitators that operate as roadways for the molecular logic that ultimately
orchestrate the signaling paths generating, maintaining, and facilitating the evolution of the malignant phenotype. Palmitate, the end product of FASN, can be
modified into a variety of lipids (e.g., phospholipids, triglycerides, cholesterol esters) and incorporated into fatty-acylated proteins, thereby providing essential
components of cell membranes, significant substrates for energy metabolism, and signaling factors in post-translational modifications, all of them playing important
roles in multiple stages of breast cancer progression. FA synthesis by FASN has been also shown to protect cells from apoptotic cell death while regulating
metastasis-related ECM organization, migration, and invasion. FASN signaling also cross-talks with cancer-controlling networks to cell-autonomously regulate the
expression and activity of oncogenic proteins closely related to breast cancer initiation and progression (e.g., HER2, ER). (PPP: Pentose phosphate pathway; TCA:
Tricarboxylic acid cycle; ACSS2: acetyl-CoA synthetase 2).
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disease progression in cancer xenografts in a FASN-dependent
manner [4,46–48]. The semi-synthetic compound C75, which
was developed to circumvent the chemical instability of cer-
ulenin’s epoxy group [49], has multiple sites of interaction

with FASN, and operates as a weak, irreversible FASN inhibitor
through its interaction not only with the β-ketoacyl-synthase
domain but also with the enoyl reductase and the thiosterase
domains [50]. C75 can induce apoptosis and anti-tumorigenic

Figure 2. Lost in FASN translation: from pre-clinical testing to first-in-human clinical trials. The metabolo-oncogenic nature of FASN should form the basis to pursue
unique therapeutic approaches (i.e., FASNinhibs – see Figure 3-) that target the addiction of breast cancer cells to the FASN-centered signaling infrastructure.
Although substantial pre-clinical efforts have been made to develop strategies to target FASN for breast cancer treatment (upper timeline), only one targeted
compound aimed at blocking FASN (TVB-2640 developed by 3-V Biosciences) has so far entered clinical trials (bottom timeline).

Figure 3. FASNinhibs and FASN domains: a structural overview. Mammalian FASN consists of two identical multifunctional polypeptides, each including seven
catalytic domains: β-ketoacyl synthase (KS), malonyl/acetyltransferase (MAT), dehydratase (DH), enoyl reductase (ER), β-ketoacyl reductase (KR), acyl carrier protein
(ACP), and thiosterase (TE). Figure shows a cartoon representation (front view) of the X-shaped structure of FASN [42–44] highlighting the interactions of FASNinhibs
with a full set of druggable active sites present in each of the two ‘arms’ on both sides of the molecule, i.e., a ‘selection/condensing’ arm (KS and MAT domains) for
addition of new building blocks into the nascent FA chain, and a ‘modifying arm’ (DH, ER, and KR domains) for chemical processing of FA chain elongation
intermediates.
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activity in multiple cancer cell lines and xenograft models [51–
56], and prevent mammary cancer development in HER2 (neu-
N) transgenic mice [57]. Unfortunately, a major setback in the
use of cerulenin or C75 derivatives to target breast cancer-
associated FASN was the finding that both compounds
severely reduce food intake and induce body weight loss in
mice [58–60].

2.2. Thiolactomycin derivatives

To overcome the lack of potency and off-target activities of
cerulenin-based inhibitors, such as activation of β-oxidation
and excessive energy expenditure, naturally occurring thiolac-
tomycins have been used to develop a new class of synthetic
FASN inhibitors with no weight-loss or anorexigenic side
effects [61]. Representative of this class is C93 (or FAS93),
which has significant antitumor activity against non-small
cell lung and ovarian cancer xenografts as well as robust
chemopreventive effects in chemically induced lung tumors
[62–64]; however, little is known about its activity in breast
cancer models. The C93-related compound, C247, has signifi-
cant efficacy in a transgenic model of breast cancer [57,61,65].
FAS31, a new FASN inhibitor with oral bioavailability, exerts
significant antitumor activity in ovarian cancer xenograft mod-
els with no observable toxicity to normal rat or mouse tissues
and no significant effects on bodyweight [66]. While C93 has
been shown to inhibit the β-ketoacyl-reductase activity of
FASN, nothing is known about the actual structures and ulti-
mate mechanisms of action of C247 and FAS31.

2.3. Small-molecule inhibitors from medicinal chemistry
programs and high-throughput screening

Big pharmaceutical companies including Merck, AstraZeneca,
and GlaxoSmithKline have shown interest in discovering new
small-molecule FASN inhibitors through medicinal chemistry
programs and high-throughout screening. Such approaches
have led to the development of more potent FASN inhibitors
with activities in the low nanomolar range, including a series
of 3-aryl-4-hydroxyquinolin-2(1H)-one derivatives, bisamide
derivatives, the dibenzenesulfonamide urea GSK837149A,
and the bacterial FabF/B inhibitor platensimycin [67–71].
Though GSK837149A can irreversibly inhibit the β-ketoacyl
reductase domain of FASN in biochemical studies, experi-
ments in cancer cell lines were not possible because of its
extremely poor cell permeability [68]. Unfortunately, nothing
is known about the mechanisms of action and cellular in vivo
activity of Merck and AstraZeneca FASN inhibitory scaffolds, or
about the potential activity of platensimycin against mamma-
lian FASN in cancer cell lines.

2.4. Orlistat

Orlistat (ORL), a US FDA-approved pancreatic lipase inhibitor
originally developed as an anti-obesity drug, is a potent irre-
versible inhibitor of FASN via its ability to form a covalent
adduct with the active serine of FASN thiosterase domain
[72,73]. While ORL has shown some tumor growth inhibition
activity in xenograft models of prostate cancer and in mouse

melanoma models [74–76], its antitumoral actions on breast
cancer is limited to one study showing reduced proliferation
and exacerbated apoptosis in HER2 oncogene-overexpressing
breast cancer cells [77].

Given the important pharmacological limitations of ORL,
including poor oral bioavailability and metabolic stability,
and lack of selectivity, several attempts have been made to
develop ORL derivatives with improved solubility and
increased potency [78–82]. To circumvent the hydrophobicity
and low systemic uptake of orally administered ORL, a new
nanoparticle (NP) formulation of ORL using amphiphilic bio-
conjugates derived from hyaluronic acid has recently been
developed [83]. The so-called Nano-ORL has been shown to
retain similar levels of FASN inhibition while having signifi-
cantly improved cytotoxicity in triple-negative breast cancer
(TNBC) models [83]. Similarly, the use of hydrophilic poly(ethy-
lene glycol)-conjugated poly(lactic-co-glycolic acid) nanoparti-
cles (PLGA-PEG-NPs) as delivery system has improved the
cytotoxic activity of ORL against TNBC cells by improving
bioavailability [84]. Moreover, folate receptor-targeted micellar
NPs carrying ORL have been shown to significantly improve
the water-solubility, delivery, and bioavailability of ORL to
TNBC cells growing in culture and in tumor xenografts [85].
These findings, collectively, appear to indicate that NP-based
packaging might accelerate the development of new ORL
formulations for TNBC, a subtype of breast cancer character-
ized by aggressive behavior, distinct patterns of metastasis,
and lack of targeted therapies [86].

3. Next-generation FASN inhibitors: avoiding pitfalls

While ever-growing basic research has provided clear support
for FASN as a breast cancer target, there is apparent discre-
pancy between bench findings and the awaited bedside effects
in clinical trials. Indeed, none of the aforementioned FASN
inhibitors has been tested in patients with cancer because of
limitations imparted by their pharmacological properties or
side-effect profiles. However, despite the challenges of selec-
tively inhibiting FASN-driven lipid metabolism without major
systemic effects, we are celebrating the fact that a new gen-
eration of FASN inhibitors has just entered the clinic.

3.1. TVB-3166

TVB-3166 is a member of a new generation of highly potent,
reversible, imidazopyridine-based FASN inhibitors discovered
and developed by 3-V Biosciences (http://www.3vbio.com),
which inhibit de novo palmitate synthesis in vitro and in vivo
[40,87–89]. Using in vitro and in vivo human carcinoma models
including breast cancer, Ventura et al. (2015) revealed that
FASN inhibition by TVN-3166 has multifaceted, unreported
mechanisms [40] that apparently differentiate it from the
archetypal FASN inhibitors cerulenin and C75 [89]. TVN-3166-
induced inhibition of de novo FA biogenesis was found to
disrupt lipid raft architecture and promote mislocalization of
membrane-associated molecules and signaling pathways
including Ras, AKT-mTOR, and Wnt-β-catenin that ultimately
caused tumor cell apoptosis. Because signal transduction via
such molecules is tightly linked to glucose and glutamine
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tumor cell metabolism and lipid biosynthesis, it would appear
that the sole inhibition of de novo palmitate synthesis by TVN-
3166 is sufficient to concurrently block metabolic and signal
transduction pathways vital to cell growth, proliferation, and
survival in a tumor-specific manner [40]. Importantly, the abil-
ity of TVN-3166 to globally reprogram gene expression
included the inhibition of core oncogenic effectors such as
c-Myc. All these phenomena occurred without activation of FA
oxidation or other undesirable off-target effects. Moreover, a
significant inhibition of tumor growth in xenograft models
occurred with once-daily dosing of TVB-3166, which was cap-
able of inhibiting FASN activity for approximately 10–12 h
each day, revealing that continuous target engagement is
not required for achieving in vivo tumor growth inhibition.

3.2. TVB-2640: the only clinically available FASN
inhibitor

The definitive demonstration that targeted FASN inhibition
can achieve the expected anticancer effects in a well-creden-
tialed target in oncology is just emerging with a first-in-class
clinical trial using the only clinically available FASN inhibitor,
TVB-2640 (Figure 2). A phase I, first-in-human study of escalat-
ing doses of oral TVB-2640 in patients with solid tumors
(ClinicalTrials.gov: NCT 02223247) is currently enrolling
patients with advanced solid tumor malignancies. The objec-
tives of this trial are to determine the maximum tolerated
dose, the recommended phase 2 dose (RP2D in monotherapy
and in combination with chemotherapy), and to explore the
safety profile of TVB-2640 as monotherapy and in combination
with weekly paclitaxel (PXT). TVB-2640 is being administered
as a once-daily oral agent: 21 days in monotherapy or 28 days
with PXT in continuous cycles. TVB-2640 has a favorable toler-
ability profile with no significant gastrointestinal, hematologi-
cal or serum chemistry adverse events, and no abnormal QTc
prolongation. In a recent update of the trial [90], patients were
treated with doses of TVB-2640 ranging from 60 to 240 mg/
m2, as well as with flat doses of 200 and 250 mg/m2. Dose-
limiting toxicities occurred at levels of 120 and 240 mg/m2 and
included two grade 3 ocular toxicities (iritis and corneal
edema) and two skin toxicities (both were hand-foot syn-
drome), which were considered on-target effects and were
reversible with drug discontinuation. Though not observed
in monotherapy, symptomatic pneumonitis was observed in
breast cancer patients treated with TVB-2640 in combination
with PXT.

The pharmacokinetic (PK) profile of TVB-2640 is favor-
able, with plasma levels increasing with dose, steady-state
levels reached by day 8, and a half-life of approximately
15–16 h that remains unaffected by concurrent PXT.
Remarkably, FASN inhibition modeling at a TVB-2640 expo-
sure of 60 mg/m2 and above demonstrated that FASN
target modulation exceeded the minimum threshold for
preclinical efficacy in all but one patient. The RP2D has
been defined as 100 mg/m2. Preclinical data and early
efficacy data from the dose-escalation trial has shown
broad monotherapy activity in multiple solid tumors,
including multiple cases of stable disease (SD). Breast can-
cer preliminary antitumor data has shown that TV-2640

combined with weekly PXT resulted in multiple RECIST
partial responses and prolonged SD in 93% of patients
treated [91]. Further exploration in dose expansion cohorts
for the combination therapy will be pursued in breast,
ovarian, and non-small cell lung cancer.

3.3. Fasnall

All the aforementioned FASN inhibitors, including the
recently described GSK2194069, a potent and specific inhi-
bitor of the β-ketoacyl reductase activity of FASN [92],
share a common molecular behavior that favors competi-
tion with substrate intermediates over cofactor binding. To
circumvent the current limitations of the substrate
domain-based discovery of FASN inhibitors, new scaffolds
specifically targeting the largely unexplored cofactor
domain sites have been recently developed [93]. Because
three of the FASN enzymatic activities (ketoacyl reductase,
enoyl reductase, and malonyl/acetyltransferase) use pur-
ine-containing cofactors in the form of NADPH, acetyl-
CoA, and malonyl-CoA, Alwarawrah and colleagues [93]
recently took advantage of an innovative fluorescence-
linked enzyme chemoproteomic strategy [94] to specifi-
cally identify new FASN inhibitors targeting the nucleo-
tide-binding pockets. They identified Fasnall, a
thiophenopyrimidine-based FASN inhibitor with potent
and broad antitumor activity against various breast cancer
cell lines. Global lipidomic studies revealed some mechan-
istic peculiarities of Fasnall, including a sharp increase in
the intracellular levels of ceramides, diacylglycerols, and
unsaturated FAs, with the increase in ceramides contribut-
ing, at least in part, to Fasnall-induced apoptotic cell
death. Intriguingly, Fasnall treatment appeared to recover
the lipid storage function of endogenous FA biogenesis
normally occurring in lipogenic cells. Correspondingly,
Fasnall-treated breast cancer cells exhibited a significantly
increased uptake of exogenous palmitate that was directed
more into neutral lipid formation rather than into phos-
pholipid signaling molecules [93].

The unique ability of Fasnall to inhibit the FASN-facili-
tated production of phospholipids with saturated acyl
chains while promoting the uptake of exogenous unsatu-
rated FAs may drastically affect lipid raft structure and
functioning, suggesting that lipid rafts might constitute a
common target for structurally and mechanistically unre-
lated FASN inhibitors such as cerulenin/C75, TVB-3166, and
Fasnall [23,94,95]. Nevertheless, Fasnall has a significant in
vivo antitumor activity in both the clinically relevant HER2+
MMTV-Neu and the TNBC C3Tag breast cancer mouse mod-
els, which is synergistically augmented in terms of reduced
tumor volumes and affected survival when combined with
the platinum-based chemotherapeutic agent carboplatin.
That Fasnall was well tolerated without inducing any
change in feeding behavior or weight loss in mice, together
with the adaptability of the synthetic route of Fasnall for
the preparation of new analogs, strongly suggest that the
Fasnall scaffold can be developed further to optimize its
pharmacological properties in vivo [93].

EXPERT OPINION ON THERAPEUTIC TARGETS 5

D
ow

nl
oa

de
d 

by
 [

19
5.

55
.1

22
.2

10
] 

at
 0

3:
11

 2
5 

Se
pt

em
be

r 
20

17
 



4. Natural and indirect sources of FASN inhibition

4.1. Plant-derived polyphenols

A growing list of natural plant-derived polyphenols have inhi-
bitory action against FASN activity and expression, including
epigallocatechin-3-gallate (EGCG), the flavonoids luteolin, taxi-
folin, kaempferol, quercetin, and apigenin, and extra virgin
olive oil secoiridoids [96–101]. Unlike luteolin, which exhibits
the greatest effect on lipogenesis of the plant-derived poly-
phenols via direct and indirect inhibitory actions on FASN
[100,101], the natural component of green tea, EGCG, one of
the best characterized polyphenols with FASN inhibitory activ-
ity that does not promote anorexia and weight loss [102],
might solely produce blockade of the β-ketoacyl reductase
domain of FASN in a high micromolar range [96,99], thus
greatly limiting its further development as a FASN inhibitor.
A novel family of more potent EGCG analogs has been devel-
oped [103–106] and preclinical approaches have shown that
such series of polyphenolic compounds might exert antitumor
activity against HER2+ models of breast cancer without exhi-
biting cross-activation of β-oxidation or inducing weight loss
[107,108].

4.2. Metformin

Accumulating epidemiological, preclinical, and clinical evi-
dence demonstrates that the biguanide metformin (1,1-
dimethylbiguanide hydrochloride), the first-line drug treat-
ment for type 2 diabetes, is a promising candidate for oncol-
ogy therapeutics [109–111]. While the underlying mechanisms
of action of metformin against tumor cells remain elusive
[112–115], its multifaceted nature has been shown to involve
the inhibition of FASN in TNBC [116]. The ability of metformin
to operate as a low-energy-mimicker capable of activating
AMP-activated protein kinase (AMPK) by increasing the AMP:
ATP ratio might lead to a reduction in the expression of the
master lipogenic transcriptional regulator, SREBP-1c, therefore
deactivating the lipogenic phenotype by coordinately sup-
pressing the expression of acetyl-CoA carboxylase, FASN and
other enzymes that regulate endogenous lipid biogenesis
[117,118]. However, metformin has also been shown to
decrease the expression of several lipogenic enzymes and
lipogenesis in an AMPK- and SREBP-1c-independent manner
[119,120]. A recently proposed substrate limitation model of
action, in which metformin restricts the production of mito-
chondrial-dependent biosynthetic intermediates, might
explain its ability to deplete acetyl-CoA and malonyl-CoA pre-
cursors required for FASN-related de novo lipid biosynthesis
[121–123].

5. Integrating new approaches for clinical
development of FASN inhibitors

The first generation of FASN blockers (e.g. cerulenin, C75,
ORL), although displaying potent cytotoxic effects in vitro
and in vivo, suffered from limitations in selectivity as well as
metabolic and pharmacological limitations that collectively
hampered their use in clinical settings. The preclinical lessons

learned from early FASN inhibitors might help to delineate
new clinico-molecular approaches capable of sidestepping
potential roadblocks in the therapeutic avenue for the treat-
ment of breast cancer using next-generation FASN inhibitors.

5.1. Systemic toxicity and lack of in vivo efficacy of FASN
inhibitors: mechanistic and physiological concerns

Toxicity and lack of in vivo efficacy of the majority of FASN
inhibitors can be viewed as a consequence of their lipid-like
nature, which allows them to act as competitors of FASN
substrate intermediates [93]. The development of non-lipophi-
lic Fasnall-like molecules selectively targeting FASN through its
cofactor binding sites might significantly ameliorate the toler-
ability of newly developed FASN-targeted drugs. However,
while it remains to be clarified whether TVB-2640
[90,91,124,125], the only FASN inhibitor that has entered the
clinic, exclusively acts in a competitive manner with the sub-
strate intermediate of the FASN β-ketoacyl reductase step, a
new generation of FASN-targeted molecules including
GSK2194069 and the spirocyclic imidazolinone JNJ-
54,302,833 [92,126], both of which target the β-ketoacyl
reductase domain, and the tetrazolone carboxamide analog
IPI-9119, which irreversibly targets the thiosterase domain
[127], have shown selectivity and reversible toxicities during
target engagement in vivo without apparently involving com-
petition with FASN co-factor binding sites.

Despite the fact that de novo FA biogenesis is restricted
mainly to liver, adipose tissue, lactating breast, and cycling
endometrium in humans [22,25,35,128,129], a commonly
raised concern with FASN-targeting drugs relates to the phy-
siological consequences and compensatory adaptive
responses that might occur upon acute or chronic FASN inhi-
bition. However, because de novo biosynthesis is not the main
path through which adult tissues fulfill their lipid needs, it is
reasonable to assume that most normal tissues should be
protected from the toxic effects of targeting FASN-driven
endogenous FA synthesis through lipids provided by the diet
via bloodstream. Moreover, because fundamental differences
in the ability of FASN to respond to normal FA regulatory
actions in lipogenic tissues may account for the extremely
high levels of FASN in subsets of breast carcinomas
[130,131], dietary manipulations to alter the availability of
the amount and type of serum-derived lipids in the tumor
microenvironment may be a plausible strategy to restrain
compensatory adaptive responses that would potentially miti-
gate the efficacy of FASN inhibitors in vivo. Thus, while metro-
nomic treatment regimens might be suggested as a strategy
to alleviate the role that highly lipogenic tissue might have in
determining dose-limiting toxicities of next-generation FASN
inhibitors [41], perhaps more attention should be paid to
behavioral strategies in diet control (e.g. FA composition) to
augment selective toxicity in FASN-inhibited cancer cells [132].

5.2. Combinatorial strategies with FASN-targeting drugs

Whilst efforts have largely focused on the identification of
the best scenario for FASN-targeted monotherapy strategies,
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accumulating evidence supports combinatorial strategies for
treating breast cancer. FASN inhibitors have been shown to
synergize with multiple chemotherapeutic agents including
taxanes such as PXT and docetaxel [54,133], vinca alkaloids
such as vinorelbine [134], antimetabolites such as 5-fluorour-
acil [135], platinum agents such as carboplatin [94], and
anthracyclines such as doxorubicin [136]. Indeed, the TVB-
2640 clinical trial NCT02223247 is enrolling patients treated
in monotherapy or in combination with weekly PXT
[137,138]. Furthermore, FASN inhibitors have been shown to
restore the sensitivity of breast cancer cells with acquired
resistance to chemotherapeutics such as doxorubicin
[139,140] and molecularly targeted agents such as trastuzu-
mab and lapatinib in HER2+ breast cancer models [141,142].
FASN overexpression-mediated palmitate overproduction has
been proposed as a new mechanism of multidrug resistance
involving changes in plasma membrane properties capable of
protecting cells from endogenous and exogenous insults as
well as promoting alterations in the intrinsic threshold of
breast cancer cells for drug-induced apoptosis [139,140]. In
this regard, it should be acknowledged that a major road-
block to the clinical-translational advance of FASN inhibitors
is that the precise mechanism by which pharmacological
interference with endogenous FA biogenesis facilitates apop-
totic cell death remains unresolved. Recent observations from
our laboratory have revealed a novel FASN-dependent mito-
chondrial priming that links de novo FA biosynthesis in FASN-
overexpressing breast cancer cells to the intrinsic apoptotic
threshold (manuscript in preparation). Mitochondria of FASN-
inhibited breast cancer cells appear to exist in an apoptosis-
prone state that might be exploited therapeutically through
the use of FASN inhibitors in combination with apoptosis
sensitizers (Figure 4).

5.3. Contextual lethality: a therapeutic opportunity for
FASN inhibitors

We have learned from studies in mice with liver-specific inactiva-
tion of FASN that, whereas minimal phenotypic changes are
detected on a regular diet, hyperglycemia and steatosis develop
on a zero-fat diet or after prolonged fasting [143]. Because these
results suggest that new fat generated from the FASN reactions
regulates glucose, lipid, and cholesterol metabolism, future
efforts should evaluate whether contextual inhibition of FASN
might exacerbate the selective toxicity of FASN in subsets of
breast cancer patients with high-fat/high-energy-related obesity.
Although still unexplored in breast cancer, recent work from
epidemiological studies of colon and prostate cancer suggests
an interaction between obesity and the impact of FASN. The
deleterious effects of FASN on survival seem to be more pro-
nounced in obese patients [37,144–147], raising the possibility
that women who are obese and whose breast tumors express
high levels of FASN are more likely to obtain benefit from FASN
inhibition. Given that metformin exhibits exacerbated FASN inhi-
bitory properties in the context of the combined metabolic
effects of available lipogenic acetyl-CoA and extracellular choles-
terol [146], such contextual synthetic inhibition of FASN by met-
formin might enhance the efficacy of selective FASN inhibitors in
obese breast cancer patients (Figure 4).

Contextual inhibition of FASN might also play a crucial role
when antiangiogenic agents, rather than promoting vascular
normalization instead promote chronic hypoxia [148]. Among
the compensatory mechanisms that allow tumors to escape
antiangiogenic-induced chronic hypoxia is the upregulation of
FASN-related lipid anabolism [149]. In such a setting, FASN
inhibitors might selectively trigger contextual lethality
(Figure 4). The ability of antiangiogenics to induce vascular
normalization or a hypoxic environment might be tractable

Figure 4. Selection and application of predictive markers for next-generation FASNinhibs: a predictive marker is a patient- or tumor-characteristic that better
identifies results of treatment in particular subset of patients. Here, we propose molecular markers to identify breast cancer subsets that are likely to respond well to
FASNinhibs (i.e., FASN-overexpressing breast carcinomas in obese woman, 8p LOH and HER2-gene amplified breast carcinomas, and metabolically-stressed breast
carcinomas releasing high levels of circulating/serum FASN) and suggest a way to identify contextual/combinatorial strategies that might produce synergistic results
when combined.
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with 18F-fluoromisonidazole-positron emission tomography
(18F-FMISO-PET) [150,151]; therefore, a noninvasive PET-tracer
might be employed to detect baseline and antiangiogenic-
induced hypoxic tumors that may respond to a FASN inhibitor
when antiangiogenic treatment induces a hypoxic response,
but not when the antiangiogenic agent induces normalizing
effects.

6. Selecting breast cancer candidates to FASN
inhibitors

Bridging the gap between a valuable oncology target such as
FASN and the characteristics of breast cancer patients should
guide the accurate convergence of laboratory-based experi-
ments and clinical experience into well characterized, optimal
subpopulations that would benefit from next-generation FASN
inhibitors. Although the identification of pathophysiological
mechanisms predictive of responsiveness to FASN inhibitors
could greatly assist in prioritizing anti-FASN drug discovery
resources, we should acknowledge that studies enabling a
clear patient selection strategy are presently at the earliest
stages of discovery. Recent evidence suggests that breast
cancer-associated genomic alterations such as deletion of
chromosome 8p significantly activates FA synthesis and con-
fers tumor aggressiveness and chemotherapy resistance [152];
however, whether chromosome 8p loss of heterozygosity
(LOH) might provide a genomic selection criteria to stratify
breast cancer patients for treatment with next-generation
FASN inhibitors remains to be tested (Figure 4).

Who might benefit from next-generation FASN inhibitors?
Precise patient selection and identification of predictive bio-
markers of response to FASN inhibitors is essential to ensure
the measurement of true response rates without bias through
inclusion of patients who fail to respond to FASN inhibitors
simply because they are not suitable candidates to benefit
from them. Although experimental data remain scarce, we
are beginning to define some molecular features that might
help to identify breast carcinomas that might be selected first
for FASN inhibitor trials as they become available.

6.1. Expression status of the HER2 oncogene

Different breast cancer subtypes appear to varyingly employ
cancer-associated metabolic traits including the FASN-driven
lipogenic phenotype. Moreover, the differential usage of
FASN-catalyzed de novo FA biogenesis seems to have diverse
clinical implications for different breast cancer subtypes.
Recent studies have shown a strong correlation between
FASN overexpression and HER2 oncogene amplification in
breast cancer [153–155]. In our recent study, immunohisto-
chemical staining for FASN in almost 200 cases of invasive
ductal breast carcinoma confirmed a significant positive cor-
relation with HER2 status; thus, a majority of clinically HER2+
tumors (85%) were scored as FASN overexpressors [55].
Moreover, the re-classification of HER2+ breast tumors
based on FASN expression predicted a significantly inferior
relapse-free survival and distant metastasis-free survival in
the HER2+/FASN+ patient cohort. In a clinical setting where
FASN-driven endogenous lipogenesis drives tumor cell

proliferation, survival, and ultimately metastasis, selective
FASN inhibition may be a valuable therapeutic strategy for
the HER2+ breast cancer subtype. Indeed, HER2+/FASN+
breast cancer cells have repeatedly been shown to be exqui-
sitely sensitive to first-generation FASN inhibitors such as
cerulenin and C75 [23,26,27,31,53,55]. These findings,
together with earlier discoveries showing that FASN blockade
can restore sensitivity to trastuzumab and lapatinib in HER2+
breast cancer cells that acquired resistance to HER2-targeted
therapies [141,142], strongly suggest that HER2 overexpres-
sion might be valued as a biomarker to delineate a subgroup
of breast cancer patients that might benefit from therapeutic
regimens containing FASN inhibitors (Figure 4).

6.2. Circulating levels of extracellular/serum FASN

Classically viewed as an intracellular protein, FASN can also be
detected at increased levels in the extracellular milieu of cultured
breast cancer cells as well as in the blood circulation of breast
cancer patients [156–158]. Recent data are beginning to support
the hypothesis that circulating extracellular FASN levels might
increase in parallel with metabolic stress of the cells [159]. We
found that extracellular levels of FASN were dependent on the
metabolic state of the cells. Accordingly, AMPK-activating drugs
mimicking metabolic stress promoted a dose- and time-depen-
dent increase in extracellular FASN levels [159], suggesting that
active secretion of FASN could be a physiologically relevant
mechanism in the context of microenvironmental stresses such
as nutritional deprivation or hypoxia. The presence of circulating
FASN in patients with metabolic disorders such as over nutrition-
induced insulin resistance, steatohepatitis, or chronic viral infec-
tions [160–163] supports the hypothesis that FASN secretion
could be a regulated process to eliminate unnecessary FASN
activity under conditions where lipogenesis is spared. In breast
cancer tissues showing aberrant, constitutive upregulation of
FASN expression due to genomic alterations, an increase of
FASN levels in the blood might inform of an accelerated extru-
sion of the cytosolic enzyme under tumor microenvironmental
conditions of depleted energy stores in response to nutrient
starvation and/or biophysical stresses such as hypoxia. Indeed,
immunohistochemical analyses of human breast tumors speci-
mens indicate that FASN is strongly expressed in hypoxic regions
[164]. Remarkably, in heavily pretreated breast cancer patients
(with an average number of prior regimens including taxanes = 7)
treated with TVB-2640 alone or in combination with PXT, 91%
patients with high levels of serum FASN (≥10 ng/ml) benefited
from prolonged SD whereas progressive disease was mostly
observed in patients with low serum FASN (<10 ng/ml). It is
tempting to suggest that if increased extracellular/circulating
FASN levels are detected when tumors cannot meet increased
energy demands (e.g. hypoxia or nutrient deprivation), it might
constitute a bona fide surrogatemarker of metabolically stressed
breast carcinomas highly responsive to FASN inhibitors
(Figure 4). Forthcoming prospective studies should confirm
whether quantitative determination of FASN molecules in
blood could become a rapid and accurate noninvasive test to
identify and prioritize breast cancer patients for FASN inhibitor-
based therapeutic intervention.
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7. Measuring responses to FASN inhibitors

The sole source of preliminary biomarkers that might inform
about tumor responses to FASN inhibitors are the PK/pharmaco-
dynamic (PD) studies from the first-in-human, first-in-class, phase
I clinical trial of TVB-2640 in patients with advanced solid tumor
malignancies [90,91,124,137,138]. A key PD biomarker that has
emerged in the development of TVB-2640 is serum malonyl
carnitine, which appears to be reflective of the originally
reported accumulation of malonyl-CoA after pharmacological
FASN blockade [48,165]. A statistically significant >3-fold increase
in serummalonyl carnitine was observed in amajority of patients
by day 8 after initiation of TVB-2640monotherapy for dose levels
120 and 240 mg/m2. Indeed, increased serum malonyl carnitine
was accompanied by decreased serum tripalmatin, a triglyceride
derived from palmitic acid, in 90% of patients tested, thus con-
firming FASN engagement by TVB-2640.

We are lacking conclusive information regarding changes in
serum FASN levels after treatment with TVB-2640. Circulating
FASN has been suggested to be a bona fide biomarker of insulin
sensitivity exclusively in the context of metabolic stress [162].
Normalization of circulating FASN was observed with an
improvement in insulin sensitivity associated with increased
bioenergetic efficiency (e.g. diet-induced weight loss and physi-
cal training-induce improvement of insulin sensitivity) or
decreased intracellular FASN (i.e. surgery-induced weight loss),
but not in response to fat accumulation and lipogenesis (i.e.
pharmacological intervention with the AMPK/PPARγ activator
rosiglitazone) [162]. The expected variability of serum FASN
levels after treatment with FASN inhibitors should be carefully
evaluated in terms of changes in FASN expression status and/or
changes in key regulators of metabolic flexibility that might
allow FASN-inhibited cells to switch from anabolic lipogenesis
to catabolic β-oxidation of FAs or to rapidly switch from de novo
biogenesis to lipid uptake. Accordingly, prospectively collected
biopsies prior to treatment and post-dose after completing one
cycle of TVB-2640 in the phase I NCT02223247 clinical trial have
shown that changes in tumor FASN expression might occur after
TVB-2640 therapy. Moreover, significantly increased reductions
in phospho-active AKT were observed in TVB-2640-treated
patients, including one patient with TNBC [90,91,124,137,138].
Because concurrent inhibition of FASN and of the PI3K/AKT
signaling pathway promotes exacerbated levels of apoptotic
cell death [166], the ability of FASN inhibitors to inactivate AKT
in breast carcinoma tissues might inform about the incapacity of
FASN inhibition-sensitive tumors to switch their addiction to a
lipogenic phenotype upon FASN blockade.

8. FASN inhibitors to treat breast cancer: converting
roadblocks into roadways

8.1. Tumor metabolic heterogeneity and innate
resistance to FASN inhibitors

Intra-tumor heterogeneity, that is, the remarkable variety of
cellular phenotypic traits in a given tumor, ranging from differ-
entiation/proliferation states, migratory/invasive capacity, to
size and therapeutic response [167–170], is probably the next
big quest in cancer research as it poses a critical challenge to

designing effective treatment regimens in the era of persona-
lized medicine [171]. While it is tempting to suggest that next-
generation FASN inhibitors broadly affecting the lipogenic phe-
notype of tumor tissue should be less vulnerable to intra-tumor
heterogeneity, it should be considered that the lipogenic fea-
tures of the most abundant cell type might not necessarily
predict the lipogenic status of heterogeneous cell populations
and, by extension, their intrinsic degree of responsiveness or
primary (innate) resistance to FASN inhibitors. With the techno-
logical advances in recent years, investigators are now charac-
terizing both genetic and epigenetic sources of intra-tumor
heterogeneity. Unfortunately, little is known about the meta-
bolic origins and causes of phenotypic heterogeneity, especially
on the role that endogenous lipogenesis might play on the
generation and maintenance of heritable phenotypes that
would serve as substrates for clonal selection and tumor evolu-
tion. Indeed, the old notion that cancer metabolism is a single
entity that differs from normal cell metabolism no longer holds
true as we are learning that a single model of altered tumor
metabolism or metabolic map cannot describe all the metabolic
changes that support cancer growth and progression [172–
175]. Therefore, we can predict that cell-autonomous and
non-cell autonomous regulation of tumor metabolic plasticity,
which not only imparts heterogeneity in the metabolic depen-
dencies of tumor cells but also allows tumor tissues to adapt
and grow in hostile microenvironments via metabolic symbiosis
[176–179], will rapidly emerge as an important clinical dimen-
sion that should be anticipated when developing FASN inhibi-
tor-based approaches. A better understanding of how
intratumoral regional variation in metabolically challenging
oxygen environments including low-oxygen and lipid-depleted
conditions might contribute to tumor metabolic heterogeneity
would enable the development and optimization of new ther-
apeutic strategies aimed to target FASN-related endogenous
lipogenesis. In this regard, the recent description of the ability
of the acetyl-CoA synthetase 2 (ACSS2) to impart competitive
growth advantages under conditions of metabolic stress by
enhancing the ability of breast cancer cells to use acetate as
an additional lipogenic substrate when other carbon sources
cannot be used to sustain lipid biomass production [180] has
potential to clinically develop acetate-based PET tracers for
detecting when tumors might become refractory to FASN-tar-
geted therapy and supports new therapeutic approaches com-
bining FASNinhibs with currently being explored ACSS2
inhibitors [180,181].

8.2. Acquired resistance to next-generation FASN
inhibitors

The widely accepted view that many genetic lesions important
for cancer all converge to promote proliferative metabolism in
cancer cells [18–20] has led to the equivocal suggestion that
targeting cancer metabolism should be a simpler approach
than targeting numerous mutated gene products. In such a
scenario, therapeutic interventions with metabolic inhibitor-
based therapies, including FASN blockers, are expected to be
less susceptible to acquired resistance; however, as for con-
ventional chemotherapeutics and modern targeted agents,
one might predict that intratumoral metabolic heterogeneity
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will underlie incomplete responses, the development of
acquired resistance, and disease relapse to treatment with
next-generation FASN inhibitors. Given the intrinsic metabolic
flexibility of cancer cells, exclusively targeting specific meta-
bolic pathways such as FASN-driven endogenous lipogenesis
might be just as complicated as targeting somatic mutations,
if not more so [182,183].

With the sole exception of one in vitro finding that nuclear
factor-kappa B might mediate a protective response in lung
cancer cells treated with the FASN inhibitor C93 [184], no
study has assessed the possibility that specific pharmacologi-
cal targeting of FASN activity may result in unforeseeable
acquired resistance in initially responsive breast carcinomas.
Preclinical models of breast cancer cells adapted to grow for
several months in the presence of metformin, which nega-
tively regulates the expression of lipogenic markers, imposed
a strong selective pressure for the emergence of new breast
cancer cellular states [185]. Thus, while refractoriness to the
anti-lipogenic actions of metformin dramatically limited breast
cancer cell growth, it conspicuously increased the potential of
metastatic dissemination by amplifying several pro-migratory
and stemness inputs via the activation of a significant number
of proteases and positive regulators of epithelial-to-mesench-
ymal transition (EMT) [185,186]. Accordingly, recent studies in
lung carcinoma cells have confirmed that suppressing endo-
genous lipogenesis might be an essential metabolic compo-
nent of EMT required for successful establishment of distant
metastases [187]. However, because FASN inhibition has been
found to prevent metastasis-related phenomena including
pseudopodia formation and cellular adhesion, migration, and
invasion [188,189], future studies should assess whether FASN
activity, while co-opted as a metabolic component of the cell
motility machinery in breast cancer metastatic progression
[190], might have the troublesome consequence of increasing
long-term risk of EMT-related cell migrations and metastases
in breast cancer patients treated with FASNinhibs.

8.3. FASN inhibitors and breast cancer stem cells

FASN expression has been found to be hyperactivated in
proliferating fetal tissues [191] and also in induced pluripotent
stem cells [192], suggesting that re-activation of FASN-cata-
lyzed endogenous FA synthesis might participate in the rever-
sion to less-differentiated embryonic states such as those
characterizing the so-called cancer stem cells (CSCs). Since
CSCs can survive treatment with hormones, radiation, che-
motherapeutic agents, and molecularly targeted drugs, the
capacity of CSCs for autorenewal and differentiation might
ultimately be responsible for the clinical failure of current
oncology therapies [193–196]. CSCs appear to exhibit unique
metabolic features that are required not only for supporting
specific CSC bioenergetic/biosynthetic demands, but also for
epigenetically sustaining their operational properties, that is,
self-renewal, tumor-initiation, and plasticity [197–200]. While
the metabolic infrastructure of CSCs in breast carcinomas
remains controversial and understudied, it appears that CSC-
like cells express significantly higher levels of several lipogenic
enzymes including FASN [201–205]. The (-)-C75 enantiomer of
C75, which specifically inactivates FASN without affecting

carnitine palmitoyltransferase 1-related food consumption
[206], was found to drastically suppress the ability of CSC-like
cellular states to survive and proliferate as floating spherical
colonies under anchorage-independent, non-differentiating
conditions, an in vitro proxy of self-renewal and tumor-initiat-
ing potential exclusively possessed by CSCs [55]. The natural
polyphenolic compound resveratrol has also been shown to
efficiently target CSC-like cells via suppression of lipogenesis
by modulating FASN [201]. Future studies should examine
whether FASN represents a powerful, but hitherto largely
unexplored, target to eliminate treatment-refractory CSCs.

8.4. FASN inhibitors and normalized breast epithelial
differentiation

Beyond conferring survival advantages to CSC-like states in
preinvasive breast cancer lesions such as ductal carcinoma in
situ [199], FASN-driven maintenance of an undifferentiated state
in stem-like cells might play unexpected roles in dictating breast
tissue architecture, thus opening the way for the use of next-
generation FASN inhibitors as chemopreventative agents in
early stages of breast cancer development. We recently evalu-
ated whether the correction of FASN-catalyzed exacerbated
endogenous lipogenesis might be sufficient to stably revert
the malignant phenotype during breast cancer development
[205]. The activation status of FASN appeared to dictate the
degree of refractoriness/responsiveness of breast epithelial
cells to differentiation/dedifferentiation phenomena, and there-
fore, their intrinsic susceptibility to the epigenetic rewiring
required for the activation of a pathological differentiation pro-
gram of aberrant stemness. From a Waddingtonian perspective
[199], the correction of exacerbated lipogenesis might cause a
distortion of the epigenetic landscape, allowing cells in a tissue
organization attractor that encodes a proliferative, CSC-like
undifferentiated phenotype, to suddenly re-acquire a normal-
ized phenotype by placing them in a self-stabilizing attractor
encoding a more quiescent, differentiated epithelial-like tissue
phenotype [205]. An ever-growing body of evidence increas-
ingly recognizes the exquisite responsiveness of the epigenetic
regulatory machinery to metabolic cues [207–209]. Because
most of the chromatin modifiers employ metabolic products
as substrates or cofactors while chromatin modifications such
as acetylation and methylation are known to depend on the
functionality of certain metabolic fluxes including those invol-
ving endogenous lipogenesis [210,211], the ability of FASN
signaling to regulate breast tissue architecture and terminal
epithelial differentiation in a dominant manner over the malig-
nant phenotype of tumors possessing multiple cancer-driving
genetic lesions can provide not only new FASN inhibitor-based
therapeutic options to chronically restrain the life-threatening
potential of invasive carcinomas, but can also uncover a poorly
understood epigenetic dimension of FASN signaling that is likely
to be a fertile area for future investigation.

9. Expert opinion

FASN has been considered an attractive target for breast
cancer therapy in the last decade. Unfortunately, most precli-
nical studies have failed to efficiently move from the basic
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science-discovery aspects of FASN inhibition into the clinical
arena. With the recent demonstration of target engagement
and early signs of clinical activity with the first orally available,
selective, potent, and reversible inhibitor of FASN in breast
cancer patients, we can expect Big pharma to revitalize their
interest in endogenous lipogenesis as a well-credentialed tar-
get for oncology drug development. We anticipate that addi-
tional FASN inhibitors will be integrated into a mechanistically
richer and expanding pipeline of targeted drugs based on an
ever-growing understanding of the FASN biology-breast can-
cer association. In the forthcoming clinical research scenario,
FASN inhibitor-diagnostic co-development programs should
be rapidly implemented to identify decisive stratifications fac-
tors, having the potential to be important tools for clinicians in
relation to: (1) the identification of breast cancer subtypes
most likely to benefit from FASN inhibitors (e.g. HER2-over-
expressing [55,141,142] and triple-negative [116,136] breast
carcinomas); and (2) monitoring the response to FASN inhibi-
tion to achieve improved effectiveness and safety. Such com-
panion diagnostic strategies, which should have a high degree
of analytical validity before they can be released for routine
clinical usage, will be critical to accelerate the development of
next generation FASN inhibitors. Beyond monitoring tumor FA
biosynthesis by functional PET-imaging using [11C]-acetate
[212,213] to assess therapeutic responses to drugs directly or
indirectly interfering with FASN-catalyzed FA synthesis, other
label-free imaging techniques (e.g. Raman spectroscopy or
imaging mass spectrometry) might provide novel pharmaco-
dynamic biomarkers to determine the actual engagement of
breast carcinomas to de novo synthesis of FAs in response to
FASN inhibitors [214]. Beyond circulating serum/extracellular
FASN as a dynamic marker of metabolic stress/normalization,
we could incorporate multi-metabolite panels based on the
identification and validation of metabolomic/fluxomic finger-
prints related to the efficacy and safety of FASN inhibitors. The
exploration of the circulating exo-metabolome to monitor, in
real-time, such biomarker/surrogate endpoints of FASN inhibi-
tor efficacy in liquid biopsies might optimize the development
and accelerate a better design of FASN inhibitor-based perso-
nalized breast cancer therapies.
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