Javier Defelipe

Javier Defelipe
Universidad Politécnica de Madrid | UPM · Departamento de Inteligencia Artificial

About

451
Publications
118,937
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
24,843
Citations

Publications

Publications (451)
Article
Full-text available
The search for biomarkers for the early diagnosis of neurodegenerative diseases is a growing area. Numerous investigations are exploring minimally invasive and cost-effective biomarkers, with the detection of phosphorylated Tau (pTau) protein emerging as one of the most promising fields. pTau is the main component of the paired helical filaments fo...
Chapter
Automated electron microscopy methods produce a large number of serial sections that can be stacked to reconstruct a three-dimensional (3D) sample of brain tissue. The visualization, navigation, and analysis of these stacks of serial sections require dedicated software. Here we describe Espina, a software tool which helps to perform the segmentatio...
Chapter
Volume electron microscopy is a powerful method for the study of brain connectivity at the ultrastructural level. Synapses and their parent axons and dendrites can be traced within the three-dimensional tissue sample, so their numbers and distribution can be quantified in different brain regions and in different conditions of health or disease. Cel...
Article
Full-text available
Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investi...
Article
Full-text available
The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified “skeleton”...
Article
Full-text available
The basic building block of the cerebral cortex, the pyramidal cell, has been shown to be characterized by a markedly different dendritic structure among layers, cortical areas, and species. Functionally, differences in the structure of their dendrites and axons are critical in determining how neurons integrate information. However, within the huma...
Article
Full-text available
The brain contains thousands of millions of synapses, exhibiting diverse structural, molecular, and functional characteristics. However, synapses can be classified into two primary morphological types: Gray’s type I and type II, corresponding to Colonnier’s asymmetric (AS) and symmetric (SS) synapses, respectively. AS and SS have a thick and thin p...
Article
Full-text available
In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales— from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain c...
Article
Full-text available
Investigating and modelling the functionality of human neurons remains challenging due to the technical limitations, resulting in scarce and incomplete 3D anatomical reconstructions. Here we used a morphological modelling approach based on optimal wiring to repair the parts of a dendritic morphology that were lost due to incomplete tissue samples....
Article
Full-text available
Purkinje cells in the cerebellum are among the largest neurons in the brain and have been extensively investigated in rodents. However, their morphological and physiological properties remain poorly understood in humans. In this study, we utilized high-resolution morphological reconstructions and unique electrophysiological recordings of human Purk...
Article
Significant progress has been made with regard to understanding how the adult brain responds after a stroke. However, a large number of patients continue to suffer lifelong disabilities without adequate treatment. In the present study, we have analyzed possible microanatomical alterations in the contralesional hippocampus from the ischemic stroke m...
Preprint
Full-text available
The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the synapses...
Preprint
Full-text available
The basic building block of the cerebral cortex, the pyramidal cell, has been shown to be characterized by a markedly different dendritic structure among layers, cortical areas, and species. Functionally, differences in the structure of their dendrites and axons are critical in determining how neurons integrate information. However, within the huma...
Preprint
Full-text available
Unraveling the highly complex connectivity at the synaptic level is critical for the understanding of brain function. However, investigating the structure of the brain is time consuming and technically demanding. We have developed and applied a tracing method that allows us to obtain a simplified or skeletonized version of all nerve fibers present...
Article
Full-text available
The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic o...
Article
Full-text available
We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol...
Preprint
Full-text available
Brain research has in recent years indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modeling at multiple scales – from molecules to the whole system. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain i...
Preprint
Full-text available
Purkinje cells (PC) of the cerebellum are amongst the largest neurons of the brain and have been extensively investigated in rodents. However, their morphological and physiological properties in humans are still poorly understood. Here, we have taken advantage of high-resolution morphological reconstructions and of unique electrophysiological recor...
Preprint
Full-text available
The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic o...
Article
Full-text available
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and is associated with a variety of structural and psychological alterations. Recently, there has been renewed interest in using brain tissue resected during epilepsy surgery, in particular ‘non-epileptic’ brain samples with normal histology that can be found alongside epileptic...
Preprint
Full-text available
The vast majority of cortical synapses are found in the neuropil which is implicated in multiple and diverse functions underlying brain computation. Unraveling the organizing principles of the cortical neuropil requires an intricate characterization of synaptic connections established by excitatory and inhibitory axon terminals, of intrinsic and ex...
Article
Full-text available
The main aim of the present study was to determine if synapses from the exceptionally small brain of the Etruscan shrew show any peculiarities compared to the much larger human brain. We analyzed the cortical synaptic density and a variety of structural characteristics of 7,239 3D reconstructed synapses, using using Focused Ion Beam/Scanning Electr...
Article
Full-text available
The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excit...
Article
Perisomatic GABAergic innervation in the cerebral cortex is carried out mostly by basket and chandelier cells, which differentially participate in the control of pyramidal cell action potential output and synchronization. These cells establish multiple synapses with the cell body (and proximal dendrites) and the axon initial segment (AIS) of pyrami...
Article
Full-text available
Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed lang...
Preprint
Full-text available
The main aim of the present study was to determine if synapses from the exceptionally small brain of the Etruscan shrew show any peculiarities compared to the much larger human brain. This study constitutes the first description of the Etruscan shrew synaptic characteristics using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM). We analyzed...
Article
Full-text available
Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms....
Article
Full-text available
The axon initial segment (AIS) is a region of the neuron that is critical for action potential generation as well as for the regulation of neural activity. This specialized structure—characterized by the expression of different types of ion channels as well as adhesion, scaffolding and cytoskeleton proteins—is subjected to morpho-functional plastic...
Article
Full-text available
Dendritic spines have diverse morphologies, with a wide range of head and neck sizes, and these morphologic differences likely generate different functional properties. To explore how this morphologic diversity differs across species and ages we analyzed 3D confocal reconstructions of ∼8000 human spines and ∼1700 mouse spines, labeled by intracellu...
Article
Full-text available
The structural complexity of nervous tissue makes it very difficult to unravel the connectivity between neural elements at different scales. Numerous methods are available to trace long-range projections at the light microscopic level, and to identify the actual synaptic connections at the electron microscopic level. However, correlating mesoscopic...
Article
Full-text available
At present, many studies support the notion that after stroke, remote regions connected to the infarcted area are also affected and may contribute to functional outcome. In the present study, we have analyzed possible microanatomical alterations in pyramidal neurons from the contralesional hemisphere after induced stroke. We performed intracellular...
Article
Full-text available
The morphological analysis of dendritic spines is an important challenge for the neuroscientific community. Most state-of-the-art techniques rely on user-supervised algorithms to segment the spine surface, especially those designed for light microscopy images. Therefore, processing large dendritic branches is costly and time-consuming. Although dee...
Preprint
Full-text available
Dendritic spines have diverse morphologies, with a wide range of head and neck sizes, and these morphological differences likely generate different synaptic and functional properties. To explore how this morphological diversity differs across species we analyzed 3D confocal reconstructions of ~8,000 human spines and ~1,700 mouse spines, labeled by...
Preprint
Full-text available
Protein turnover is required for synapse maintenance and remodelling and may impact memory duration. We quantified the lifetime of postsynaptic protein PSD95 in individual excitatory synapses across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of protein lifetimes that may exte...
Article
Full-text available
Small-conductance calcium-activated potassium (SK) channels are crucial for learning and memory. However, many aspects of their spatial organization in neurons are still unknown. In this study, we have taken a novel approach to answering these questions combining a pre-embedding immunogold labeling with an automated dual-beam electron microscope th...
Chapter
FIB-SEM is an electron microscopy technique that allows the acquisition of serial sections in an automated manner. A Focused Ion Beam (FIB) is directed toward the specimen, removing material from its surface. Since the FIB can be positioned and controlled on a nanometer scale, the specimen surface can be milled so that a thin layer of a specified t...
Article
Full-text available
Brain slice preparations are widely used for research in neuroscience. However, a high-quality preparation is essential and there is no consensus regarding stable parameters that can be used to define the status of the brain slice preparation after its collection at different time points. Thus, it is critical to fully characterize the experimental...
Article
Full-text available
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a deterioration of neuronal connectivity. The pathological accumulation of tau in neurons is one of the hallmarks of AD and has been connected to the loss of dendritic spines of pyramidal cells, which are the major targets of cortical excitatory synapses and key e...
Article
(250max) Background Analyzing images to accurately estimate the number of different cell types in the brain using automatic methods is a major objective in neuroscience. The automatic and selective detection and segmentation of neurons would be an important step in neuroanatomical studies. New Method: We present a method to improve the 3D reconstr...
Article
Full-text available
The entorhinal cortex (EC) is especially vulnerable in the early stages of Alzheimer's disease (AD). In particular, cognitive deficits have been linked to alterations in the upper layers of EC. In the present report, we examined layers II and III from eight human brain autopsies (four subjects with no recorded neurological alterations and four AD c...
Article
Full-text available
In the present study, we have used focused ion beam/scanning electron microscopy (FIB/SEM) to perform a study of the synaptic organization of layer III of Brodmann’s area 21 in human tissue samples obtained from autopsies and biopsies. We analyzed the synaptic density, 3D spatial distribution, and type (asymmetric/symmetric), as well as the size an...
Article
Full-text available
Our incomplete understanding of the link between Alzheimer’s Disease pathology and symptomatology is a crucial obstacle for therapeutic success. Recently, translational studies have begun to connect the dots between protein alterations and deposition, brain network dysfunction and cognitive deficits. Disturbance of neuronal activity, and in particu...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41593-020-00779-0.
Article
Full-text available
Pyramidal neurons are the most abundant and characteristic neuronal type in the cerebral cortex and their dendritic spines are the main postsynaptic elements of cortical excitatory synapses. Previous studies have shown that pyramidal cell structure differs across layers, cortical areas, and species. However, within the human cortex, the pyramidal d...
Article
Full-text available
Alterations in brain cholesterol homeostasis in midlife are correlated with a higher risk of developing Alzheimer’s disease (AD). However, global cholesterol-lowering therapies have yielded mixed results when it comes to slowing down or preventing cognitive decline in AD. We used the transgenic mouse model Cyp27Tg, with systemically high levels of...
Preprint
Full-text available
In the present study we have used Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to perform a study of the synaptic organization of layer III of Brodmann's area 21 in human. We analyzed the synaptic density, 3D spatial distribution, and type (excitatory/inhibitory), as well as the shape and size of each synaptic junction of 4945 synapses t...
Article
Full-text available
Alzheimer's disease is the most common form of dementia, characterized by a persistent and progressive impairment of cognitive functions. Alzheimer's disease is typically associated with extracellular deposits of amyloid-β peptide and accumulation of abnormally phosphorylated tau protein inside neurons (amyloid-β and neurofibrillary pathologies). I...
Article
Full-text available
The hippocampus plays a key role in contextual conditioning and has been proposed as an important component of the cocaine addiction brain circuit. To gain knowledge about cocaine-induced alterations in this circuit, we used focused ion beam milling/scanning electron microscopy to reveal and quantify the three-dimensional synaptic organization of t...
Article
Full-text available
Pyramidal neurons are the most common cell type in the cerebral cortex. Understanding how they differ between species is a key challenge in neuroscience. A recent study provided a unique set of human and mouse pyramidal neurons of the CA1 region of the hippocampus, and used it to compare the morphology of apical and basal dendritic branches of the...
Preprint
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a deterioration of neuronal connectivity. The pathological accumulation of tau protein in neurons is one of the hallmarks of AD and has been connected to the loss of dendritic spines of pyramidal cells, which are the major targets of cortical excitatory synapses a...
Preprint
Full-text available
The entorhinal cortex (EC) is especially vulnerable in the early stages of Alzheimer’s disease (AD). In particular, cognitive deficits have been linked to alterations in the upper layers of EC. In the present report, we examined layers II and III from eight human brain autopsies (four subjects with no recorded neurological alterations and four AD c...
Article
Full-text available
Knowledge about neuron morphology is key to understanding brain structure and function. There are a variety of software tools that are used to segment and trace the neuron morphology. However, these tools usually utilize proprietary formats. This causes interoperability problems since the information extracted with one tool cannot be used in other...
Article
Full-text available
The entorhinal cortex (EC) is a brain region that has been shown to be essential for memory functions and spatial navigation. However, detailed three-dimensional (3D) synaptic morphology analysis and identification of postsynaptic targets at the ultrastructural level have not been performed before in the human EC. In the present study, we used Focu...
Preprint
Full-text available
Brain slice preparations are widely used for research in neuroscience. However, a high-quality preparation is essential and there is no consensus regarding stable parameters that can be used to define the status of the brain slice preparation after its collection at different time points. Thus, it is critical to establish the best experimental cond...
Article
Full-text available
To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the fir...
Article
Full-text available
A community-based transcriptomics classification and nomenclature of neocortical cell types To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial...