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1 INTRODUCTION TO EXPLORATORY FACTOR 
ANALYSIS 

 
 

Exploratory factor analysis (EFA) is a statistical tool used for many purposes.  It 
was originally developed in the early 1900s during the attempt to determine whether 
intelligence is a unitary or multidimensional construct (Spearman, 1904).  It has since 
served as a general-purpose dimension reduction tool with many applications.  In the 
modern social sciences it is often used to explore the psychometric properties of an 
instrument or scale.  Exploratory factor analysis examines all the pairwise relationships 
between individual variables (e.g., items on a scale) and seeks to extract latent factors 
from the measured variables.  During the 110 years since Spearman’s seminal work in 
this area, few statistical techniques have been so widely used (or, unfortunately, mis-
used).  The goal of this book is to explore best practices in applying EFA.  We will 
occasionally survey some poor practices as a learning tool. Let us start first with a brief 
discussion about the similarities and differences between Principal Components 
Analysis (PCA) and Exploratory Factor Analysis.   

 
The difference between Principal Components Analysis and Exploratory 
Factor Analysis.   

 
Much has been written about the differences between these two techniques, and 

many misconceptions exist about them.  One of the biggest misconceptions is that 
PCA is part of EFA, although they both seem to do the same thing.  This 
misconception probably has modern day roots from at least two factors:   

 
1. Many statistical software packages have PCA as the default extraction 

technique when performing exploratory factor analysis,  
2. Many modern researchers use PCA and EFA interchangeably, or use PCA 

when performing an analysis that is more appropriate for EFA 
 
Principal components analysis is a computationally simplified version of a general 

class of dimension reduction analyses. EFA was developed before PCA, thanks to 
Spearman. EFA was developed prior to the computer age when all statistical 
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calculations were done by hand, often using matrix algebra.  As such, these were 
significant undertakings requiring a great deal of effort.  Because of the substantial 
effort required to perform EFA with hand calculations, significant scholarship and 
effort went into developing PCA as a legitimate alternative that was less 
computationally intense but that also provided similar results (Gorsuch, 1990).  
Computers became available to researchers at universities and industrial research labs 
later in the 20th century, but remained relatively slow and with limited memory until 
very late in the 20th century (about the time I was in graduate school using mainframes 
at the University2).  My commentary on PCA is not to sleight these scholars nor to 
minimize their substantial contributions, but rather to attempt to put PCA and EFA 
into context for the modern statistician and quantitative researcher.  I will therefore 
focus on EFA, despite the popularity of CFA.  

Without getting into the technical details, which are available in other scholarly 
references on the topic, PCA computes the analysis without regard to the underlying 
latent structure of the variables, using all the variance in the manifest variables.  What 
this means is that there is a fundamental assumption made when choosing PCA:  that 
the measured variables are themselves of interest, rather than some hypothetical latent 
construct (as in EFA).  This makes PCA similar to multiple regression in some ways, in 
that it seeks to create optimized weighted linear combinations of variables.   

!

Figure!1.1:!!Conceptual!overview!of!Principal!Components!Analysis!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 and walking across campus uphill both ways in the snow to get print outs of my analyses.  
It was Buffalo before climate change thawed that particular tundra. 
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As you can see in Figure 1.1., Principal Components Analysis combines manifest 

(observed) variables into weighted linear combinations3 that end up as components.   
Exploratory factor analysis, on the other hand, is a group of extraction and rotation 

techniques that are all designed to model unobserved or latent constructs.  It is referred 
to as common factor analysis or exploratory factor analysis.   

EFA assumes and asserts that there are latent variables that give rise to the manifest 
(observed) variables, and the calculations and results are interpreted very differently in 
light of this assumption.   

You can see this very different conceptual vision in Figure 1.2, below.   Factor 
analysis also recognizes that model variance contains both shared and unique variance 
across variables. EFA examines only the shared variance from the model each time a 
factor is created, while allowing the unique variance and error variance to remain in the 
model.  When the factors are uncorrelated and communalities are moderate, PCA can 
produce inflated values of variance accounted for by the components (Gorsuch, 1997; 
McArdle, 1990). Since factor analysis only analyzes shared variance, factor analysis 
should yield the same general solution (all other things being equal) while also avoiding 
the illegitimate inflation of variance estimates.    

Figure!1.2:!!Conceptual!overview!of!Exploratory!Factor!Analysis! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Weighted linear combinations means that each variable has a different weight- the 
factor/component loading that determines how much or little each variable contributes to the 
composite.  This is similar to multiple regression where a variable score is composed of 
different amounts (regression weights) of each variable in the equation. 
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There are two other issues with PCA that I will briefly note. First, PCA assumes 
that all variables are measured without error (an untenable assumption in almost any 
discipline), whereas EFA has the option of acknowledging less than perfect reliability.  
Second, PCA parameters are selected in an attempt to reproduce sample, rather than 
population characteristics (Thompson, 2004).   

Thus, we have many similarities between PCA and some important conceptual and 
mathematical differences. Most authors agree that there is little compelling reason to 
choose PCA over other extraction methods, and that PCA can be limited and provide 
biased parameter estimates (including, but not limited to:  Bentler & Kano, 1990; Floyd 
& Widaman, 1995; J.K. Ford, R.C. MacCallum, & M. Tait, 1986; Gorsuch, 1990; 
Loehlin, 1990; MacCallum & Tucker, 1991; Mulaik, 1990; Widaman, 1993).  If one is to 
seek best practices, one is hard pressed to conclude PCA is ever a best practice. 
Widman (1993) puts it very bluntly:  “principal components analysis should not be used 
if a researcher wishes to obtain parameters reflecting latent constructs or factors.” (p. 
263).  Unfortunately, it is still the default dimension reduction procedure in many 
statistical analysis software packages despite it usually not being (in my opinion) the 
conceptually desirable choice, and having no clear advantage in modern quantitative 
methodology that I can detect.  

This is a topic that arouses passions amongst statisticians, and I have published few 
papers or given few talks on this topic without someone getting upset at me for taking 
this position so clearly and unapologetically.  So let us sidestep this issue for the 
moment and summarize:  PCA is not considered a factor analytic technique and there is 
disagreement among statisticians about when it should be used, if at all. More often 
than not, researchers use PCA when EFA would be appropriate and preferable (for 
example, see Ford, MacCallum, & Tait, 1986; Gorsuch, 1983; Widaman, 1993).  
 
Steps to follow when conducting EFA 
 
Exploratory factor analysis is meant to be exploratory in nature, and thus it is not 
desirable to prescribe a rigid formula or process for executing an EFA.  The steps 
below are meant to be a loose guide, understanding that a factor analysis often 
requires returning to previous steps and trying other approaches to ensure the best 
outcome.  The general pattern of performing an EFA falls into six general steps that 
will guide the discussion through the rest of the book: 

1. Data cleaning 
2. Deciding on extraction method to use 
3. Deciding how many factors to retain 
4. Deciding on a method of rotation (if desired) 
5. Interpretation of results  
      (return to #3 if solution is not ideal) 
6. Replication or evaluation of robustness  
        (return to beginning if solution is not replicable or robust) 

 

Step 1:  Data cleaning.  I have been writing about the importance of data cleaning 
for about as long as I have been writing about best practices in quantitative methods 
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because without clean data, what follows in almost any analysis is moot.  This is 
another point where passions run high amongst researchers and statisticians. I have a 
clear position on the issue, having written an entire book on the topic, demonstrating 
repeatedly how clean data produces results that are better estimates of population 
parameters, and therefore, more accurate and replicable (Osborne, 2013).  Instead of 
debating the point here, allow me to assert that data filled with errors and /or which 
fails to meet assumptions of the analysis being performed is likely to lead to poorer 
outcomes than data that is free of egregious errors and that meets assumptions.  We 
will discuss some other data quality issues later in the book, including the importance of 
dealing appropriately with missing data. 

 
Step 2:  Deciding on an extraction method. An extraction technique is one of a 

group of methods that examines the correlation/covariation between all the variables 
and seeks to “extract” the latent variables from the measured/manifest variables.   

There are several factor analysis extraction methods to choose from. SPSS has six 
(in addition to PCA; SAS and other packages have similar options): unweighted least 
squares, generalized least squares, maximum likelihood, principal axis factoring, alpha 
factoring, and image factoring.  Information on the relative strengths and weaknesses 
of these techniques is not easily had.  To complicate matters further, naming 
conventions for some extraction techniques are not consistent, leaving it difficult to 
figure out which method a textbook or journal article author is describing, and whether 
or not it is actually available in the software package the researcher is using. This 
probably explains the popularity of principal components analysis – not only is it the 
default in many statistical packages, but it is one of the more consistent names 
researchers will see in statistical packages.  

A recent article by Fabrigar, Wegener, MacCallum and Strahan (1999) argued that if 
data are relatively normally distributed, maximum likelihood is the best choice because 
“it allows for the computation of a wide range of indexes of the goodness of fit of the 
model [and] permits statistical significance testing of factor loadings and correlations 
among factors and the computation of confidence intervals.” (p. 277). If the 
assumption of multivariate normality is “severely violated” they recommend one of the 
principal factor methods; in SPSS this is principal axis factors (Fabrigar et al., 1999).  
Other authors have argued that in specialized cases, or for particular applications, other 
extraction techniques (e.g., alpha extraction) are most appropriate, but the evidence of 
advantage is slim.  In general, ML or PAF will give you the best results, depending on 
whether your data are generally normally-distributed or significantly non-normal, 
respectively. In Chapter 2, we will compare outcomes between ML and PAF, along 
with some of the other more common extraction techniques. 

 
Step 3:  Deciding how many factors to retain for analysis.  This too is an issue 

that suffers from anachronistic ideas and software defaults that are not always ideal (or 
even defensible).  In this step, you (or the software) decide how many factors you are 
going to keep for analysis.  The statistical software will always initially extract as many 
factors as there are variables (i.e., if you have 10 items in a scale, your software will 
extract 10 factors) in order to account for 100% of the variance.  However, most of 
them will be meaningless.  Remembering that the goal of EFA is to explore your data 
and reduce the number of variables being dealt with, there are several different ways of 
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approaching the decision of how many factors to extract and keep for further analysis.  
Our guide will always focus on the fact that extracted factors should make conceptual 
and theoretical sense, and be empirically defensible.  We will explore guidelines for this 
later in Chapter 2. 

 
Step 4:  Deciding on a rotation method and rotating the factors.  Rotation is a 

source of some confusion, leading me to write a paper recently with the goal of 
describing what exactly rotation is, and what is happening when data are rotated. In 
brief, the goal is to clarify the factor structure and make the results of your EFA most 
interpretable.  There are several different rotation methodologies, falling into two 
general groups:  orthogonal rotations and oblique rotations.  Orthogonal rotations keep 
axes at a 90o angle, forcing the factors to be uncorrelated.  Oblique rotations allow 
angles that are not 90o, thus allowing factors to be correlated if that is optimal for the 
solution.  I argue that in most disciplines constructs tend to be at least marginally 
correlated with each other, and as such, we should focus on oblique rotations rather 
than orthogonal.  We will discuss these options in more detail later in Chapter 2.   

 
Step 5:  Interpreting results.  Remember that the goal of exploratory factor 

analysis is to explore whether your data fits a model that makes sense.  Ideally, you have 
a conceptual or theoretical framework for the analysis- a theory or body of literature 
guiding the development of an instrument, for example.  Even if you do not, the results 
should be sensible in some way.  You should be able to construct a simple narrative 
describing how each factor, and its constituent variables, makes sense and is easily 
labeled.  It is easy to get EFA to produce results.  It is much harder to get sensible 
results.   

Note also that EFA is an exploratory technique.  As such, it should not be used, as 
many researchers do, in an attempt to confirm hypotheses or test competing models.  
That is what confirmatory factor analysis is for.  It is a misapplication of EFA to use it in 
this way, and we need to be careful to avoid confirmatory language when describing the 
results of an exploratory factor analysis. 

 If your results do not make sense, it might be useful to return to an earlier step.  
Perhaps if you extract a different number of factors, the factors or solution will make 
sense.  This is why it is an exploratory technique.   

 
Step 6:  Replication of results.  One of the hallmarks of science is replicability, or 

the ability for other individuals, using the same materials or methods, to come to the 
same conclusions.  We have not historically placed much emphasis on replication in the 
social sciences, but we should.  As you will see in subsequent chapters, EFA is a 
slippery technique, and the results are often not clear.  Even clear results often do not 
replicate exactly, even within an extremely similar data set.  Thus, in my mind, this step 
is critical.  If the results of your analysis do not replicate, (or do not reflect the true 
nature of the variables in the “real world,”) then why should anyone else care about 
them?  Providing evidence that your factor structure is likely to replicate (either through 
another EFA or through CFA) makes your findings stronger and more relevant.  In 
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Chapter 5, we will explore a “traditional” method of replication4 (similar to cross-
validation in regression models).  In Chapter 6 we will play with the notion of applying 
a less traditional but perhaps more useful analysis using bootstrap analysis.  
Confirmatory factor analysis is outside the scope of this book, but is perhaps an even 
better method of replication.   

 
Chapter 1 Summary 

 
The goal of this book is to be a friendly, practical, applied overview of best practices 

in EFA.  In the coming chapters, we will explore various aspects of EFA, and the best 
practices at each step.  We will skip the matrix algebra and equations as much as 
possible.  If you are seeking a more mathematical tome on the subject, there are many 
good ones already available.   

 
You can refer to my website (http://jwosborne.com ) for updates and errata 

(hopefully minimal) as well as data sets used in this book, syntax examples, how-to 
guides, answer keys to selected exercises, and other things as I think of them.  .  Please 
do not hesitate to contact me about this or any of my other books at 
jasonwosborne@gmail.com. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 I put that in quotations as most researchers reporting results from an EFA fail to do any 
replication at all.   
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2 EXTRACTION AND ROTATION 
 
 

Extraction is the general term for the process of reducing the number of 
dimensions being analyzed from the number of variables in the data set (and matrix of 
associations) into a smaller number of factors.  Depending on the particular type of 
extraction, the type of association matrix being analyzed can be a matrix of simple 
correlations (the most commonly used type of association, and the default type of 
association analyzed in most statistical packages), but it could also be a matrix of 
covariances (which is more commonly analyzed in confirmatory factor analysis).  
Correlations are most commonly used in EFA as they are only influenced by the 
magnitude of the association of the two variables, whereas covariances are influenced 
by association, as well as the variance of each of the two variables in question 
(Thompson, 2004).   

Extraction of factors proceeds generally (again, depending on the specific details of 
the extraction method chosen) by first extracting the strongest factor that accounts for 
the most variance, and then progressively extracting successive factors that account for 
the most remaining variance.   

 
Choosing an extraction technique 
 

Principal axes factor (PAF) extraction  begins with initial estimates of 
communality coefficients, which can be obtained either from a principal components 
analysis or as a multiple regression equation predicting each variable from all other 
variables (multiple R2) to provide starting values.  Communality coefficients can be 
considered lower-bound estimates of score reliability to provide starting values (initial 
extraction), and also are the amount of variance accounted for in that variable by all 
other common factors combined (Cattell, 1965).  Following this initial estimation, 
communality estimates are used to replace the diagonal elements of the correlation 
matrix (where PCA uses 1.0 on the diagonal elements signifying the expectation of 
perfect reliability of measurement).  This substitution is important, as it acknowledges 
the realistic expectation of imperfect measurement.  A new set of factors and 
communality coefficients are then estimated and the process is repeated iteratively until 
the communality coefficients stabilize- or change less than a pre-determined threshold.  
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If an EFA analysis fails to “converge” that means that these coefficients failed to 
stabilize and continued changing dramatically.  This is most commonly due to 
inappropriately small sample sizes, but increasing the default number of iterations 
(often 25, as in SPSS) can help in certain cases.  This extraction technique tends to be 
favored when multivariate normality of the variables is not a tenable assumption 
(Fabrigar et al., 1999).   
 

Maximum Likelihood (ML) extraction5 is another iterative process (used in 
logistic regression, confirmatory factor analysis, structural equation modeling, etc.) that 
seeks to extract factors and parameters that optimally reproduce the population 
correlation (or covariance) matrix.  Starting with an assumption that individual variables 
are normally distributed (leading to multivariate normal distributions.  If a certain 
number of factors are extracted to account for inter-relationships between the observed 
variables, then that information can be used to reconstruct a reproduced correlation 
matrix.  The parameters chosen are tweaked iteratively in order to maximize the 
likelihood of reproducing the population correlation matrix- or to minimize the 
difference between the reproduced and population matrices.  This technique is 
particularly sensitive to quirks in the data, particularly in “small” samples, so if the 
assumptions of normality are not tenable, this is probably not a good extraction 
technique (Fabrigar et al., 1999; Nunnally & Bernstein, 1994). 

 
Unweighted Least Squares (ULS) and Generalized Least Squares (GLS) 

extraction both use variations on the same process of Maximum Likelihood 
extraction.  ULS is said to be more robust to non-normal data (as we will see in the 
second example to come), whereas GLS weights variables with higher correlations 
more heavily, which can contribute to sensitivity to problematic data.   

 
Alpha extraction seeks to maximize the Cronbach’s alpha estimate of the reliability 

of a factor.  The difference between alpha extraction and other extraction techniques is 
the goal of the generalization.  ML and other similar extraction techniques seek to 
generalize from a sample to a population of individuals, whereas alpha extraction seeks 
to generalize to a population of measures.  One downside to alpha extraction is that these 
properties are lost if rotation is used (Nunnally & Bernstein, 1994), applying only to the 
initial rotation.  As we will see in the section on rotation, unrotated results are often not 
easily interpreted, leaving this extraction technique as a potentially confusing procedure 
where researchers may think they are getting something they are not if they rotate the 
results of the alpha extraction. 

 
Initial communalities vs. extracted communalities.  From the discussion above, 

we can expect to see differences in communalities and eigenvalues across extraction 
techniques, but one curious aspect of SPSS is that the initial communalities will always 
be the same.   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 Interested readers can get much more information on this and other technical details of 
extraction in Nunnally & Bernstein (1994), particularly Chapter 11.  For my purposes, I am 
attempting to provide a more applied overview, and so will eschew most of the technical 
details. 
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In PCA, the initial communalities are always 1.00 for all variables.  In EFA, initial 
communalities are estimates of the variance in each variable that will be accounted for 
by all factors, arrived at either by PCA analysis or as some form of multiple regression 
type analysis.  For example, initial communalities are estimated by a multiple regression 
equation predicting each variable from all other variables (multiple R2).  Extracted 
communalities are calculated as the variance accounted for in each variable by all 
extracted factors.  Looking at a table of factor loadings, with variables as the rows and 
factor loadings in columns, communalities are row statistics.  Squaring and summing 
each factor loading for a variable should equal the extracted communality (within 
reasonable rounding error).6    

 
Initial eigenvalues vs. extracted eigenvalues vs. rotated eigenvalues.   

Eigenvalues are column statistics—again imagining a table of factor loadings, if you 
square each factor loading and sum them all within a column, you should get the 
eigenvalue for that factor (again within rounding error).  Thus, eigenvalues are higher 
when there are at least some variables with high factor loadings, and lower when there 
are mostly low loadings.  You will notice that eigenvalues (and communalities) change 
from initial statistics (which are estimates and should be identical regardless of 
extraction method as long as the extraction method is a true factor analysis extraction, 
not PCA) to extraction, which will vary depending on the mathematics of the 
extraction.  The cumulative percent variance accounted for by the extracted factors will 
not change once we rotate the solution (discussed below in sections to come) but the 
distribution of that percent variance will change as the factor loadings change with 
rotation.  Thus, if the extracted eigenvalues account for a cumulative 45% of the 
variance overall, once rotation occurs, the cumulative variance accounted for will still 
be 45%, but that 45% might be redistributed across factors.  This will become clearer in 
a little bit, hopefully, as we look at some example data. 

 
Three pedagogical examples 

 
To illustrate the points in this section of the chapter, I have three example data sets 

that will also be available on the book web site (http://jwosborne.com ).   
 
Example 1:  Engineering items.  The first example is from a study on engineering 

majors at an eastern university.  There were many scales and questionnaires 
administered, but we will concern ourselves with two:  engineering problem solving and 
interest in engineering. These two scales should be at least minimally correlated, and 
give a relatively clear factor structure.  The sample was composed of 372 undergraduate 
students.  The items from the relevant subscales are listed below: 
 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 where an orthogonal rotation is used.   Oblique rotations are slightly more complicated if 
doing the calculation by hand, as the factors are correlated.  Communalities in this case are 
the sum of each variable’s pattern loading multiplied by the structure loading.  Statistical 
software handles these complexities for us 
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Problem solving items.  How well did you feel prepared for: 7 

 
1. Defining what the problem really is 
2. Searching for and collecting information needed to solve the problem 
3. Thinking up potential solutions to the problem 
4. Detailing how to implement the solution to the problem 
5. Assessing and passing judgment on a possible or planned solution to the 

problem 
6. Comparing and contrasting two solutions to the problem on a particular 

dimension such as cost 
7. Selecting one idea or solution to the problem from among those considered 
8. Communicating elements of the solution in sketches, diagrams, lists, and 

written or oral reports 
 
Interest in engineering:8 
 

1. I find many topics in engineering to be interesting 
2. Solving engineering problems is interesting to me 
3. Engineering fascinates me 
4. I am interested in solving engineering problems 
5. Learning new topics in engineering is interesting to me 
6. I find engineering intellectually stimulating 

 
Example 2:  Marsh Self-Description Questionnaire (SDQ).  The second 

example includes three subscales from Marsh’s Self-Description Questionnaire (SDQ; 
see e.g., Marsh, 1994).  Data for this example is from  15,661 students in 10th grade 
with complete data on all items below who participated in the National Education 
Longitudinal Study of 1988 (NELS88, available from IES/NCES:  
http://nces.ed.gov/surveys/nels88/ ).   Items from this scale include: 
 
Parents: 
F1S63A  (Par1) My parents treat me fairly 
F1S63F  (Par2) I do not like my parents very much 
F1S63I  (Par3)  I get along well with my parents 
F1S63M  (Par4) My parents are usually unhappy or disappointed with what I do 
F1S63U  (Par5) My parents understand me 
 
English 
F1S63B  (Eng1) I learn things quickly in English classes 
F1S63E  (Eng2) English is one of my best subjects 
F1S63G  (Eng3) I get good marks in English 
F1S63N  (Eng4) I'm hopeless in English classes 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 Assessed on a seven point Likert type scale anchored by “did not prepare me at all” to 
“prepared me a lot” 
8 Assessed on a seven point Likert type scale anchored by “strongly disagree” and “strongly 
agree” 
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Mathematics 
F1S63D  (Math1)  Mathematics is one of my best subjects 
F1S63J  (Math2)  I have always done well in mathematics 
F1S63Q  (Math3)  I get good marks in mathematics 
F1S63S  (Math4)  I do badly in tests of mathematics 

 
Example 3:  Geriatric Depression Scale.  The third example is data on the 

Geriatric Depression Scale (GDS), a 30-item scale that does not seem to have a clear 
factor structure.  These data are on N=479 older adults from the Long Beach 
Longitudinal Survey.9  All items are scored either 0 (non-depressive answer) or 1 
(depressive answer),10 and it was originally designed to have 5 subscales.  However, 
there has been considerable debate in the literature as to the true factor structure. I 
often use these data in my classes as it reveals the art (and frustration, occasionally) of 
exploratory factor analysis. The items to the GDS are as follows: 

 
1.  Are you basically satisfied with your life?  
2.  Have you dropped many of your activities and interests?  
3.  Do you feel that your life is empty?  
4.  Do you often get bored?  
5.  Are you hopeful about the future?  
6.  Are you bothered by thoughts you can’t get out of your head?  
7.  Are you in good spirits most of the time?  
8.  Are you afraid that something bad is going to happen to you?  
9.  Do you feel happy most of the time?  
10.  Do you often feel helpless?  
11.  Do you often get restless and fidgety?  
12.  Do you prefer to stay at home, rather than going out and doing new things?  
13.  Do you frequently worry about the future?  
14.  Do you feel you have more problems with memory than most?  
15.  Do you think it is wonderful to be alive now?  
16.  Do you often feel downhearted and blue?  
17.  Do you feel pretty worthless the way you are now?  
18.  Do you worry a lot about the past?  
19.  Do you find life very exciting?  
20.  Is it hard for you to get started on new projects?  
21.  Do you feel full of energy?  
22.  Do you feel that your situation is hopeless?  
23.  Do you think that most people are better off than you are?  
24.  Do you frequently get upset over little things?  
25.  Do you frequently feel like crying?  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 Zelinski, Elizabeth, and Robert Kennison. Long Beach Longitudinal Study. ICPSR26561-
v2. Ann Arbor, MI: Inter-university Consortium for Political and Social Research 
[distributor], 2011-06-17. http://doi.org/10.3886/ICPSR26561.v2  
10 And for this data set, all items were recoded so that 0 always is a non-repressive answer 
and 1 is the depressive answer even when the items were initially reversed. 
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26.  Do you have trouble concentrating?  
27.  Do you enjoy getting up in the morning?  
28.  Do you prefer to avoid social gatherings?  
29.  Is it easy for you to make decisions?  
30.  Is your mind as clear as it used to be? 

 
Does extraction method matter? 

 
It is common wisdom that extraction techniques tend to yield similar results.  Let us 

examine this assertion to see if it holds across our samples. 
 
Example 1:  Analysis of the engineering data.  These data usually give a clear 

two-factor solution.  The goal of this analysis is to examine whether we get substantially 
different results as a function of extraction method.  As you can see in Table 2.1a, the 
communalities for the various items are relatively stable despite the relatively small 
sample size, rarely varying by more than 0.10 across all extraction methods for a 
particular item. In Table 2.1b, you can see that eigenvalues from ML and PAF 
extraction also produced similar results (as did most of the other extraction techniques).  

 
Table 2.1a 
Communality estimates for the engineering data across different extraction techniques. 
 

Variable: Initial ML PAF ULS GLS 
 

Alpha 
EngProbSolv1 .742 .712 .728 .728 .809 .733 
EngProbSolv2 .695 .663 .669 .669 .757 .669 
EngProbSolv3 .752 .765 .768 .768 .794 .769 
EngProbSolv4 .792 .810 .810 .810 .843 .810 
EngProbSolv5 .790 .807 .799 .799 .832 .796 
EngProbSolv6 .766 .774 .768 .768 .813 .767 
EngProbSolv7 .786 .778 .775 .775 .845 .774 
EngProbSolv8 .666 .674 .671 .671 .705 .669 
INTERESTeng1 .674 .666 .669 .668 .725 .668 
INTERESTeng2 .802 .834 .833 .833 .846 .834 
INTERESTeng3 .816 .847 .840 .840 .864 .839 
INTERESTeng4 .806 .831 .817 .817 .853 .813 
INTERESTeng5 .781 .781 .800 .800 .842 .805 
INTERESTeng6 .739 .750 .752 .752 .784 .751 

 
Comparison of the two recommended extraction techniques, ML and PAF, 

produced similar results, suggesting that when basic assumptions are met and factor 
structure is clear, the extraction method might not matter much. 
!  
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Table 2.1b. 
Eigenvalues extracted for the engineering data across different extraction techniques 

 

Factor: Initial ML  PAF  ULS  GLS 
 

Alpha 
1 7.653 7.359 7.417 7.417 7.439 7.415 
2 3.505 3.335 3.282 3.282 3.341 3.285 
3 .457      
4 .360      
5 .315      

Note:  factors 6-14 suppressed from initial extraction.  Only two factors extracted. 
 

Table 2.2a 
Communality estimates for the SDQ data across different extraction techniques. 
 

Variable: Initial ML PAF ULS GLS 
 

Alpha 
Eng1 .537 .619 .623 .623 .631 .621 
Eng2 .581 .676 .664 .664 .718 .648 
Eng3 .608 .722 .723 .724 .738 .722 
Eng4 .447 .403 .413 .413 .561 .425 
Math1 .704 .790 .792 .792 .812 .794 
Math2 .674 .751 .737 .737 .753 .721 
Math3 .700 .783 .799 .800 .792 .816 
Math4 .393 .372 .371 .371 .453 .374 
Par1 .455 .526 .510 .510 .545 .496 
Par2 .406 .434 .450 .450 .500 .458 
Par3 .572 .695 .678 .678 .718 .668 
Par4 .408 .392 .421 .421 .501 .442 
Par5 .477 .557 .539 .539 .575 .525 

 
Table 2.2b. 
Eigenvalues extracted for the SDQ data across different extraction techniques 

 

Factor: Initial ML  PAF  ULS  GLS 
 

Alpha 
1 4.082 3.399 3.689 3.689 3.450 3.622 
2 2.555 2.446 2.226 2.226 2.456 2.258 
3 2.208 1.874 1.804 1.804 1.916 1.829 
4 .908      
5 .518      
6 .487      

Note:  factors 7-13 suppressed from initial extraction.  Only two factors extracted. 
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Example 2: Analysis of the Self-Description Questionnaire data.  As in the 
previous analysis, you can see that analyses of the SDQ by various extraction methods 
produce relatively similar results regardless of the extraction method (presented in 
Table 2.2a).  The communalities extracted were similar, and the eigenvalues were also 
similar (presented in Table 2.2b).   

 
Example 3:  GDS data.  The goal of the third analysis is to compare the results of  
 
Table 2.3a 
Comparison of communalities across extraction methods 

 

Variable: Initial ML1 PAF ULS GLS1 
 

Alpha 
GDS01 .518 .880 .689 .685 .988 .553 
GDS02 .297 .346 .366 .366 .383 .367 
GDS03 .513 .561 .579 .580 .567 .558 
GDS04 .408 .612 .576 .576 .683 .550 
GDS05 .400 .424 .396 .394 .555 .398 
GDS06 .369 .450 .447 .446 .470 .447 
GDS07 .451 .543 .522 .520 .572 .436 
GDS08 .272 .276 .329 .331 .392 .391 
GDS09 .559 .689 .672 .671 .771 .629 
GDS10 .410 .416 .406 .406 .487 .397 
GDS11 .310 .364 .372 .372 .402 .349 
GDS12 .320 .988 .718 .813 1.000 .659 
GDS13 .278 .428 .389 .382 .486 .314 
GDS14 .286 .406 .451 .458 .454 .489 
GDS15 .384 .409 .430 .430 .493 .470 
GDS16 .534 .564 .567 .567 .636 .561 
GDS17 .500 .553 .548 .545 .641 .531 
GDS18 .290 .264 .281 .283 .420 .314 
GDS19 .396 .422 .420 .419 .480 .411 
GDS20 .336 .355 .387 .388 .465 .462 
GDS21 .346 .417 .435 .433 .461 .433 
GDS22 .413 .471 .491 .491 .566 .514 
GDS23 .254 .254 .252 .252 .336 .264 
GDS24 .260 .280 .282 .283 .349 .311 
GDS25 .442 .451 .473 .474 .574 .482 
GDS26 .375 .445 .437 .435 .547 .425 
GDS27 .211 .214 .239 .240 .275 .260 
GDS28 .300 .310 .346 .329 .328 .336 
GDS29 .195 .162 .168 .168 .279 .219 
GDS30 .277 .368 .362 .363 .397 .380 

 1. Produced a warning about communality estimates greater than 1 were encountered during 
iterations. 
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various extraction techniques on data with less clarity of structure.  Because these data 
are binary (0, 1 values only) it is likely that they do not meet the assumption of 
multivariate normality. If one takes the advice above seriously, PAF would probably be 
the ideal extraction technique given the non-normal data.  As you can see in Table 2.3a, 
there are substantial differences in some communalities extracted for several variables 
in the scale.  Comparing ML and PAF, it is clear that the recommendation to use PAF 
when data are not multivariate normal should be seriously considered.  

There are some items in Table 2.3a that exhibited substantial discrepancies between 
ML and PAF (for example, see GDS01 or GDS12).  During ML and GLS extraction, 
there was a warning that some of the iterations observed estimated communalities 
greater than 1.00 (an impossible number).  This is generally a sign of a serious issue 
with the analysis.  In this case, it is likely due to violation of the assumption of 
normality. 

The eigenvalues extracted also vary dramatically across extraction methods, as you 
can see in Table 2.3b.  Once again, ML and generalized least squares produce the most 
unexpected results, while PAF results are probably most reliable.  Surprisingly, ML and 
GLS produced smaller eigenvalues for the first factor than the second factor, which is 
unusual (and also a sign of potential problems).   

 
Table 2.3 b 
Comparison of extracted eigenvalues for different extraction techniques 
 

Factor: Initial ML  PAF  ULS  GLS 
 

Alpha  
1 7.858 2.431 7.324 7.325 2.090 7.296 
2 2.079 5.642 1.560 1.567 3.792 1.539 
3 1.702 1.407 1.116 1.125 3.464 1.115 
4 1.318 1.028 .773 .794 1.322 .744 
5 1.186 .975 .683 .702 1.075 .635 
6 1.137 .754 .620 .626 .817 .649 
7 1.083 .623 .535 .538 .706 .512 
8 1.020 .457 .420 .421 .532 .419 
9 .929      
101 .907      
1.   Factors 11-30 suppressed in this example.   

  
Summary: Does extraction method matter?  While there are many options for 

extraction in most statistical computing packages, there is consensus that ML is the 
preferred choices for when data exhibit multivariate normality and PAF for when that 
assumption is violated.  Other extraction techniques (GLS, in particular) seem to be 
vulnerable to violations of this assumption, and do not seem to provide any substantial 
benefit.  Thus, the general recommendation to use either ML or PAF seems sensible.  

  
!  
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Deciding how many factors should be extracted and retained 
 
Scholars have been arguing about this issue for the better part of a century.  There 

are many who will argue passionately that one method is superior to another, and some 
do seem to be more defensible than others.  However, it seems to me that much of the 
argument comes from a high-stakes mentality where researchers are attempting to 
confirm one factor structure as superior to another.  Let us again repeat our mantra for 
this book: EFA is exploratory and should be considered a low-stakes process.   

There are many guidelines for how to decide the number of factors to extract from 
an analysis.  After all, your statistical computing software will extract as many factors as 
there are variables in the analysis, and since our goal is dimension reduction, we then 
have to decide how many of those extracted factors to retain for further analysis. So 
what decision rules are best? 

 
Theory.  I am a big proponent of theory-driven analysis.11  Researchers often 

perform an EFA because someone designed an instrument to measure particular 
constructs or factors.  If the theoretical framework for the instrument is sound, we 
should start with the expectation that we should see that structure in the data.  
Instruments are rarely perfect (especially the first time it is examined), and theoretical 
expectations are not always supported.  But unless one is on a fishing expedition in a 
data set with no a priori ideas about how the analysis should turn out,12 this is as good a 
place as any to start.  Regardless, the result of an EFA must be a sensible factor 
structure that is easily understood, whether that final structure matches the initial 
theoretical framework or not.  The basic function of EFA, in my mind, is to make 
meaning of data. 

 
The Kaiser Criterion.  The default in most statistical software packages is use the 

Kaiser criterion (Kaiser, 1960, 1970), which proposed that an eigenvalue greater than 
1.0 is a good lower bound for expecting a factor to be meaningful.  This is because an 
eigenvalue represents the sum of the squared factor loadings in a column, and to get a 
sum of 1.0 or more, one must have rather large factor loadings to square and sum (e.g., 
four loadings of at least 0.50 each, three loadings of at least 0.60 each).  But this 
criterion gets less impressive as more items are analyzed.  It is easy to get many 
unimportant factors exceeding this criterion if you analyze 100 items in an analysis. 

Despite the consensus in the literature that this probably the least accurate method 
for selecting the number of factors to retain (Velicer, Eaton, & Fava, 2000; see also 
Costello & Osborne, 2005), it is usually implemented as the default selection criteria in 
statistical software. Prior to the wide availability of powerful computing, this was a 
simple (and not unreasonable) decision rule.  Toward the later part of the 20th century, 
researchers suggested that combining this criterion with examination of the scree plot is 
better (Cattell, 1966).  

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 Not just in EFA but in all research.  If we are not purposeful and thoughtful, why are we 
doing this? 
12 To be clear, I strongly discourage this sort of analysis.  Concepts and theories should 
always guide what we do when exploring data.  Except when they don’t.   
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Scree plot.  The scree test involves examining the graph of the eigenvalues 
(available via every software package) and looking for the natural bend or “elbow” in 
the data where the slope of the curve changes (flattens) markedly.  The number of data 
points above the “elbow” (i.e., not including the point at which the break occurs) is 
usually considered a good estimate of the ideal number of factors to retain.  Although 
the scree plot itself is not considered sufficient to determine how many factors should 
be extracted (Velicer et al., 2000), many suggest that researchers examine solutions 
extracting the number of factors ranging from one to two factors above the elbow to 
one or two below.  As this is an exploratory technique, one should be encouraged to 
explore.  Some scree plots do not have one clear bend.  Some have multiple possible 
points of inflection, and some have no clear inflection point (for a good example of 
this, see the SDQ example, below). Combining theory, the Kaiser criterion, and 
examination of the scree plot is usually a good basis for deciding the number of factors 
to extract in an exploratory factor analysis.   

 
Parallel analysis was proposed by Horn (1965).  It is not widely included in 

common statistical computing packages, and thus is not widely used.  However, it is 
considered advantageous over the more classic approaches (although we will see in 
examples below that it is not always better; c.f., Velicer et al., 2000). Parallel analysis 
involves generating random uncorrelated data, and comparing eigenvalues from the 
EFA to those eigenvalues from those random data.  Using this process, only factors 
with eigenvalues that are significantly above the mean (or preferably, the 95th percentile) 
of those random eigenvalues should be retained.  Several prominent authors and 
journals have endorsed this as the most robust and accurate process for determining 
the number of factors to extract (Ledesma & Valero-Mora, 2007; Velicer et al., 2000).  
The problem is that common statistical computing packages, such as SPSS and SAS, 
have not incorporated this as an option for researchers.   

 
Minimum Average Partial (MAP) criteria was proposed by Velicer (1976) as 

another more modern methodology for determining the number of factors to extract in 
the context of PCA.  This procedure involves partialing out common variance as each 
successive component is created; a familiar concept to those steeped in the traditions of 
multiple regression.  As each successive component is partialed out, common variance 
will decrease to a minimum.  At that point, unique variance is all that remains.  Velicer 
argued that minimum point should be considered the criterion for the number of 
factors to extract (Velicer et al., 2000).  MAP has been considered superior to the 
“classic” criteria, and probably is superior to parallel analysis, although neither is 
perfect, and all must be used in the context of a search for conceptually interpretable 
factors.    

 
Using MAP and parallel analysis.  One barrier to researchers using MAP and 

parallel analysis is that these procedures are not widely implemented in statistical 
software packages.  For those wanting to experiment with them, freely-downloadable 
FACTOR software.13  For users of SPSS, SAS, or MATLAB, O’Connor (2000) has 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13  Lorenzo-Seva and Ferrando (2006) have made their software freely available from their 
website: http://psico.fcep.urv.es/utilitats/factor/ 
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provided simple and efficient programs for performing these less common but more 
ideal procedures. These can currently be downloaded from 
https://people.ok.ubc.ca/brioconn/boconnor.html .  I will also make copies available 
on the website for this book for ease of use. 

While I can understand the value of parallel analysis or MAP criteria for deciding 
how many factors to extract, we have to remember our mantra:  EFA is an exploratory 
technique.  No criterion is perfect, and unless you are mis-using EFA in a confirmatory 
fashion, it seems to me that worrying over a slightly better extraction criterion might be 
missing the point.  The point is to get a reasonable model within a representative 
sample (that is sufficiently large to ensure a reasonable solution), and then to move into 
inferential statistics available in confirmatory factor analysis.  EFA is merely a first 
stopping point on the journey, and researchers who forget this miss the point of the 
process.  Thus, use parallel analysis or MAP criteria, along with theory (and any of the 
classic criteria that suits you and is defensible).  The goal of creating theory-driven, 
conceptually understandable solutions needs to prevail.  And never forget that your 
journey is not done until you confirm the results of the EFA in the context of CFA.  

 
Example 1:  Engineering data 

 
The factor structure for these data are expected to be clear:  two factors, one 

reflecting engineering problem solving and one reflecting interest in engineering.  
Theory is our ally in this case as these scales were theory-driven.  If we look at the 
eigenvalues from Table 2.1b, we see that regardless of the extraction method, there are 
two factors with strong eigenvalues over 3.00, and no other factors with eigenvalues 
above 0.50.  Thus, according to the Kaiser criterion we should extract two factors.  
Next, the Scree plot (Figure 2.1) shows a pronounced inflection point at factor #3, 
indicating that we should consider 2 factor solution (and explore 2, 3, and 4 factor 
solutions, perhaps, if we did not have strong theory behind the two-factor solution).  
Three classic indicators suggest a two-factor solution is ideal for these data (until we 
explore the data in the context of confirmatory analyses).   

Examine the factor loadings (since we have not talked about rotation yet, we will 
examine unrotated factor loadings) in Table 2.4, also plotted in Figure 2.2.  As you can 
see from the factor loading plot in Figure 2.2, these data are clustered into to clear and 
distinct factors.  In my opinion, this is about as good as it gets in exploratory factor 
analysis at this stage of the analysis, and examining MAP criteria or performing parallel 
analysis to determine how many factors to extract would not result in any more useful 
information.  However, for the sake of providing an example, these same data were 
subjected to first parallel and then MAP analysis.14   

 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14 The syntax and data for this example are available on the book web site at 
http://jwosborne.com.  Syntax for SPSS, as mentioned above, was adapted from (O’connor, 
2000). 



Jason W. Osborne 

20 

 
Figure!2.1:!Scree!plot!from!engineering!data,!ML!extraction!

Table 2.4 
Unrotated Factor Matrix for Engineering Data 

 

Variable: 
Factor 

1 2 
EngProbSolv1 .706 .463 
EngProbSolv2 .649 .492 
EngProbSolv3 .731 .481 
EngProbSolv4 .743 .508 
EngProbSolv5 .764 .473 
EngProbSolv6 .748 .464 
EngProbSolv7 .754 .458 
EngProbSolv8 .723 .389 
INTERESTeng1 .688 -.439 
INTERESTeng2 .730 -.549 
INTERESTeng3 .740 -.546 
INTERESTeng4 .738 -.535 
INTERESTeng5 .719 -.514 
INTERESTeng6 .711 -.495 
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Figure!2.2:!!Factor!loading!plot!Maximum!Likelihood!extraction!

Parallel analysis.  The parallel analysis first generated random data for mean and 
95th percentile eigenvalues.  The syntax provided on the book web site also produced 
the real-data eigenvalues from this sample for comparison.  Using appropriate 
specifications (14 variables, appropriate sample size, etc.), the parallel analysis produced 
the following random data and real data eigenvalues, (which are plotted in Figure 2.3).   

Recall that the goal is to select the number of factors to extract where the observed 
eigenvalues from the data are significantly higher than the random eigenvalues. In this 
case, parallel analysis indicates that two factors have eigenvalues exceeding that of 
random samples (95th percentiles used here, as recommended in the literature).  

 
 Random Data Eigenvalues 
        Root        Means       95th% 
     1.000000      .318540      .385296 
     2.000000      .252631      .313547 
     3.000000      .200020      .239804 
     4.000000      .150248      .189150 
     5.000000      .107605      .143019 
     6.000000      .070462      .099675 
     7.000000      .032913      .060748 
<subsequent eigenvalues were negative and were deleted for space> 
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Raw Data Eigenvalues 
        Root       Eigen. 
     1.000000     7.411470 
     2.000000     3.271016 
     3.000000      .197160 
     4.000000      .069918 
     5.000000      .048940 
     6.000000      .039340 
     7.000000      .021963 
<subsequent eigenvalues were negative and were deleted for space> 
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Figure!2.3.!!Plot!of!parallel!analysis!results!comparing!!

 
MAP criteria.  Finally, the MAP criteria were calculated for these data.  Recall that 

using MAP criteria, we want to choose a number of factors where the inflection point 
where the graph of the average partial correlations hits a minimum. 
 

Eigenvalues 
       7.6534 
       3.5048 
        .4568 
        .3597 

<subsequent eigenvalues were negative and were deleted for space> 
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Average Partial Correlations 
                       squared         power4 
          .0000          .3167          .1645 
         1.0000          .2458          .0743 
         2.0000          .0236          .0018 
         3.0000          .0295          .0034 
         4.0000          .0436          .0088 
         5.0000          .0580          .0119 
         6.0000          .0724          .0229 
         7.0000          .0926          .0436 
<subsequent eigenvalues were negative and were deleted for space> 

 
As you can see from the MAP test output and in Figure 2.4, the inflection point 

(minimum) on the plot of average partial correlations is at 2, and the output suggested 
two factors be extracted, which corresponds exactly with our theory and other 
extraction criteria for these data.   
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Figure!2.4:!!Plot!of!average!partial!correlations!for!MAP!test!

Summary of results for Example 1.  Using several different methods of selecting 
the number of factors to extract, all methods pointed to the conclusion that two factors 
is the optimal number to extract.  Given that the results make sense in the context of 
the theoretical model, we would extract two factors for rotation and interpretation.   
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Example 2:  Self-Description Questionnaire data  
 
Since the data from the SDQ seemed to be relatively well-behaved across the initial 

extraction comparisons, I will again use ML extraction and explore whether our 
expected three-factor solution is tenable.  The first two criteria, theory and eigenvalues, 
all suggest a three-factor solution.  In the case of these data, however, the scree plot 
(presented in Figure 2.5) is a bit less clear.  Scree plots do not always have one clear 
elbow.  In this case, it is possible to argue that any one of several points is the true 
“elbow”- including 2, 4, or 5.  In this example, the scree plot is not terribly informative.  
Remember that this analysis had a very large sample, and thus might not be 
representative of analyses with smaller samples. 

 
 

 
Figure!2.5:!!scree!plot!from!ML!extraction!of!SDQ!data.!

 
Parallel analysis.  Because the sample size was so large, parallel analysis might not 

be as useful.  The largest randomly generated eigenvalues (95th percentile) was 0.057.  
Thus, using the criteria for parallel analysis, one would recommend examining either 
three or four factors (depending on how “significantly” different the raw data 
eigenvalue should be).   
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Raw Data Eigenvalues 
         Root       Eigen. 
     1.000000     3.624965 
     2.000000     2.158366 
     3.000000     1.731491 
     4.000000      .361588 
     5.000000     -.021073 
     6.000000     -.053630 
     7.000000     -.062606 
<subsequent eigenvalues were negative and were deleted for space> 

 
Random Data Eigenvalues 
         Root        Means        95th % 
     1.000000      .047533      .056737 
     2.000000      .036696      .044227 
     3.000000      .028163      .035459 
     4.000000      .020568      .025826 
     5.000000      .013416      .018670 
     6.000000      .006943      .011787 
     7.000000      .000123      .005167 
<subsequent eigenvalues were negative and were deleted for space> 
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Figure!2.6:!!Parallel!analysis!of!SDQ!data!
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MAP criteria.  The data from the MAP analysis seem to reinforce theory and other 
criteria, indicating that three factors is the right number to extract.  As you can see in 
Figure 2.7, the minimum inflection point is at 3.  

 
Average Partial Correlations 
                       squared         power4 
          .0000          .1100          .0375 
         1.0000          .0993          .0178 
         2.0000          .0854          .0124 
         3.0000          .0349          .0037 
         4.0000          .0401          .0046 
         5.0000          .0606          .0127 
         6.0000          .0884          .0257 
 
<subsequent eigenvalues were negative and were deleted for space> 
 
The Number of Components According to the Original 

(1976) MAP Test is 3 
The Number of Components According to the Revised 

(2000) MAP Test is  3 
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Figure!2.7:!!Plot!of!average!partial!correlations!for!MAP!test!
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Summary of results for Example 2.  As Velicer and others have argued, the MAP 
criteria appear to be, at least in this case, more congruent with theory and eigenvalues- 
which is reassuring.    The parallel analysis criteria recommends extraction of four 
factors.  The three factor model seems to be the best recommendation as it makes for a 
strong, interpretable model.   
 
Example 3:  Geriatric Depression Scale data 

 
Referring back to Table 2.3b, this scale provided a very different counterpoint to 

the clear conceptually consistent results of the engineering and SDQ data.  This scale 
was designed to have five subscales originally,15 so theory would suggest that there are 
five factors.  But as with many of our endeavors in the social sciences, this might not 
hold true once put to the test.  For example, it is just as likely that all items will load as 
a single factor, or that a different number of factors will be ideal.    The results of the 
PAF extraction from earlier in the chapter, there were eight factors that had eigenvalues 
greater than 1.0 (eigenvalue #8 was 1.02, and #9 was 0.93, leaving some ambiguity 
around whether this is a viable cutoff).   

!Figure!2.8:!!Scree!plot!of!Geriatric!Depression!Scale!data.!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 Scale 1 was to be composed of item # 1, 6, 11, 16, 21, and 26; scale 2:  #2, 7, 12, 17, 22, 
27; and so forth. 
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Further, the scree plot, in Figure 2.8, seems to indicate that the first inflection point 

is at 2 factors, but it is also arguable that there is a second inflection point at the fourth 
factor.  Thus, using traditional criteria, we would probably combine these results and 
test for a variety of configurations including 1, 3, 4, and 5 factor extraction.  These 
results would be examined to see if the original theoretical framework made sense, or if 
any of the other factor structures seem to make sense.  However, since we have parallel 
analysis and MAP criteria, let us examine those results before exploring these options. 

 
Parallel analysis.  Because of the large number of items in this scale, I will truncate 

the output to reasonable numbers of factors.   
 
Raw Data Eigenvalues 
         Root       Eigen. 
     1.000000     7.257380 
     2.000000     1.458959 
     3.000000     1.044359 
     4.000000      .674890 
     5.000000      .548184 
     6.000000      .484804 
     7.000000      .434659 
<subsequent eigenvalues were negative and were deleted for space> 
 
Random Data Eigenvalues 
         Root        Means        95th% 
     1.000000      .569249      .644117 
     2.000000      .495687      .540897 
     3.000000      .446227      .491564 
     4.000000      .397062      .436511 
     5.000000      .354778      .393940 
     6.000000      .318813      .357407 
     7.000000      .281370      .319290 
<subsequent eigenvalues were negative and were deleted for space> 
 
The results of this parallel analysis poses an interesting dilemma, as the eigenvalues 

quickly drop below 1 in the raw data analysis,  and quickly approach the random data 
eigenvalues, as you can see in the data above and Figure 2.9, below.  However it is not 
until around the 8th factor that the lines meet, which incidentally is the same conclusion 
as the Kaiser criterion leads to (eight factors with eigenvalues greater than 1.0). This 
would suggest that we should extract many more factors than probably makes sense.   
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Figure!2.9.!!Parallel!Analysis!of!GDS!data.!

MAP criteria.  The MAP analysis was also interesting for these data, in that the 
MAP results recommend extraction of three factors, rather than the single strong factor 
of the theoretically-expected five factors.  As you can see in the MAP plot (Figure 
2.10), there might be a significant inflection point at the first factor.   The true 
minimum is clearly at 3 factors, but the change between factors 2, 3, and 4 is so 
minimal as to be almost inconsequential.  The third factor is only 0.0003 less than the 
APC for factor 2, and only 0.0008 less than factor 4.  As you can see in Figure 2.10, one 
could argue that the only real inflection point is at 1. 

 
Average Partial Correlations 
                       squared         power4 
          .0000          .0616          .0066 
         1.0000          .0111          .0004 
         2.0000          .0100          .0003 
         3.0000          .0097          .0003 
         4.0000          .0105          .0003 
         5.0000          .0118          .0004 
         6.0000          .0132          .0006 
         7.0000          .0148          .0008 
<subsequent eigenvalues were negative and were deleted for space> 
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Figure!2.10:!!Plot!of!average!partial!correlations!for!MAP!test!

 
Summary of results for Example 3.  This third example reinforces the fact that 

EFA is both an art and a quantitative science, and that good judgment of the researcher 
is critical when the data are not as clear or cooperative as one would hope.  These data 
are not giving us a clear indication of how many factors to extract, and thus we need to 
explore several options for what is most sensible.  When data are uncooperative in this 
way, replication becomes even more critical, as we will discuss in chapters to come.   

 
Rotation in EFA  

 
Unrotated results from a factor analysis – as presented above in example 1- is not 

easy to interpret, although the factor loading plot can help.  Simply put, rotation was 
developed not long after factor analysis to help researchers clarify and simplify the 
results of a factor analysis.  Indeed, early methods were subjective and graphical in 
nature (Thurstone, 1938) because the calculations were labor intensive.  Later scholars 
attempted to make rotation less subjective or exploratory (e.g., Horst, 1941), leading to 
initial algorithms such as Quartimax (Carroll, 1953) and Varimax (Kaiser, 1958), which 
is currently the most common rotation (perhaps because it is the default in many 
statistical computing packages).16   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16 Note that rotation does not alter the basic aspects of the analysis, such as the amount of 
variance extracted from the items.  Indeed, although eigenvalues might change as factor 
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Quite simply, we use the term “rotation” because, historically and conceptually, the 
axes are being rotated so that the clusters of items fall as closely as possible to them.17  
As Thompson (2004) notes, the location of the axes are entirely arbitrary, and thus we 
can rotate the axes through space (like turning a dial) without fundamentally altering 
the nature of the results.  However, we cannot move the location of any variable in the 
factor space.   

Looking at Figure 2.11, for example, if you imagine rotating the axes so that they 
intersect the centroid of each cluster variables, you get the essence of rotation.   

 

 
Figure!2.11:!!Unrotated!factor!loading!plot!from!Example!1,!above.!

 
As with extraction, there are many choices of rotation method, depending on what 

software you are using.  Each uses slightly different algorithms or methods to achieve 
the same broad goal- simplification of the factor structure.  Rotation methods fall into 
two broad categories:  orthogonal and oblique (referring to the angle maintained 
between the X and Y axes).  Orthogonal rotations produce factors that are uncorrelated 
(i.e., maintain a 90o angle between axes); oblique methods allow the factors to correlate 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
loadings are adjusted by rotation, the overall percentage of variance accounted for will 
remain constant.   
17 Alternatively, you could imagine rotating each cluster of items toward the axis.  It really 
works out to be functionally the same. 
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(i.e., allow the X and Y axes to assume a different angle than 90o).  Traditionally, 
researchers have been guided to orthogonal rotation because (the argument went) 
uncorrelated factors are more easily interpretable.  There is also an argument in favor of 
orthogonal rotation as the mathematics are simpler,18 and that made a significant 
difference during much of the 20th century when EFA was performed by hand 
calculations or much more limited computing power.  Orthogonal rotations (which 
include Quartimax, Equimax, and Varimax) are generally the default setting in most 
statistical computing packages.  Oblique methods include Direct Oblimin and Promax.   

 
Varimax rotation seeks to maximize the variance within a factor (within a column 

of factor loadings) such that larger loadings are increased and smaller are minimized.   
 
Quartimax tends to focus on rows, maximizing the differences between loadings 

across factors for a particular variable—increasing high loadings and minimizing small 
loadings. 

 
Equimax is considered a compromise between Varimax and Quartimax, in that it 

seeks to clarify loadings in both directions.   
 
Promax is recommended by Thompson (2004) as the more desirable oblique 

rotation choice.19  It gets its name as a combination of an initial Varimax rotation to 
clarify the pattern of loadings, and then a procrustean rotation (which is a less common 
and not discussed here).   

 
Direct Oblimin rotation is another oblique rotation that can sometimes be 

problematic but often gives very similar results to Promax.  Both Promax and Oblimin 
have parameters that allow the researcher to limit how correlated factors can be (but 
researchers cannot force factors to be correlated if they are not—in other words, you 
can limit how strongly correlated the factors are but not the minimum correlation).  

The mathematical algorithms for each rotation are different, and beyond the scope 
of this brief technical note.  Note that for all rotations, the goal is the same: simplicity 
and clarity of factor loadings.  For details on how they achieve these goals, you should 
refer to the manual for your statistical software (e.g., IBM SPSS base statistics manual 
p. 97,20 or Gorsuch, 1983; for a good overview of the technical details of different 
versions of Varimax rotation, see (Forina, Armanino, Lanteri, & Leardi, 1989). 

Conventional wisdom in the literature and many texts advises researchers to use 
orthogonal rotation because it produces more easily interpretable results, but this might 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
18 Researchers also tend to mis-interpret the meaning of “orthogonal” to mean that factor 
scores are also uncorrelated.  Orthogonal factors can (and often do) produce factor scores 
that are correlated (Nunnally & Bernstein, 1994; Thompson, 2004).  More on factor scores in 
Chapter 7. 
19 However, other authors have argued that there are few substantive differences between the 
two oblique rotations (Fabrigar et al., 1999). 
20 Retrieved from 
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/22.0/en/client/Man
uals/IBM_SPSS_Statistics_Base.pdf  
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a flawed argument. In the social sciences (and many other sciences) we generally expect 
some correlation among factors, particularly scales that reside within the same 
instrument/questionnaire, regardless of the intentions of the researcher to produce 
uncorrelated scales (i.e., shared method variance will generally produce nonzero 
correlations).  Therefore using orthogonal rotation results in a loss of valuable 
information if the factors are really correlated, and oblique rotation should theoretically 
render a more accurate, and perhaps more reproducible solution.21 Further, in the 
unlikely event that researchers manage to produce truly uncorrelated factors, 
orthogonal and oblique rotation produce nearly identical results, leaving oblique 
rotation a very low-risk, potentially high benefit choice.  

The issue of ease of interpretation is present in one aspect of EFA:  when using 
orthogonal rotation, researchers have only one matrix to interpret.  When using oblique 
rotations, there are two matrices of results to review (described in the next section).  In 
my experience—and in many of our examples—the two matrices tend to parallel each 
other in interpretation, so again in my mind this does not create an insurmountable 
barrier. 

 
Factor matrix vs. pattern matrix vs. structure matrix 

 
All extracted factors are initially orthogonal (Thompson, 2004), but remain so only 

as long as the rotation is orthogonal (we discussed this briefly in chapter 1 regarding 
PCA).  However, even when the factors themselves are orthogonal, factor scores 
(scores derived from the factor structure; see Chapter 7) are often not uncorrelated 
despite the factors being orthogonal.  

Oblique rotation output is only slightly more complex than orthogonal rotation 
output. In SPSS output the rotated factor matrix is interpreted after orthogonal 
rotation; when using oblique rotation we receive both a pattern matrix and structure 
matrix.  This seems to be a source of much confusion in practice.22  Let’s start with a 
few gentle conceptual definitions: 

 
Factor matrix coefficients are generally reported by most statistical computing 

packages (like SPSS) regardless of rotation.  They represent the unrotated factor 
loadings, and are generally not of interest.23 

 
Pattern matrix coefficients are essentially a series of standardized regression 

coefficients (betas or βs in the regression world) expressing the variable as a function 
of factor loadings.  You can also think of these as the list of ingredients in the recipe 
(e.g., to make Item 13, add 0.70 of factor 1, 0.13 of factor 2, -0.02 of factor 3, etc.  Mix 
well… delicious!).  Like regression coefficients, they hold all other variables (factors) in 
the equation constant when estimating the pattern matrix coefficients.  So, if factors are 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 However, some authors have argued that oblique rotations produce less replicable results 
as they might overfit the data to a greater extent.  I do not think there is empirical evidence to 
support this argument, but overfitting the data is a concern to all EFA analyses, as we will 
discuss further on in the book.   
22 In this section I draw heavily on Thompson (2004), which is always a good reference. 
23 Except for nerds like me trying to understand all this stuff. 
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uncorrelated, pattern and structure coefficients are identical.  As factors become more 
strongly correlated, the two types of coefficients will become less alike.  Thus, think of 
pattern matrix coefficients as “row” statistics, describing the individual item’s unique 
relationships to each factor.   

 
Structure matrix coefficients are simple correlations between an individual 

variable and the composite or latent variable (factor).  In multiple regression, these 
would be similar to correlations between an individual variable and the predicted score 
derived from the regression equation.  The difference between structure and pattern 
coefficients are the difference (again, returning to regression) between simple 
correlations and semipartial (unique relationship only) correlations.   

 
Pattern vs. Structure matrix.  If all factors are perfectly uncorrelated with each 

other, the pattern and structure coefficients are identical.  When factors are 
uncorrelated there is no effect of holding other factors constant when computing the 
pattern matrix, and the structure and pattern coefficients would be the same, just like 
simple and semipartial correlations in multiple regression with perfectly uncorrelated 
predictors. 

Thompson (2004; see also Gorsuch, 1983; Nunnally & Bernstein, 1994) and others 
have argued that it is essential to interpret both pattern and structure coefficients in 
order to correctly and fully interpret the results of an EFA. In practice, few do.  
Further, when rotations are oblique and factors are correlated, they argue it is 
important to report the intercorrelations of factors also.  I will highlight this process 
when appropriate.   

 
Rotation example 1: Engineering data 

 
I have reproduced the original unrotated factor loadings for your convenience in 

Table 2.5.   As you can see in Table 2.5, although we expected (and see evidence of) 
two very clear factors, the factor loadings are not immediately identifiable as two 
separate factors prior to rotation.  To be sure, looking at the unrotated Factor 1 
loadings, all fourteen items seem to be similar.  It is only in combination with the 
loadings on Factor 2 where the two factors separate.  If one plots each item in two-
dimensional space (Factor 1 on the X axis, and Factor 2 on the Y axis), we see clearly 
the separation, as presented a couple pages back in Figure 2.11. 

As you examine Figure 2.11 and imagined rotating the axes so that they intersected 
more closely with the center of each cluster of variables, I hope you can visualize 
turning the axes so that they come into alignment.  You might be wondering what that 
does for us in terms of clarifying the factor loadings.  Once we make that rotation, the 
factor pattern coefficients also have now changed, with some getting larger, and some 
getting smaller.  As you can see in Figure 2.12 (and Table 2.5), following rotation of the 
axes (or items), the items now fall closely about each axis line.  This has the effect of 
making the factor loading pattern much clearer as one of the two pairs of coordinates 
for each item tends to be close to 0.00, as you can see in Table 2.5.  In this example 
analysis, the factors were correlated r = 0.37. 
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Table 2.5 
Factor loading matrix from example #1 (engineering data) 
 

 
Variable: 

Unrotated Rotated Pattern 
Matrix 

Rotated Structure 
Matrix 

1 2 1 2 1 2 
EngProbSolv1 .759 -.389 .859 -.016 .853 .300 
EngProbSolv2 .703 -.418 .841 -.071 .815 .239 
EngProbSolv3 .784 -.392 .879 -.008 .877 .316 
EngProbSolv4 .798 -.416 .909 -.025 .900 .310 
EngProbSolv5 .811 -.375 .886 .021 .894 .347 
EngProbSolv6 .795 -.369 .869 .020 .876 .340 
EngProbSolv7 .804 -.360 .868 .033 .880 .352 
EngProbSolv8 .763 -.299 .790 .072 .816 .362 
INTERESTeng1 .630 .521 .042 .801 .337 .817 
INTERESTeng2 .660 .630 -.023 .921 .316 .912 
INTERESTeng3 .669 .627 -.014 .922 .325 .917 
INTERESTeng4 .668 .609 -.001 .904 .332 .904 
INTERESTeng5 .657 .607 -.007 .897 .324 .894 
INTERESTeng6 .647 .578 .009 .864 .327 .867 

Note:  Principal Axis Factoring extraction, Oblimin rotation.  Correlation between two factors is 
0.37. 

 
Figure!2.12:!!Rotated!factor!solution!following!Principal!Axis!Factoring!extraction!and!
oblique!(Oblimin)!rotation!
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Most statistical packages will allow small loadings to be suppressed following 

rotation, so that the results become even more obvious and immediately apparent.  I 
chose to keep all loadings in the table but to highlight the rotated loadings that were of 
interest. 

 
Do orthogonal and oblique rotations produce noticeable differences?  

Orthogonal and oblique rotations will produce virtually identical solutions in the case 
where factors are perfectly uncorrelated.  As the correlation between latent variables 
diverges from r = 0.00, then the oblique solution will produce increasingly clearer 
results.  Looking at the same data after orthogonal (Varimax) rotation presented in 
Figure 2.13, one can see that this outcome still provides a similar but less ideal solution.  
This is because these factors are modestly correlated, but the mandate to maintain a 90o 
angle between axes means that the centroids of the clusters cannot move closer to the 
axis lines.  In this case, the difference is not great, but noticeable.   This is a small but 
clear example of the higher efficacy of oblique rotations to create clear patterns of 
results in EFA where the factors are indeed correlated.  Given that there is no rationale 
I am aware of for using orthogonal rotation instead of oblique rotation (except 
tradition), there is no reason in my mind to accept sub-optimal rotation by insisting on 
using orthogonal rotations.   

 

 
Figure!2.13:!!Engineering!data!using!orthogonal!rotation!(Varimax)!



Best Practices in Exploratory Factor Analysis 

37 

 
Rotation example 2:  Self-Description Questionnaire data 

 
To explore this example, I performed ML extraction of three factors (in accord with 

several criteria reviewed above) with Promax rotation.  Interestingly, these scales were 
minimally correlated (r = 0.15, 0.22, 0.26), but the solution is what we would expect, 
given the theoretical model the scale was developed with.  As you can see in Table 2.6, 
the final rotated solution gives us a clear, theoretically consistent factor structure with 
subscale items aligning as expected.   
 

Table 2.6 
Unrotated and rotated factor loadings for SDQ data 
 

 
 
Var: 

Unrotated Factor 
Loadings 

Rotated Pattern 
Matrix 

Rotated Structure 
Matrix 

1 2 3 1 2 3 1 2 3 
Math1 .802 .088 -.373 .901 -.040 -.037 .887 .152 .088 
Math2 .810 .070 -.298 .863 .008 .012 .866 .203 .144 
Math3 .828 .083 -.301 .881 -.001 .023 .885 .201 .155 
Math4 -.572 -.004 .212 -.601 -.049 .021 -.608 -.177 -.081 
Par1 .360 -.524 .349 .002 .718 .023 .166 .725 .209 
Par2 -.252 .533 -.293 .060 -.680 .052 -.084 -.654 -.114 
Par3 .426 -.613 .370 .028 .827 -.002 .212 .833 .216 
Par4 -.359 .388 -.335 -.036 -.583 -.100 -.181 -.617 -.256 
Par5 .367 -.568 .315 .018 .749 -.030 .181 .746 .166 
Eng1 .348 .309 .634 -.005 .031 .779 .119 .231 .786 
Eng2 .310 .419 .636 -.016 -.082 .842 .092 .131 .818 
Eng3 .406 .378 .644 .052 -.017 .845 .175 .212 .848 
Eng4 -.257 -.179 -.552 .060 -.102 -.609 -.054 -.245 -.626 

Note:  factors correlations ranged from 0.15 to 0.26. 
 

In summary, this second example is about as good as one can hope for when 
performing an exploratory factor analysis:  the theoretical structure matches the 
majority of the recommendations from the factor extraction criteria, and in the end, the 
rotated solution aligns with what was hoped for.  Indeed, even the communalities are 
reasonably strong and the analysis explained 59.37% of the overall variance, which is 
relatively good.  Note that the pattern matrix and structure matrix are similar because 
the correlations between the factors are minimal.  

 
Rotation example 3:  Geriatric Depression Scale data 

 
Given that the data from the GDS was less clear in terms of factor structure, we are 

going to have to experiment and explore more than previous examples. Let us 
remember that we want to favor parsimonious solutions.  Also, because all proposed 
subscales relate to depression in some way, they should be correlated.  We will 
therefore use an oblique rotation while exploring.  
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Below is a one-factor solution (PAF extraction), which would be defensible based 
on the single large eigenvalue and MAP criteria.  This single factor accounts for 23.80% 
of the variance and communalities that ranged from 0.11 to 0.47, which is not a strong 
result.  As you can see, many loadings are low, and even the highest loadings are in the 
.60-.70 range.  This is likely due to the poor measurement (0, 1 only). 

 
Table 2.7 
Factor loadings for GDS data with one factor and five factors extracted 

 

 

One- 
factor 

Five-factor pattern loadings 

1 1 2 3 4 5 
GDS01 .591 .441  .302   
GDS02 .406  .452    
GDS03 .629   .509   
GDS04 .534    .719  
GDS05 .512 .418     
GDS06 .524    .373  
GDS07 .473 .694     
GDS08 .401      
GDS09 .607 .782     
GDS10 .618   .405   
GDS11 .429    .541  
GDS12 .356  .452    
GDS13 .418    .301  
GDS14 .231     .563 
GDS15 .467 .647     
GDS16 .684    .399  
GDS17 .661  .361 .454   
GDS18 .421   .355   
GDS19 .566  .499    
GDS20 .429  .496    
GDS21 .448  .599    
GDS22 .552   .756   
GDS23 .418   .452   
GDS24 .400    .508  
GDS25 .578   .434   
GDS26 .460     .492 
GDS27 .376 .343     
GDS28 .432  .435    
GDS29 .327      
GDS30 .331     .470 
Note:  Factor loadings less than 0.30 suppressed in the five-factor model for ease of 

interpretation.  Recall that one-factor solutions are not rotated so the loadings might seem 
sub-optimal. 
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When the theoretically-supported five factors are extracted (Table 2.7), 37.02% of 
the variance is accounted for, and the communalities range from 0.15 to 0.64-  better 
but not impressive.  Further, the items loading on various factors do not match the 
theoretical framework, and thus do not (to me) make sense.  If it does not make sense 
in an alternative way, I would be reluctant to put it forward as the best model.   

  
Table 2.8 
Eight factor solution for GDS data. 
 

Variab le :  
Factor pattern loadings 

1 2 3 4 5 6 7 8 
GDS01        .653 
GDS02   .497     .315 
GDS03  .352      .412 
GDS04    .767     
GDS05 .372        
GDS06     .429    
GDS07 .740        
GDS08     .527    
GDS09 .796        
GDS10  .379       
GDS11    .606     
GDS12       .877  
GDS13     .665    
GDS14      .679   
GDS15 .605        
GDS16  .402       
GDS17  .501 .378      
GDS18  .318   .372    
GDS19   .408      
GDS20   .541      
GDS21   .565      
GDS22  .735       
GDS23  .456       
GDS24    .334     
GDS25  .593       
GDS26      .494   
GDS27   .312      
GDS28       .438  
GDS29   .366      
GDS30   .362   .401   

Note:  pattern coefficients reported to conserve space.  
 
As you can see in Table 2.8, the next possibility is an eight-factor solution, which 

was indicated not only by the Kaiser criterion (eigenvalues greater than 1.0) but also by 
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parallel analysis.  With eight factors extracted, the model accounted for 43.44% of the 
variance, and communalities ranged from 0.17 to 0.67, slightly better than the five 
factor model (but to my mind not any more interpretable).   For the sake of space I will 
leave the three-factor model to you to examine.  It might be conceptually intriguing.   

 
Summary of rotation examples.  In this section we examined the concept of 

rotation- the purpose of rotation, what actually rotates, and several different methods 
for rotation.  Finally, we examined the results of the analyses after rotation.  When the 
data were clear with a strong factor structure (as in example #1 and 2, with the 
engineering and SDQ data), almost any rotation will do a good job clarifying the factor 
structure, but I argued that oblique rotations did slightly better.  Further, the pattern 
and structure coefficients were reported, as this was an oblique rotation, but the results 
were clear in both cases, and thus, the oblique rotation did not overly complicate the 
results. 

In the third example (GDS data), the way forward was less clear. We explored a 
single-factor model, which may ultimately be the most desirable given our preference 
for parsimony.  However, in this model, the communalities were lower than ideal, and 
the overall variance accounted for was relatively low.  Guidelines we previously 
explored recommended extracting either 3, 5, or 8 factors, but none of them seemed to 
make more sense to me over the single factor model (you will have to decide if the 
three-factor solution is the best or not).  This scale might need a larger sample, revision, 
or to be examined in the context of confirmatory methods in order to determine which 
might model be superior.  However, we cannot just be guided by empirical data.  The 
latent variables we construct have to make sense.   

Going back to the eight-factor model, the fifth factor (items 6, 8, 13, 18) focuses on 
intrusive thoughts, anxiety, and worry. This is an example of a factor that could make 
conceptual sense and be defensible. 24  Likewise, the first factor (items 5, 7, 9, and 15) 
all have hopeful, positive concepts and as such also make sense.  So one could label this 
some aspect of positivity or hopefulness, except that other items, like 19, 21, and 27 
would also fall into that category yet load on the third factor.  In the five-factor model 
this positivity factor comes together more, but does not get there all the way.   

At the end of the day, EFA is about empirically constructing a narrative that makes 
sense.  See if you can come up with one of the models that makes more sense than 
simply saying all the items measure depression. 

 
Standard practice in social science 

 
One of the challenges to utilizing best practices is that for three of the important 

EFA analytic decisions (extraction, rotation, and number of factors to retain), the 
defaults in common statistical packages (e.g., SPSS, SAS) are not ideal.  These defaults 
often include (a) principal components as the extraction method of choice,25 (b) extract 
the number of factors according to the Kaiser (1970) criterion (retaining factors with 
eigenvalues greater than 1.0), and (c) use Varimax for rotation of factors (which 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
24 I am not a clinically trained psychologist so I am looking from a naïve perspective- 
apologies to the experts out there if I miss some nuance. 
25 I won’t beat this PCA vs. EFA drum again.   
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requires factors to be orthogonal, or completely uncorrelated with each other.  
Unfortunately, software defaults tend to drive analysis decision-making, which is 

probably why PCA extraction, the “Little Jiffy” criterion for number of factors to keep, 
and Varimax rotation are the most common decisions made in articles published in 
many sciences. This has been confirmed by many authors in many fields.  Two 
colleagues and I (Osborne, Costello, & Kellow, 2008) published a review of articles 
using EFA in two prominent measurement journals: Educational and Psychological 
Measurement (EPM) and Personality and Individual Differences (PID) over a six-year 
period. These journals were chosen because of their prominence26 in the field of 
measurement and the prolific presence of EFA articles within their pages.  After 
screening out studies that employed only confirmatory factor analysis or examined the 
statistical properties of EFA or CFA approaches using simulated data sets, a total of 
184 articles were identified, reporting on 212 distinct EFA analyses. Information 
extracted from the EFA articles were: a) factor extraction methods; b) factor retention 
rules; c) factor rotation strategies; and d) saliency criteria for including variables.  

 
Factor Extraction Methods.  Almost two-thirds of all researchers (64%) in these 

journals used principal components (PCA). The next most popular choice was principal 
axis factoring (PAF) (27%). Techniques such as maximum likelihood were infrequently 
invoked (6%). A modest percentage of authors (8%) utilized multiple methods on their 
data to compare the results for similar structure.  

 
Factor Extraction Rules. The most popular method used for deciding the number 

of factors to retain was the Kaiser (1960, 1970) criterion of eigenvalues greater than 1.0 
(45%).  An almost equal proportion used the scree test (42%). Use of other methods, 
such as parallel analysis, was comparatively infrequent (about 8%). Many authors (41%) 
explored multiple criteria for factor retention. Among these authors, the most popular 
choice was a combination of the Kaiser Criterion and scree methods (67%).  

 
Factor Rotation Strategies.  As expected, Varimax rotation was most often 

employed (47%), with Oblimin being the next most common (38%). Promax (another 
oblique rotation) also was used in 11% of analyses. A number of authors (18%) 
employed both Varimax and Oblimin solutions to examine the influence of correlated 
factors on the resulting factor pattern/structure matrices.  

 
Saliency Criteria for Including Variables.  Thirty-one percent of EFA authors 

did not articulate a specific criterion for interpreting salient pattern/structure 
coefficients, preferring instead to examine the matrix in a logical fashion, considering 
not only the size of the pattern/structure coefficient, but also the discrepancy between 
coefficients for the same variable across different factors (components) and the logical 
“fit” of the variable with a particular factor.  

Of the 69% of authors who identified an a priori criterion as an absolute cutoff, 
27% opted to interpret coefficients with as absolute value of 0.30 or higher, while 24% 
chose a 0.40 cutoff. Other criteria chosen with modest frequency (both about 6%) 
included 0.35 and 0.50 as absolute cutoff values with the rest ranging from the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
26 Which, in our reasoning, should lead to the most progressive and rigorous methodology 
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marginally defensible 0.25 to the almost indefensible 0.80.   
 
Summary.  Not surprisingly, the hegemony of default settings in major statistical 

packages continues to dominate the pages of EPM and PID. The “Little Jiffy” model 
espoused by Kaiser (1960, 1970), which combined PCA with Varimax rotation and 
retention of all factors with an eigenvalue greater than 1.0, is alive and well. It should be 
noted that this situation is almost certainly not unique to EPM or PID authors. 
Another survey of a recent two-year period in PsycINFO (reported in Costello & 
Osborne, 2005) yielded over 1700 studies that showed similar results.  Informal perusal 
of the top journals from other empirical fields easily confirms the prevalence of this 
situation as current practice.  

There are probably good historical reasons why these defaults and practices have 
become ingrained in the factor analysis culture.  When they were promulgated in the 
middle and later parts of the 20th century, they were solid methods with no better 
alternatives, given the state of statistical computing.  The “Little Jiffy” method will 
often yield acceptable results that will generalize, but a significant amount of 
subsequent research points to the fallibility of this methodology.  The goal of this book 
is to help you apply the best evidence-based practices available today, in the 21st 
century.  Of course, we must constantly keep in mind that this is an exploratory 
technique, and as such, should be interpreted accordingly.  No EFA or PCA should 
ever be considered the last word in examination of a research instrument.  
Confirmatory methods are designed to much more clearly and rigorously test models 
we propose.   

 
Chapter 2 Summary 

 
There are two basic aspects to setting up the factor analysis that we attended to in 

this chapter:  extraction and rotation.  Many of us, even those with years of experience 
using EFA, remain unclear on some of the nuances and details of what exactly is 
happening “under the hood” when we perform this analysis.  Sticking with the default 
settings in most modern statistical packages will generally not lead to using best practices.  In 
SPSS, for example, the default extraction is PCA, and the default rotation is Varimax.  
Both are solid choices if you are a psychologist in the 1960s, but in the 21st century, we 
can do better.  

Many scholars have written on guidelines for extraction and rotation of factors, 
focusing on eigenvalues, scree plots, parallel analysis, replication, and so on.  It is my 
belief that the over-arching value has to be theoretical framework and an easily-
interpretable factor structure.  Absent this, which we use to make sense of data, none 
of the technical details seem important. 

Note that in this chapter I used two-dimensional plots to illustrate the example.  If 
an instrument is uni-dimensional no rotation is possible.  If an instrument is three- (or 
more) dimensional, then items are plotted in multidimensional space, and three (or 
more) axes are rotated within this multidimensional space with the same goals.   

 
!  
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Chapter 2 Exercises 
 

1. Download the engineering, SDQ, and/or GDS data from the book web site on 
http://jwosborne.com.  Replicate the results reported in the chapter.  Specifically: 
a. Examine extraction methods to see which one provides the best extraction.   
b. Explore application of MAP and parallel analysis for each of the data sets 

(SPSS and SAS syntax available on web site).   
c. Examine factor loading plot prior to rotation (if you examine the factor 

loading plot for the GDS it will be a three-dimensional plot that is more 
complex to interpret) and after trying various rotation strategies.  Which do 
you think provides the best clarification of the result? 

d. For the GDS data, examine a 3-factor solution to see if it is more sensible 
than the one-, five- or eight-factor solutions described in the chapter.  Do the 
factors make sense?  If so, describe what each latent variable is measuring. 

2. Download and perform EFA on data from an early version of one of my early 
studies on identification with academics (Osborne, 1997).27  This was intended to 
be a measure of identification with academics (the extent to which a student 
defines oneself as a student as part of self-concept).  There were supposed to be 
three scales, measured on a scale of 1 (disagree strongly) to 7 (agree strongly):   

a. centrality of academics to self (items 1, 4, 7, 9, 10, 11, 15, 16, 18, 19, 20, 21) 
b. feelings of discrimination (2, 3, 6) 
c. diagnosticity of academic outcomes (5, 8, 12, 13, 14, 17) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27 Note that this is not the final version of the scale that was used in the publication, which 
was a single-factor scale.  This is a pilot version of the three-factor version that was not 
published. 
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3 SAMPLE SIZE MATTERS 
 
 

Larger samples are better than smaller samples (all other things being equal) because 
larger samples tend to minimize the probability of errors, maximize the accuracy of 
population estimates, and increase the generalizability of the results.  Unfortunately, 
there are few sample size guidelines for researchers using EFA or PCA, and many of 
these have minimal empirical evidence (e.g., Guadagnoli & Velicer, 1988).   

This is problematic because statistical procedures that create optimized linear 
combinations of variables (e.g., multiple regression, canonical correlation, and EFA) 
tend to "overfit" the data.  This means that these procedures optimize the fit of the 
model to the given data; yet no sample is perfectly reflective of the population.  Thus, 
this overfitting can result in erroneous conclusions if models fit to one data set are 
applied to others.  In multiple regression this manifests itself as inflated R2 (shrinkage) 
and mis-estimated variable regression coefficients (Cohen, Cohen, West, & Aiken, 
2002, pp. 83-84).  In EFA this “overfitting” can result in erroneous conclusions in 
several ways, including the extraction of erroneous factors or mis-assignment of items 
to factors (e.g., Tabachnick & Fidell, 2001, pp., p. 588).    

 
Published sample size guidelines.   

 
In multiple regression texts some authors (e.g., Pedhazur, 1997, p. 207) suggest 

subject to variable ratios of 15:1 or 30:1 when generalization is critical.  But there are 
few explicit guidelines such as this for EFA (e.g., Baggaley, 1983).  Two different 
approaches have been taken:  suggesting a minimum total sample size, or examining the 
ratio of parameters such as subjects to variables, as in multiple regression. 

Comfrey and Lee (1992) suggest that “the adequacy of sample size might be 
evaluated very roughly on the following scale: 50 – very poor; 100 – poor; 200 – fair; 
300 – good; 500 – very good; 1000 or more – excellent” (p. 217).  Guadagnoli and 
Velicer (1988) review several studies that conclude that absolute minimum sample sizes, 
rather than subject to item ratios, are more relevant.  These studies range in their 
recommendations from an N of 50 (Barrett & Kline, 1981) to 400 (Aleamoni, 
1976).  In my mind some of these recommendations are ridiculous, as they could result 
in analyses estimating far more parameters than available subjects. 
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The case for ratios.  There are few scholars writing about multiple regression 
camp who would argue that total N is a superior guideline than the ratio of subjects to 
variables, yet authors focusing on EFA occasionally vehemently defend this 
position.  It is interesting precisely because the general goal for both analyses is 
similar:  to take individual variables and create optimally weighted linear composites 
that will generalize to other samples or to the population.  While the mathematics and 
procedures differ in the details, the essence and the pitfalls are the same.  Both EFA 
and multiple regression risk over-fitting of the estimates to the data (Bobko & 
Schemmer, 1984), both suffer from lack of generalizability particularly keenly when 
sample size is too small. 

Absolute sample sizes seem simplistic given the range of complexity factor analyses 
can exhibit-- each scale differs in the number of factors or components, the number of 
items on each factor, the magnitude of the item-factor correlations, and the correlation 
between factors, for example.  This has led some authors to focus on the ratio of 
subjects to items, or more recently, the ratio of subjects to parameters (as each item will 
have a loading for each factor or component extracted), as authors do with regression, 
rather than absolute sample size when discussing guidelines concerning EFA.   

Gorsuch (1983, p.332) and Hatcher (1994, p. 73) recommend a minimum subject to 
item ratio of at least 5:1 in EFA, but they also describe stringent guidelines for when 
this ratio is acceptable, and they both note that higher ratios are generally better. There 
is a widely-cited rule of thumb from Nunnally (1978, p. 421) that the subject to item 
ratio for exploratory factor analysis should be at least 10:1, but that recommendation 
was not supported by empirical research.  Authors such as Stevens (2002) have 
provided recommendations ranging from 5-20 participants per scale item, with 
Jöreskog and Sörbom (1996) encouraging at least 10 participants per parameter estimated.   

There is no one ratio that will work in all cases; the number of items per factor and 
communalities and item loading magnitudes can make any particular ratio overkill or 
hopelessly insufficient (MacCallum, Widaman, Preacher, & Hong, 2001).   

 
Are subject: item ratios an important predictor of good EFA analyses? 

 
Unfortunately, much of the literature that has attempted to address this issue, 

particularly the studies attempting to dismiss subject to item ratios, use flawed data.  I 
will purposely not cite studies here to protect the guilty, but consider it sufficient to say 
that many of these studies either tend to use highly restricted ranges of subject to item 
ratios or fail to adequately control for or vary other confounding variables (e.g., factor 
loadings, number of items per scale or per factor/component) or restricted range of 
N.  Some of these studies purporting to address subject to item ratio fail to actually test 
subject to item ratios in their analyses. 

Researchers seeking guidance concerning sufficient sample size in EFA are left 
between two entrenched camps-- those arguing for looking at total sample size and 
those looking at ratios.28  This is unfortunate, because both probably matter in some 
sense, and ignoring either one can have the same result: errors of inference.  Failure to 
have a representative sample of sufficient size results in unstable loadings (Cliff, 1970), 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
28 And of course, those who don’t consider sample size at all when planning their research. 
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random, non-replicable factors (Aleamoni, 1976; Humphreys, Ilgen, McGrath, & 
Montanelli, 1969), and lack of generalizability to the population (MacCallum, Widaman, 
Zhang, & Hong, 1999). 

 
 Sample size in practice.  If one were to take either set of guidelines (e.g, 10:1 

ratio or a minimum N of 400 - 500) as reasonable guidelines, a casual perusal of the 
published literature shows that a large portion of published studies come up 
short.  One can easily find articles reporting results from EFA or PCA based on 
samples with fewer subjects than items or parameters estimated that nevertheless draw 
substantive conclusions based on these questionable analyses. Many more have 
hopelessly insufficient samples by either guideline.  

One survey by Ford, MacCallum, and Tait (1986) examined common practice in 
factor analysis in industrial and organizational psychology during the ten year period of 
1974 - 1984. They found that out of 152 studies utilizing EFA or PCA, 27.3% had a 
subject to item ratio of less than 5:1 and 56% had a ratio of less than 10:1.  This 
matches the perception that readers of social science journals get, which is that often 
samples are too small for the analyses to be stable or generalizable. 

I and my colleagues published the results of a survey of current practices in the 
social sciences literature (Osborne et al., 2008). In this survey, we sampled from two 
years’ (2002, 2003) worth of articles archived in PsycINFO that both reported some 
form of EFA and listed both the number of subjects and the number of items analyzed 
(303 total articles surveyed).  We decided the best method for standardizing our sample 
size data was via subject to item ratio, since we needed a criterion for a reasonably 
direct comparison to our own data analysis. The results of this survey and are 
summarized in Table 3.1.  A large percentage of researchers report factor analyses using 
relatively small samples.  In a majority of the studies (62.9%) researchers performed 
analyses with subject to item ratios of 10:1 or less.  A surprisingly high proportion 
(almost one-sixth) reported factor analyses based on subject to item ratios of only 2:1 
or less (note that in this case there would be more parameters estimated than subjects if 
more than 1 factor is extracted). 

 
 Table 3.1:  
Current practice in factor analysis in 2002-03 Psychology journals 

 
Subject to item 

ratio % of studies Cumulative % 

2:1 or less  14.7%  14.7%  
> 2:1, ≤ 5:1  25.8%  40.5%  

> 5:1, ≤ 10:1  22.7%  63.2%  
> 10:1, ≤ 20:1  15.4%  78.6%  
> 20:1, ≤100:1  18.4%  97.0%  

> 100:1  3.0%  100.0%  
 
 
A more recent survey of EFA practices in Educational and Psychological Measurement, 

Journal of Educational Psychology, Personality and Individual Differences, and Psychological 
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Assessment by Henson and Roberts’ (2006) indicates a median sample size of 267 for 
reported EFAs, mean subject : item ratio of 11, and a median of 60 parameters (20 
items x 3 factors) estimated.  As you will see below, these are not comforting statistics.  
Given the stakes and the empirical evidence on the consequences of insufficient sample 
size, this is not exactly a desirable state of affairs. 

 
Size matters two different ways 

 
This section focuses on one particularly interesting and relatively well-executed 

study on this issue—that of Guadagnoli and Velicer (1988).  In this study, the authors 
used Monte Carlo methods to examine the effects of number of factors (3, 6, 9, 18), the 
number of variables (36, 72, 108, and 144), average item loadings (.40, .60, or .80), and 
number of subjects (Ns of 50, 100, 150, 200, 300, 500, and 1000) on the stability of 
factor patterns in EFA.  In these data each item loaded on only one factor, all items 
loaded equally on every factor, and each factor contained an equal number of 
variables.  Their study represents one of the few studies to manipulate all of these 
important aspects across a reasonable range of variation seen in the literature (with the 
two possible exceptions:  first, people often have less than 36 items in a scale, and 
second, the factor loading patterns are rarely as clear and homogenous as in these data). 

Guadagnoli and Velicer’s (1988) study was also interesting in that they used several 
different high-quality fit/agreement indices.  Equally interesting is the authors’ strong 
assertion that total sample size is critical, although they never actually operationalize 
subject to item ratio, nor test whether total N is a better predictor of important 
outcomes than subject to item ratio, although given their data it was possible to do 
so.  Thus, Costello and I (Osborne & Costello, 2004) re-analyzed their published data 
to examine whether total sample size, or sample size per parameter estimated (as is 
more reasonable) produced the most important indicators of quality analyses.   

 As previous research has reported, strong factor loadings led to better indicators 
(e.g., less discrepancy between population and sample results, and the odds of getting 
the correct component pattern increased dramatically).  Unfortunately, the magnitude 
of item loadings is not realistically within the control of the researcher.   

Contrary to prior studies, neither the absolute number of variables nor total sample 
size (N) had a significant unique effect when all other aspects of the analysis were 
considered.  Total N was significant in all analyses until ratios were taken into account, 
at which point they became non-significant.  The ratio of subjects to items had a 
significant and substantial influence on several outcomes, such as improved match 
between sample and population results, and the odds of getting a correct factor pattern 
matrix increased.   

 
Costello and Osborne (2005) analyses 

 
 While the data from Guadagnoli and Velicer (1988) are illuminating, one 

frustration is the unrealistically clean nature of the data.  Real data are messier than that, 
and we wanted to replicate and extend the findings from these artificial data with real 
data.  Costello and I (2005) used data similar to that used for Example 2 in the previous 
chapter-- students who completed Marsh's Self-Description Questionnaire (SDQ II; 
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Marsh, 1990) in the NELS 88 data set (Curtin, Ingels, Wu, & Heuer, 2002).29  
To explore the effects of sample size, we drew samples (with replacement between 

samplings), extracting twenty samples of sizes ranging from 2:1, 5:1, 10:1, and 20:1 
subject to item ratios (creating sample sizes of N = 26, 65, 130, and 260 respectively). 
The samples drawn from the population data were analyzed using maximum likelihood 
extraction with Direct Oblimin rotation. For each sample, the magnitude of the 
eigenvalues, the number of eigenvalues greater than 1.0, the factor loadings of the 
individual items, and the number of items incorrectly loading on a factor were 
recorded. In order to assess accuracy as a function of sample size, we computed 
average error in eigenvalues and average error in factor loadings. We also recorded 
aberrations such as occasions when a loading exceeds 1.0, and instances of failure for 
ML to converge on a solution after 250 iterations.   

Finally, a global assessment of the correctness or incorrectness of the factor 
structure was made. If a factor analysis for a particular sample produced three factors, 
and the items loaded on the correct factors (the same structure we explored in the 
previous chapter), that analysis was considered to have produced the correct factor 
structure (i.e., a researcher drawing that sample, and performing that analysis, would 
draw the correct conclusions regarding the underlying factor structure for those items).  
If a factor analysis produced an incorrect number of factors with eigenvalues greater 
than 1.0 (some produced up to 5), or if one or more items failed to load on the 
appropriate factor, that analysis was considered to have produced an incorrect factor 
structure (i.e., a researcher drawing that sample, and performing that analysis, would 
not draw the correct conclusions regarding the underlying factor structure).   

 
Sample size. In order to examine how sample size affected the likelihood of errors 

of inference regarding factor structure of this scale, an analysis of variance was 
performed, examining the number of samples producing correct factor structures as a 
function of the sample size.  The results of this analysis are presented in Table 3.2. As 
expected, larger samples tended to produce solutions that were more accurate.  Only 
10% of samples in the smallest (2:1) sample produced correct solutions (identical to the 
population parameters), while 70% in the largest (20:1) produced correct solutions. 
Further, the number of misclassified items was also significantly affected by sample 
size.  Almost two of thirteen items on average were misclassified on the wrong factor in 
the smallest samples, whereas just over one item in every two analyses were 
misclassified in the largest samples. Finally, two indicators of trouble—the presence of 
factor loadings greater than 1.0, and/or failure to converge, were both exclusively 
observed in the smaller samples, with almost one-third of analyses in the smallest 
sample size category failing to produce a solution.   

What is particularly illuminating is to go back to Table 3.1, noting that while the 
majority of recent papers have subject: item ratios in the lower ranges, in our analyses 
the error rates for these ranges are extraordinarily high.  Specifically, approximately 
two-thirds of published EFA studies have subject: item ratios of less than 10:1, while at 
the same time this ratio is associated with an error rate of approximately 40%.   

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
29 NELS 88 data and information is available from the IES web site:  
http://nces.ed.gov/surveys/nels88/  
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Table 3.2 
The effects of subject to item ratio on exploratory factor analysis 
 
 
Variable: 

 
2:1 

 
5:1 

 
10:1 

 
20:1 

 
F (3,76) 

% samples with correct 
structure 

10% 40% 60% 70% 13.64*** 
(.21) 

Average number of items  
misclassified on wrong 
factor 

1.93 1.20 0.70 0.60 9.25*** 
(.16) 

Average error in eigenvalues .41 .33 .20 .16 25.36*** 
(.33) 

Average error in factor 
loadings 

.15 .12 .09 .07 36.38*** 
(.43) 

% fail to converge after 250 
iterations 

30% 0% 0% 0% 8.14*** 
(.24) 

% with loadings >1  15% 20% 0% 0% 2.81* 
(.10) 

Note:  η2 reported in parentheses for significant effects, * p < .05, *** p < .0001 
 

Chapter 3 Summary:  Does sample size matter in EFA? 
 
The goal of this chapter was to summarize some of the scholarship surrounding the 

age-old question of “how large a sample is large enough?”  Recall from Chapter 2 that 
the SDQ had a very strong and clear factor structure, at least in a large sample.  
Unfortunately, these results suggest that EFA is an error-prone procedure even when 
the scale being analyzed has a strong factor structure, and even with large samples.  Our 
analyses demonstrate that at a 20:1 subject to item ratio there are error rates well above 
the field standard alpha = .05 level.   

This again reinforces the point that EFA is exploratory.  It should be used only for 
exploring data, not hypothesis or theory testing, nor is it suited to “validation” of 
instruments.  I have seen many cases where researchers used EFA when they should 
have used confirmatory factor analysis.  Once an instrument has been developed using 
EFA and other techniques, it is time to move to confirmatory factor analysis to answer 
questions such as “does an instrument have the same structure across certain 
population subgroups?”  Based on the data presented in this chapter, I think it is safe to 
conclude that researchers using large samples and making informed choices from the 
options available for data analysis are the ones most likely to accomplish their goal: to 
come to conclusions that will generalize beyond a particular sample to either another 
sample or to the population (or a population) of interest.  To do less is to arrive at 
conclusions that are unlikely to be of any use or interest beyond that sample and that 
analysis. 
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Chapter 3 Exercises 
!

1. Experiment with our Marsh SDQ data set (or another large data set you have 
available).  Using the results of the EFA from the entire sample, draw small 
random samples of varying subject: item ratios representing: 

a. 2:1 
b. 5:1 
c. 10:1 
d. 20:1 

Explore the effect of having an inappropriately small sample on the goodness 
of the solution.  Do the results of the small samples replicate the results from 
the large sample “population”? 

2. Review EFA analyses in top journals in your field.  What subject: item ratios 
do you find in these articles?  Are they sufficient, given the results from this 
chapter and your experiments in #1? 

 



51 

 
 
 
 
 
 

4 REPLICATION STATISTICS IN EFA 
 
 
 

“Factor analysis is really not concerned with exactness, only good approximation.” 
     -Nunnally & Bernstein, 1994, p. 509 
 
 
 
I have repeatedly recommended that readers and researchers to keep in mind the 

exploratory nature of EFA- a procedure that by nature is quirky, temperamental, 
valuable, and interesting.  As we discussed in Chapter 3, exploratory factor analysis 
takes advantage of all the information in the interrelationships between variables, 
whether those interrelationships are representative of the population of not.  In other 
words, EFA tends over-fit a model to the data such that when the same model is 
applied to a new sample, the model is rarely as good a fit.  When we as readers see a 
single EFA, often on an inadequate sample (as discussed in Chapter 3), we have no way 
of knowing whether the results reported are likely to generalize to a new sample or to 
the population.  But it seems as though this might be useful information.   

 
Why replication is important in EFA 

 
If you read enough articles reporting the results from factor analyses, too often you 

will find confirmatory language used regarding exploratory analyses.  We need to re-
emphasize in our discipline that EFA is not a mode for testing of hypotheses or 
confirming ideas (e.g., Briggs & Cheek, 1986; Floyd & Widaman, 1995), but rather for 
exploring the nature of scales and item inter-relationships.  EFA merely presents a 
solution based on the available data.   

These solutions are notoriously difficult to replicate, even under abnormally ideal 
circumstances (exceptionally clear factor structure, very large sample to parameter 
ratios, strong factor loadings, and high communalities).  As mentioned already, many 
point estimates and statistical analyses vary in how well they will generalize to other 
samples or populations (which is why we are more routinely asking for confidence 
intervals for point estimates).  But EFA seems particularly problematic in this area. 
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We find this troubling, and you should too.  Of course, we have no specific 
information about how replicable we should expect particular factor structures to be 
because direct tests of replicability are almost never published.  As Thompson (1999) 
and others note, replication is a key foundational principle in science, but we rarely find 
replication studies published.  It could be because journals refuse to publish them, or 
because researchers don’t perform them.  Either way, this is not an ideal situation. 

 
Let’s bring replication to EFA. 

 
Authors can (and, I argue, should) directly estimate the replicability of their 

exploratory factor analyses reported in scientific journals.  Authors (e.g., Thompson, 
2004) have introduced replicability procedures for EFA, similar to those procedures 
considered best practices in validation of prediction equations in multiple regression 
(Osborne, 2000, 2008a).  Although few authors perform the procedure, I hope you will 
see the intuitive appeal. 

Specifically, since the goal of EFA is usually to infer or explore the likely factor 
structure of an instrument when used within a particular population, it is important to 
know whether a factor structure within a particular data set is likely to be observed 
within another, similar data set.30  The lowest threshold for replicability should be 
replicating the same basic factor structure (same number of factors extracted, same 
items assigned to each factor) within a similar sample.  A more rigorous threshold for 
replicability would be seeing the same number of factors extracted, the same items 
assigned to the same factors, and the same range of magnitudes of factor loadings 
(within reason).  Stronger replicability gives researchers more confidence that a 
particular scale will behave as expected in data subsets or a new sample. 

The EFA replication procedures explored in this chapter will provide readers 
information about the extent to which their EFAs meet these reasonable and basic 
expectations for replicability.   

 
Replication or cross-validation in the literature.  In the clinical literature, the use 

of factor scores (weighted averages of items based on factor loadings) is a contentious 
issue as factor loadings (and as noted in Chapter 3, even factor structure) can vary 
dramatically across groups, thus leading identical patient or participant responses to 
vary considerably across samples where factor loadings differ .  Thus, for example, 
Floyd and Widaman (1995) suggest cross-validation procedures for factor scores, 
similar to those recommended for regression prediction equations.  This 
recommendation highlights the importance of knowing how well a solution within one 
sample – even a very large, representative sample—generalizes.   

Similarly, Briggs and Cheek (1986) argued almost three decades ago that one of the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30 As a field, we have traditionally referred to scales as “reliable” or “unidimensional”, but 
methodologists since Lord and Novick (1968) caution that instruments do not have reliability, 
only scores from particular samples do (see also Wilkinson and the Task Force on Statistical 
Inference, 1999).   Despite this, we should have a reasonable expectation for instruments to 
have the same basic structure across samples if we are to have any rational basis for the 
science of measurement within the social sciences. 
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critical concerns to personality psychologists (and personality measurement) should be 
replicability of factor structure, demonstrating replicability issues within a commonly 
used Self-Monitoring scale. 

One high-profile application of EFA replication techniques was an ambitious 
attempt by Costa and McRae (1997) to examine whether the commonly-held Five 
Factor Model of personality generalized across six different translations of their revised 
NEO personality inventory.  In this application, strong replication across cultures and 
languages including English, German, Portuguese, Hebrew, Chinese, Korean, and 
Japanese samples not only confirmed the goodness of the translations of the 
instrument, but the universality of the five factor model.   

What I would rather have seen, particularly in the case of Costa and McRae, was a 
multi-group confirmatory factor analysis, wherein they could have used inferential 
statistics to determine if various aspects of the factor model were significantly different 
across groups.  While interesting, their work is yet another example of application of 
exploratory techniques for confirmatory purposes. 

 
Procedural aspects of replicability analysis 

 
For those familiar with shrinkage analyses and cross-validation of prediction 

equations in multiple regression, these procedures and suggestions will hopefully feel 
familiar.  Replicability analyses in EFA (e.g., Thompson, 2004) can be conducted in two 
different ways:  via internal or external replication.  In internal replication, the researcher 
splits a single data set into two samples via random assignment.  In external replication, 
the researcher uses two separately gathered datasets.  In brief, replicability analysis 
occurs as follows:   

 
1. EFA is conducted on each sample by extracting a fixed number of factors 

using a chosen extraction method (i.e., maximum likelihood or PAF) and 
rotation method (i.e., Oblimin or Varimax).   

2. Standardized factor loadings are extracted from the appropriate results for 
each sample (e.g., pattern matrix if using an oblique rotation), creating a table 
listing each item’s loading on each factor within each sample. 

3. Factor loadings and structures are then compared.   
 
Unfortunately, references on this topic do not go into depth as to how researchers 

should perform this comparison and what the criteria is for strong vs. weak replication, 
and how to summarize or quantify the results of the replication.  Thus, my student at 
the time, David Fitzpatrick, and I developed some procedures that made sense to us 
(Osborne & Fitzpatrick, 2012).  Hopefully, they will be sensible to you as well. 

 
Quantifying Replicability in Exploratory Factor Analysis.   

 
Researchers have been proposing methods of quantifying and summarizing this sort 

of analysis since the early 1950s.  While invariance analysis in confirmatory factor 
analysis should be considered the gold standard for attempting to understand whether 
an instrument has the same factor structure across different groups (randomly 
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constituted or otherwise), for researchers wanting to explore replication in EFA across 
different groups, simple summary measures are to be preferred.  We should leave the 
rigorous, statistically complex comparisons to invariance analysis and CFA.    

One method of summarizing EFA replication analyses include a family of 
coefficients first presented by Kaiser, Hunka, and Bianchini (1971).  This “similarity 
coefficient” utilized the cosines between the unrotated and rotated axes, but had faulty 
assumptions (and therefore are invalid from a mathematical point of view;  see ten 
Berge (1996); see also Barrett  (1986)) and could yield similarity coefficients that 
indicate strong agreement when in fact there was little agreement.  Thus, they are 
inappropriate for this purpose.   

Tucker (1951) and Wrigley and Neuhaus (1955) have presented congruence 
coefficients that seem less problematic (ten Berge, 1986) but are also controversial (c.f., 
Barrett, 1986).  For example, Tucker’s (1951) Congruence Coefficient examines the 
correlations between factor loadings for all factor pairs extracted.  Yet as Barrett (1986) 
correctly points out, these types of correlations are insensitive to the magnitude of the 
factor loadings, merely reflecting the patterns. 31  For our purposes, which is to examine 
whether the factor structure and magnitude of the loadings are generally congruent, this 
insensitivity to magnitude of loadings is problematic.  We prefer a more granular 
analysis that examines (a) whether items are assigned to the same factors in both 
analyses, and (b) whether the individual item factor loadings are roughly equivalent in 
magnitude—the former being the basic threshold for successful replication, the latter 
being a more reasonable, stronger definition of replication.   

 
Assessing whether the basic factor structure replicated.  Regardless of whether 

the researcher is performing internal (a single sample, randomly split) or external (two 
independently gathered samples) replication, the researcher needs to perform the same 
EFA procedure on both, specifying the same number of factors to be extracted, the 
same extraction and rotation procedures, etc.  Researchers should then identify the 
strongest loading for each item (i.e., which factor does that item “load” on), and 
confirm that these are congruent across the two analyses.  For example, if item #1 has 
the strongest loading on Factor 1, and item #2 has the strongest loading on factor #2, 
that pattern should be in evidence in both analyses.  If any items fail this test, we would 
consider these analyses to fail to meet the most basic threshold of replicability:  
structural replicability.  There is therefore little reason to expect factor structure to 
replicate in any basic way in future samples.   

If there are a small percentage of items that seem volatile in this way, this replication 
analysis may provide important information—that these items might need revision or 
deletion.  Thus, replication can also serve important exploratory and developmental 
purposes.  If a large number of problematic items are observed, this represents an 
opportunity for the researcher to revise the scale substantially before releasing it into 
the literature, where this volatility might be problematic.   

 
Assessing strong replication in EFA.  If a scale passes the basic test of having 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
31 We could go on for many more pages summarizing various historical approaches to 
summarizing congruence.  For the sake of parsimony we will simply refer the readers to the 
above-cited resources that give thorough coverage of the issues. 
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items structurally assigned to same factors, the other important criterion for strong 
replication is confirming that the factor loadings are roughly equivalent in magnitude.  
We believe that because we are still in exploration mode, simple metrics serve our goal 
well.  We advocate for simply subtracting the two standardized (rotated) factor loadings 
for congruent items, and squaring the difference.  Squaring the difference has two 
benefits:  eliminating non-important negative and positive values (if one loading is .75 
and one is .70,  subtracting the first from the second produces a -0.05, and subtracting 
the second from the first produces a 0.05, yet the direction of the difference is 
unimportant—only the magnitude is important) and highlighting larger differences.  
Researchers can then quickly scan the squared differences, and either confirm that all 
are small and unimportant, or identify which items seem to have large differences 
across replication analyses.   

 
An example of replication analysis. 

 
For this example, we return to the scale I developed to measure identification with 

academics, and which I had you perform EFA on the pilot data from a community 
college sample (Osborne, 1997).  This example is from a different sample of 1908 
participants from several community colleges around the USA.  This published version 
of the SPQ is a scale of 13 questions designed to measure identification with academics 
(also called selective valuing or domain identification in the self-concept literature; (for 
a recent article on this concept, see Osborne & Jones, 2011).  The SPQ Scale questions 
relevant to this data set are listed below (measured on a scale of 1 (strongly disagree) to 
5 (strongly agree). * Indicates that item is reverse coded). 

 
Items in the School Perceptions Questionnaire (SPQ) Scale: 
 
1. Being a good student is an important part of who I am.  
2. I feel that the grades I get are an accurate reflection of my abilities. 
3. My grades do not tell me anything about my academic potential.* 
4. I don't really care what tests say about my intelligence.* 
5. School is satisfying to me because it gives me a sense of accomplishment. 
6. If the tests we take were fair, I would be doing much better in school.* 
7. I am often relieved if I just pass a course.* 
8. I often do my best work in school. 
9. School is very boring for me, and I'm not learning what I feel is important.* 
10. I put a great deal of myself into some things at school because they have 

special meaning or interest for me. 
11. I enjoy school because it gives me a chance to learn many interesting things. 
12. I feel like the things I do at school waste my time more than the things I do 

outside school.* 
13. No test will ever change my opinion of how smart I am.* 

 
To demonstrate this technique, we used internal replicability analysis, randomly splitting 

the original sample into two independent samples that were then analyzed separately 
using specific extraction and rotation guidelines based on prior analyses of the scale.  In 
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this example we report a two-factor solution (the factor structure suggested by previous 
research on the scale) as well as 3- and 4-factor solutions to demonstrate how mis-
specification of a factor model can quickly become evident through replication analysis.   

 
Two-factor replication analysis.  The basic overview of the replication is 

presented in Table 4.1.  As you can see in this table, replication of this scale fails to 
meet the initial criterion, structural replication.  Specifically, looking at the factor 
loadings, you can see Question 12 has the highest factor loading on Factor #2 in the 
first analysis and on Factor #1 in the second analysis.  This item is probably not a good 
one, due to the cross-loading, and would benefit from revision or deletion.  All other 
items have their strongest loading on congruent factors, so if we delete Question 12, we 
would say that the factor structure of the scale meets the basic level of replication.  The 
next step is to look at the squared differences in the factor loadings.  These range from 
0.0000 to 0.01, indicating that the largest difference between the standardized factor 
loadings is |.10|-- which is not bad.  We would suggest that once the squared 
differences achieve a magnitude of .04—indicating a difference of |.20| -- that is when 
a researcher may begin to consider factor loadings volatile.   

 
Table 4.1  
Two- factor SPQ replicability analysis, ML extraction, Oblimin rotation  

 
  
  
  

Sample 1 Sample 2 

Squared 
difference 

Comm 
Factor Loading 

Comm 
Factor Loading 

1 2 1 2 
SPQ 01 0.42 0.66  0.36 0.60  0.0036 
SPQ 02 0.29 0.51  0.29 0.51  0.0000 
SPQ 03 0.26  0.41 0.23  0.39 0.0004 
SPQ 04 0.33  0.52 0.36  0.57 0.0025 
SPQ 05 0.44 0.64  0.48 0.71  0.0049 
SPQ 06 0.28  0.54 0.19  0.44 0.0100 
SPQ 07 0.12  0.35 0.14  0.38 0.0009 
SPQ 08 0.26 0.52  0.31 0.58  0.0036 
SPQ 09 0.39 -0.44 0.36 0.39 -0.50  0.0036 
SPQ 10 0.28 0.54  0.27 0.54  0.0000 
SPQ 11 0.50 0.71  0.54 0.74  0.0009 
SPQ 12 0.35 -0.34 0.42 0.38 -0.45 0.31 fa i l ed  
SPQ 13 0.15  0.40 0.22  0.49 0.0081 

               
Eigen:  2.76 1.60  3.06 1.66  
Note:  Loadings less than 0.30 were suppressed to highlight pattern.  Pattern 
coefficients reported 

 
Three-factor replication analysis.  As mentioned above, this should replicate 

poorly as a 3-factor solution is not a strong solution for this scale.  As you can see in 
Table 4.2, problems are immediately obvious.  Even with such a large sample, three of 
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the thirteen items failed to replicate basic structure—in other words, they loaded on 
non-congruent factors.  Further, Question 8 is problematic because it is not clear what 
factor to assign it to in the first analysis (it loads 0.32 on both factors 1 and 3), whereas 
in the second analysis it loads strongly on Factor 1, so it could be argued that three of 
the thirteen items failed basic structural replication.  Beyond these three, the squared 
differences for the loadings were within reasonable range (0.0000-0.0225) except for 
Question 8, which had a 0.0529, reflecting a large change in factor loading from 0.32 to 
0. 55.  This would be a second red flag for this item, if the researcher decided to let the 
issue of structural replication pass. 

 
Table 4.2 
Three- factor SPQ replicability analysis, ML extraction, Oblimin rotation 

  
  
  

Sample 1 Sample 2   
Squared 

Difference 
Comm 

Factor Loadings 
Comm 

Factor Loadings 
1 2 3 1 2 3 

SPQ 01 0.45 0.43  0.39 0.39 0.57   .0196 
SPQ 02 0.57   0.70 0.47 0.45  0.41 fa i l ed  
SPQ 03 0.36  0.32 -0.45 0.36  0.45 -0.32 fa i l ed  
SPQ 04 0.34  0.47  0.35  0.57  .0100 
SPQ 05 0.45 0.60   0.47 0.69   .0081 
SPQ 06 0.30  0.55  0.18  0.43  .0144 
SPQ 07 0.15  0.39  0.14  0.36  .0009 
SPQ 08 0.27 0.32  0.32 0.34 0.55   .0529 
SPQ 09 0.39 -0.39 0.36  0.45 -0.54   .0225 
SPQ 10 0.31 0.57   0.27 0.54   .0009 
SPQ 11 0.60 0.76   0.56 0.76   .0000 
SPQ 12 0.38 -0.37 0.45  0.52 -0.51 0.32 0.31 fa i l ed  
SPQ 13 0.16  0.35  0.21  0.48  .0169 

                    
Eigen:  2.45 1.46 1.84  3.09 1.69 0.58   
Note:  Loadings less than 0.30 were suppressed to highlight pattern.  Pattern coefficients reported. 

 
Four-factor replication analysis.  I decided not to show the replication table for 

this analysis as the basic structural replication failed dramatically – and unsurprisingly—
with ten of the thirteen items loading on non-congruent factors.  Of the other three, 
one changes from 0.99 to -0.58, which represents a massive shift in magnitude, another 
shifts from -0.52 to 0.33, again a relatively large shift, and the final one shifts modestly 
from 0.44 to 0.37.  In almost every way, this analysis demonstrates everything that can 
go wrong with a replication analysis, and as such, does not require a full-page table to 
describe.  If you are curious about how bad this replication was, perform this 
replication as an exercise at the end of this chapter, and then hope you never see a 
replication table like it with your own data! 

 
Appropriately large samples make a difference.  In Table 4.3, I replicate the 

two-factor analysis presented in Table 4.1 but with two random samples of N=100 
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each, much smaller than the almost N=1000 samples in Table 4.1.  In this analysis, you 
can see two of the thirteen items loaded on non-concordant factors (interestingly, not 
the originally-troublesome Question 12), and two more items had troublingly large 
differences in factor loadings.  Question 1 loaded 0.77 in the first analysis and 0.56 in 
the second analysis.  As you can see from the communality estimates, that led to a large 
decrease in the communality for this item—and a squared difference of over 0.04.  
Additionally, Question 7 had a loading of 0.82 in the first analysis and 0.39 in the 
second analysis, again leading to a large change in communality and a squared 
difference of 0.1849.  Thus, even if a researcher deleted the two troublesome items, 
two others showed non-replication of magnitude of factor loading.  As previous 
authors have noted, EFA is a large-sample procedure, and replications with relatively 
small samples may lead to more volatility than one would see with larger samples.  With 
over 900 in each sample, this scale looks relatively replicable, but with only 100 in each 
sample there are some serious questions about replicability.   

 
Table 4.3  
Two- Factor SPQ Replicability Analysis, ML Extraction, Oblimin Rotation; Small Samples 
 

  
  

Sample 1  Sample 2 

Squared 
difference 

Comm 
Factor Load   

Comm 
Factor Load   

1 2 1 2 
SPQ 01 0.55 0.77  0.31 0.56  .0441 
SPQ 02 0.42 0.62  0.39 0.57  .0025 
SPQ 03 0.29  0.52 0.35  0.57 .0025 
SPQ 04 0.27 -0.34  0.35  0.58 fa i l ed  
SPQ 05 0.56 0.68  0.37 0.62  .0036 
SPQ 06 0.32  0.56 0.30  0.55 .0001 
SPQ 07 0.62  0.82 0.15  0.39 fa i l ed  
SPQ 08 0.34 0.61  0.33 0.56  .0025 
SPQ 09 0.40 -0.49  0.40  0.46 fa i l ed  
SPQ 10 0.21 0.46  0.32 0.58  .0144 
SPQ 11 0.46 0.64  0.49 0.71  .0049 
SPQ 12 0.50  0.46 0.24  0.34 .0144 
SPQ 13 0.19  0.40 0.35  0.60 .0400 

               
Eigen:  2.76 1.60  3.06 1.66  
Note:  Loadings less than 0.30 were suppressed to highlight pattern.  Pattern coefficients reported 
 
Examining the communalities, you can also easily see that these statistics seem to 

vary widely across the two samples, some almost double- or half- that of the 
comparable communality in the first analysis.  One, (SPQ 07) decreased from 0.62 to 
0.15, less than a quarter of the first communality.   

It is also useful to point that merely deleting items that are troublesome in this 
analysis may not be ideal.  A researcher performing the analyses in Table 4.3 first (with 
small samples) would delete two items that showed fine replicability in Table 4.1 (larger 
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samples), and would retain the one troublesome item.  Thus, researchers should ensure 
they have large, generalizable samples prior to performing any exploratory factor 
analysis. 
 
Chapter 4 Summary:  Is replication important in EFA? 

 
Although authors have been presenting methods for summarizing replication in 

EFA for half a century and more, most summarization techniques have been flawed 
and/or less informative than ideal.  In the 21st century, with CFA invariance analysis as 
the gold standard for assessing generalizability and replicability, replication within EFA 
has an important role to play—but a different role than half a century ago.  Today, 
replication in EFA is a starting point, -- it adds value to EFA analyses in that it helps 
indicate the extent to which these models are likely to generalize to the next data set, 
and also in helping to further identify volatile or problematic items.  This information is 
potentially helpful in the process of developing and validating an instrument, as well as 
for potential users of an instrument that has yet to undergo CFA invariance analysis.   

However, there are often barriers to replication analysis.  Foremost amongst these 
barriers is the lack of adequate sample size in most EFAs reported in the literature.  
The first priority for researchers should be adequate samples.  The second should be 
estimation of the replicability (or stability) of the model presented.  In the next chapter 
I review bootstrap analysis as a potential solution to this issue, as it allows use of a 
single, appropriately large sample to estimate the potential volatility of a scale. 

 
 

!  
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Chapter 4 Exercises  
 
1. Download the SPQ data from the book website and split the file into two 

randomly chosen samples.  Repeat the EFA and replication as performed in 
the chapter to see if you get similar results.   

a. After performing a basic replication with the full sample, randomly 
select two smaller samples from the large sample and see how that 
influences replicability of EFA results. 

b. As recommended above, require four factors be extracted and then 
perform a replication to see how amazingly poor that analysis went.   

2. Return to the engineering data from Chapter 2.  Test whether those EFA 
results replicate by randomly splitting the file into two samples.  With an 
original N = 372, the samples will be smaller, and thus more volatile.  Will the 
strong factor structure previously observed be maintained in two smaller 
samples? 

3. Select two small random samples from the Marsh SDQ data (N=100 each).  
Replicate the EFA from Chapter 2 (ML extraction, Promax rotation, extracting 
3 factors) and compare your results to those from the very large sample 
reported in that previous chapter.  Then compare the results from the two 
samples to each other as we did in these replication examples.  Does the factor 
structure replicate when using such a small sample?   

a. Once you have done that, select two large samples from the Marsh 
data (N=1000 each) and see if those two samples replicate better. 
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5 BOOTSTRAP APPLICATIONS IN EFA 
 
 

Resampling analyses are relatively new to me (I first used them in preparing my last 
book on logistic regression) but I have been impressed by the possibilities of bootstrap 
in particular to answer questions that we never could ask before.  For example, given a 
particular sample, we can ask how likely it is that our findings will replicate, or how 
broad our confidence intervals are around a particular statistic.  This is new, and relies 
entirely upon high powered computers that currently sit on our desks.  It is a limited 
methodology, in that it cannot do everything that many people think it can, but it might 
have a place in helping us understand how strong an EFA analysis really is, particularly 
if you do not want to split a sample in half to do the type of replication analysis 
performed in the previous chapter. 

 
Some background on resampling 

 
Wilkinson and APA (1999) crafted a vision of modern quantitative methodology 

that moved away from (or complimented) our historical reliance upon null hypothesis 
statistical testing (NHST) to a more nuanced approach of quantitative reasoning that 
involved effect sizes, confidence intervals, and of course, confidence intervals for effect 
sizes.  Leading thinkers in quantitative methods (to name just a few:  Bruce Thompson 
Geoff Cumming, and Fiona Fidler) have been attempting to move the field of 
quantitative methods forward to more nuanced thinking about effect sizes and 
confidence intervals.  Peter Killeen made a recent suggestion that we could calculate the 
probability that a finding would replicate in order to inform readers of the potential 
utility of a given set of results.  Jacob Cohen’s long crusade to bring power into 
consideration is in a similar vein of wanting to have researchers be more thoughtful and 
informed about their data.   

However, while effect sizes and confidence intervals and even power has been 
increasingly evident in some literatures it is beyond the grasp of most researchers to 
produce confidence intervals for commonly-reported and important statistics like effect 
sizes (e.g., eta-squared), reliability estimates (e.g., Cronbach’s alpha), or widely reported 
exploratory techniques like exploratory factor analysis.   
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It is not routine for researchers to report any confidence intervals relating to EFA, 
and indeed, it is not routine for replication to be considered much at all.  However, I 
hope the appeal of this is intuitive.  If I perform an EFA and then calculate 95% 
confidence intervals for the relevant statistics, it helps a reader understand how precise 
my estimates might be.  Very broad CIs might signal to the reader that the EFA is not 
very precise, and therefore, not terribly informative.  Narrow CIs, on the other hand, 
might signal to the reader that the analysis is worth considering seriously.  It does not 
necessarily mean that the EFA reflects the population parameters exactly, but it is more 
likely to be of use than one with low precision (broad CIs).  This type of analysis, while 
not routine, is simple through bootstrap resampling methodologies (DiCiccio & Efron, 
1996; Efron & Tibshirani, 1994).  Thompson (1993) argued that bootstrap analyses can 
provide inferences about the potential replicability of a result as well as empirical 
confidence intervals that can also provide alternative and complimentary information 
about whether an effect is significant (i.e., different from 0, for example).   

A central hallmark of science is replication, the stability or replicability of an effect is 
also important (Killeen, 2008; Thompson, 2002; Yu, 2003).  While not perfect, 
resampling methods can inform the researcher as to the relative stability or instability 
(i.e., replicability or non-replicability) of an effect or result. 

 
What is bootstrap resampling analysis? 

 
Bootstrap resampling is a methodology that is increasingly popular now that 

desktop computers can perform thousands of analyses per second, even with large 
samples.  There are many good references on bootstrap and other resampling 
techniques.  The brief overview here is not meant to be exhaustive, but rather to give 
enough information for you to understand the rest of the sample.  

The origin of bootstrap analysis was seeking a solution for researchers with 
inadequate samples.  Bootstrap resampling takes an existing sample (say, of 50 
participants) and randomly selects (with replacement) a certain number of related 
samples of N=50 based on those original 50 subjects.32  The procedure is called 
“resampling” because it treats the original sample as fodder for an unlimited number of 
new samples.  By resampling with replacement, we can get 3 copies of the 14th person 
in the sample, none of the 15th, and one copy of the 16th person.  Perhaps in the next 
sample there will be one copy of both the 14th and 15th persons, but none of the 16th.  
Thus, the samples are related, in that they all derive from the same master sample, but 
they are not exactly the same as each individual can be present in varying degrees or not 
in each resampling.  

The goal of this resampling methodology is to provide a large number of 
permutations of the sample, and then to analyze all the samples and provide summary 
statistics (average effect, 95% confidence intervals, etc.) for those effects.  As 
Thompson (2004) argued, bootstrap resampling analysis can be conceptualized as one 
method for estimating the sampling distribution of the relevant statistic from the 
population.  Most scholars familiar with bootstrap resampling will agree with what I 
have said thus far, but likely will stop agreeing at this point.  There are a wide number 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
32 As far as I know, bootstrap resampling always uses the same sample size as the original 
sample 
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of opinions on what bootstrap resampling is good for, and what it is not good for.  
You will get my opinion on that in this chapter (hopefully with sufficient empirical 
evidence to make my case) but be aware that there are strong passions around this issue 
(much like principal components analysis…). 

 
What can bootstrap resampling do, and what should it not be used for? 

 
Many early adopters of the procedure saw bootstrap analysis as a panacea for small 

or biased samples, reasoning that with enough resampled data sets, the bias and small 
sample would be compensated for, and would provide a better estimate of the 
population parameters than the original sample by itself.  My experiments with 
bootstrapping of small, biased samples indicates that the samples tend not to be self-
correcting.  In other words, bootstrapping a small, biased sample tends to lead to 
promulgating that bias.  Large biased samples are probably in the same category.  In my 
previous book on logistic regression, I tested some of these assertions, finding that 
fatally biased samples do not tend to do anything other than produce biased results, 
even with many thousands of bootstrap analyses.   

Bootstrap can also not do much to help small samples.  To be sure, you can 
endlessly resample the same small sample, but there is limited information in the small 
sample.  One cannot build something out of nothing.  The best one can do with a small 
sample is to bootstrap some confidence intervals and evaluate just how imprecise the 
parameter estimates are.   

Bootstrap analyses can help identify when there are inappropriately influential data 
points in a sample.  If one does thousands of resampling analyses, and they are 
distributed with a skew, the long tail is likely due to the influence of a few cases.  
However, there are easier ways to detect inappropriately influential data points, and in 
those bootstrap explorations I did with logistic regression, I was able to show that 
cleaning the data prior to the bootstrap analysis often yielded much better results.  Thus, if 
you have a sample you are intending to bootstrap, it is best to do some preliminary data 
cleaning first. 

Thus, bootstrap can be a valuable tool in the statistician’s toolbox, but it is not a 
panacea for all our ills.  It cannot fix a fatally flawed sample, it cannot compensate for 
an inappropriately small sample, and it is not best used to determine if there are 
influential cases in the data.  But given a reasonable sample, bootstrap resampling can 
do some interesting things.  It can provide confidence intervals for things like effect 
sizes that we really cannot get any other way.  It can provide information on the 
precision of the results, and it can give some information in a single sample that is 
helpful in determining whether a solution will replicate or not.  In other words, if one 
performs an appropriate bootstrap analysis of a reasonable sample, and one sees 
relatively narrow confidence intervals, one can say that the solution arrived at is more 
precise than if one has very broad confidence intervals.  Further, if those confidence 
intervals are narrow and precise, it is likely that a similar sample will produce similar 
results.  If the confidence intervals are wide and sloppy, it is not likely that a similar 
sample would produce similar results.   
 
!  
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A simple bootstrap example in ANOVA.   
 
Let us take a simple (non-EFA) digression to explore an example from a 

collaboration with a colleague Philip Gabel.  Dr. Gabel contacted me exploring a new 
physical therapy methodology for rehabilitating knee injuries, specifically whether this 
new technique provided more exercising of the quadriceps, the muscles in the thigh 
that help keep the knee in alignment.33  Gathering data is time-consuming and onerous, 
so he sent me a small pilot sample of 21 patients to see if this line of research was 
worth pursuing (and might ultimately lead him to a publication).  Obviously a sample of 
21 is not large, and when there are four different techniques being compared to this 
fifth technique (called slacklining; tested in a repeated measures format) is interesting 
but not large enough (in my opinion) to run to a top tier journal with.  So my task was 
to assess whether there is promise in the data.  To do this, I performed an initial 
repeated measures ANOVA to see if his hunch was correct.  The first four techniques 
are standard physical therapy techniques, and the fifth is the experimental slacklining 
technique.  The dependent variable is an electrical measure of muscle activation, EMG.  
As you can see in Table 5.1, below, not only did the fifth condition stand out as 
substantially different, the 95% confidence intervals for this group barely overlapped 
with the other four.  This is a good indicator that there is a strong effect here.   

 
Table 5.1 
EMG measure in knee rehabilitation patients across five activities 

 
EMG Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 
1 82.714 14.935 51.561 113.868 
2 91.143 15.915 57.945 124.341 
3 97.095 13.464 69.010 125.181 
4 90.571 13.934 61.506 119.637 
5 141.381 17.531 104.812 177.950 

 
To answer my colleague’s question, I performed bootstrap analysis with B=2000 

sample replications, each of N=21.  The central questions were: (a) what is the 
expected range of effect sizes and their expected stability, and (b) what percent of 
replicate samples produce significant effects.  Because of the small size, I report 
Greenhouse-Geisser corrected statistics rather than assuming homogeneity of variance 
across conditions.  Using a macro in SPSS, which I will share with you later on (and 
make available on the web site), I performed these 2000 analyses of the resampled data, 
and then summarized the bootstrap analyses for some key statistics:  F of the effect, p 
value, and partial eta-squared (an indicator of percent variance accounted for, which I 
often use as an effect size in ANOVA analyses).  Of course, it is not easy or routine to 
get 95% confidence intervals for F, p values, or eta-squared statistics.  Using the macro 
in SPSS, I could have retrieved almost any statistic output in the repeated measures 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
33 I just vastly exceeded my knowledge of knee anatomy, so forgive me if I mis-stated 
something.  The gist of the thing is most important.  
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procedure.34 
 
Table 5.2 
Summary of bootstrap analysis of EMG data. 

 
 F  p  < Significant 

percent 
Partial 
Eta-

Squared 
Mean 13.78 .00054 99.8% .40 
Median 13.03 .00002 100.0 .39 
Std. Deviation 5.12 .0033 3.9% .08 
Minimum 2.44 .000 0.0% .11 
Maximum 56.99 .096 100.0% .74 
2.5% 5.95 .00 100.0% .23 
97.5% 25.48 .0043 100.0% .56 

 
As Table 5.2 shows, the average F from 2000 samples was 13.78, and 95% of the 

samples produced Fs ranging from 5.95 to over 25.  Not surprisingly, the 95% 
confidence interval for p was 0.00001 to 0.0043, all well below 0.05.  The third column, 
significant, was recoded into 0 if p was .05 or greater and 1 if p fell below the magical 
.05 level.  As you can see, 99.85% of the 2000 samples were significant at p < .05, 
leaving a strong expectation that future analyses would replicate a significant result.  
Finally, the effect size (eta squared) averaged 0.396, with a 95%CI of 0.229 to 0.560.  
Since this 95% CI for effect size does not come close to zero (in fact, the lowest of the 
2000 estimates was 0.11, not an insignificant effect size), there is good reason to expect 
that a similar sample would produce similar results.  Further, the precision of the 
estimates was strong.  For example, the standard deviation of the sampling distribution 
for eta-squared is 0.084.  

So why are we talking ANOVA in a book on factor analysis?  This is a clear 
example of the power of bootstrapping.  Based on these analyses, I could make a 
reasonable expectation that my colleague was on the right track, that another larger 
sample was likely to be significant at p < .05,  and that there was likely to be a rather 
impressive effect size.  The estimate for eta-squared was an average of 0.39, and 
although the estimate was not precise (i.e., it had a large 95% CI around it), the 
expected range was reasonable enough to predict replication of a worthwhile effect 
size.  Had the results of the bootstrap been different (many non-significant effects, the 
95% CI for eta squared including 0 or very small effects) then we would not have had 
confidence of replication (or finding similar results in an expanded sample). 

 
Did bootstrap analyses inform potential replication?  Ultimately, my colleague 

collected 52 cases in his study, and it is currently in press.  I went back and examined 
only the 34 cases that he gathered after the initial bootstrap analysis to see if those 
projections were useful.  The F in the new sample was 13.15, p <. 0001, with an eta-

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
34 If you pay for the bootstrap module in SPSS, it is even easier.  I believe SAS routinely comes with 
bootstrap capabilities, and R seems to have excellent capabilities as well in this area.  
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squared of 0.32.  Not only were the statistics for the new sample well within the 95% 
confidence intervals, they were close to the median or mean of the bootstrapped 
samples.  Thus, at least in this case, the bootstrap analysis of a small sample was 
informative about the next group of subjects and the replicability of the initial analysis.   
!

Confidence intervals for statistics in EFA 
 
Let us turn back to the task at hand.  We can bootstrap an exploratory factor 

analysis35 to obtain similar information to the replication analysis in the previous 
chapter—if we are strategic about it.  EFA does not have significance tests nor easily 
interpretable effect sizes, but there are many things we can bootstrap in order to get 
some information about potential robustness of the results.  However, be forewarned 
that EFA is a complex procedure with lots of effects.  Unlike ANOVA, which had only 
a few we bootstrapped, EFA can have many communalities, eigenvalues, and factor 
loadings.  So while it does not take a terribly long time with modern computers (it took 
my computer about 5 minutes to run 2000 bootstrap analyses and save them to a data 
file—the process that takes the longest is examining all the different parameters one 
wants to examine.  The time to perform analyses seems to expand dramatically moving 
to 5000 analyses). 

I will add the SPSS syntax I use to bootstrap at the end of the chapter and also 
make it available via the book’s web site.  It is a bit complex, but there are only a few 
aspects of the macro one needs to adjust, and you should be able to use these macros 
right out of the box with only slight modification, which I will try to note clearly. Of 
course, if you purchase the SPSS bootstrap module, that makes life easier, and SAS and 
R also have incorporated easier ways to do bootstrapping automatically.  But I have 
been an SPSS user for many years, and derive some satisfaction out of having this level 
of granular control over the process. 

I will also make the bootstrap analyses data sets available so you can replicate the 
results and play with the bootstrap findings without performing the actual 
bootstrapping if you like.  Remember, if you start from scratch and perform bootstrap 
analysis, it is likely your results will be similar to mine, but they might not be exactly 
identical.  If you play with my data sets, you should see similar results.  

 
Bootstrap example 1:  Engineering data 

 
The analyses in Chapter 2 indicated that this data had two small, clear factors. The 

sample was relatively small, however, so one question we could ask is whether it is 
likely the two-factor model would replicate.  With such a small sample, I would be 
hesitant to split it and perform replication analyses as in Chapter 4.  Thus, it is possible 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
35 After writing this section I discovered that Bruce Thompson has addressed many of these ideas and 
issues in his 2004 book on exploratory and confirmatory factor analysis (Chapter 9).  We should not be 
surprised, as Dr. Thompson has routinely been far ahead of the field.  It is possible this chapter gave 
me some of the ideas for this chapter, although I do not remember reading it prior to writing.  Where 
there is confusion as to whether Thompson should get credit or I should get credit, please assign it to 
Thompson. 
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bootstrap analysis will be informative.  Other questions could involve estimation of 
reasonable ranges of factor loadings and communalities for each of the variables.  Let’s 
take things one step at a time.  To perform this bootstrap analysis, I used the same 
settings as in Chapter 2 with respect to extraction and rotation. 

 
Eigenvalues for first three factors initially extracted.  We expect two factors to 

be extracted (by eigenvalue > 1 criteria, which is simplest in this analysis).  Thus, if we 
examine the first three extracted, and examine whether any of the bootstrap analyses 
produced a third factor with initial eigenvalue greater than 1, we can explore the 
likelihood that this basic issue would replicate in a similar sample.  A histogram for the 
5000 eigenvalues extracted first is below in Figure 5.1, so you can see how bootstrap 
analyses work.   

 
Figure!5.1:!!Distribution!of!first!eigenvalue!extracted!over!5000!bootstrap!
analyses.!!Mean!is!7.65,!ranging!from!6.47!to!9.03,!with!a!95%!CI!of!6.93,!8.40.!

Table 5.3a 
Bootstrap results for first three eigenvalues extracted 
 

 Mean 
Eigen 

Std. 
Dev 

95% CI Mean % 
variance 

Std. 
Dev 

95% CI 

Factor 1 7.65 0.38 6.93, 8.40 54.65% 2.72 49.48, 59.99 
Factor 2 3.50 0.27 2.97, 4.03 25.02% 1.93 21.20, 28.79 
Factor 3 0.49 0.05 0.39, 0.60 3.49% 0.39 2.78, 4.27 
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The first three eigenvalues (presented in Table 5.3a) are congruent with our initial 
analysis in Chapter 2.  Furthermore, the third eigenvalue does not rise close to 1.0 in 
any bootstrapped data set.  The two-factor solution is therefore strongly supported and 
supports a reasonable expectation that this factor structure would be found in another 
similar data set.   
 

Communality results.  In Table 5.3b I present the bootstrap statistics for 
communalities and factor loadings.  The communalities are relatively strong, 
consistently, ranging from 0.68 to 0.82, with 95% confidence intervals that are 
reasonably narrow also.  This leads us to expect that another replication in a similar 
sample would generally extract relatively strong communalities. 

 
Table 5.3b 
Bootstrap results for communalities and factor loadings 

 

 Communalities 
Bootstrapped Pattern 

Coefficients 
Original Pattern 

Coefficients 
 Bootstr. Orig. Factor 1 Factor 2 Factor 1 Factor 2 

EngProb1 
.75 

(.69, .81) .742 .84 
(.79, .89) 

.02 
(.00, .06) .859 -.016 

EngProb2 .71 
(.64, .77) .695 .83 

(.76, .89) 
.07 

(.01, .13) .841 -.071 

EngProb3 .76 
(.70, .82) .752 .91 

(.87, .94) 
.03 

(.00, .07) .879 -.008 

EngProb4 .80 
(.74, .85) .792 .91 

(.87, .94) 
.03 

(.00, .07) .909 -.025 

EngProb5 .80 
(.74, .85) .790 .89 

(.85, .93) 
.03 

(.00, .07) .886 .021 

EngProb6 
.78 

(.71, .84) .766 .87 
(.82, .91) 

.03 
(.00, .07) .869 .020 

EngProb7 
.80 

(.74, .85) .786 .87 
(.82, .91) 

.03 
(.00, .09) .868 .033 

EngProb8 .68 
(.62, .75) .666 .79 

(.73, .84) 
.07 

(.01, .14) .790 .072 

INTeng1 .70 
(.59, .77) .674 .05 

(.00, .12) 
.79 

(.71, .87) .042 .801 

INTeng2 .82 
(.74, .88) .802 .03 

(.00, .07) 
.92 

(.87, .96) -.023 .921 

INTeng3 .82 
(.77, .87) .816 .02 

(.00, .05) 
.92 

(.89, .95) -.014 .922 

INTeng4 
.82 

(.70, .90) .806 .02 
(.00, .05) 

.91 
(.83, .97) -.001 .904 

INTeng5 
.79 

(.72, .85) .781 .02 
(.00, .06) 

.88 
(.83, .92) -.007 .897 

INTeng6 .75 
(.67, .82) .739 .02 

(.00, .06) 
.86 

(.80, .91) .009 .864 

Note:&&95%&CIs&in&parentheses.&&Factor&loadings&highlighted&are&those&expected&to&load&on&the&
factor.&
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Caution about bootstrapping factor loadings:  The order in which the factors 
are extracted can be arbitrary.  In some of the bootstrapped analyses, interest was 
extracted as the first factor, and in some, the problem solving factor was extracted first.  
This can present a problem for bootstrapping as the data file does not know which was 
extracted first.  Thus, in my syntax file I have an algorithm to identify cases where 
problem solving was extracted second and swapped factor loadings to ensure the 
results of the bootstrap are appropriate. Another complication is that factor loadings 
can be negative or positive, generally arbitrarily,36 and thus I convert all values to 
absolute values to eliminate the possibility of one data set having a loading of -0.88 and 
another with +0.88, which means the same, generally but does not do good things for 
bootstrap analysis. In my data set, @1 and @2 are the variable names for the factor 
loadings for the first and second factors, respectively, and I compare the absolute value 
of the loadings on factor 1 and factor 2.37   

 
String Factor (A2). 
Compute factor= substr(var1, 1, 2). 
execute. 
compute F1=abs(@1). 
compute F2=abs(@2). 
execute. 
do if (Factor = "En"). 
if (abs(@2)>abs(@1)) F1=abs(@2) . 
if (abs(@2)>abs(@1)) F2=abs(@1) . 
end if. 
execute. 
do if (factor = "IN"). 
if (abs(@1)>abs(@2)) F1=abs(@2) . 
if (abs(@1)>abs(@2)) F2=abs(@1) . 
end if. 
execute. 

 
Factor loading results.  Once this is done, we can analyze the data to get 95%CIs 

for the factor loadings, which are also presented in Table 5.3b.  As you can see, the 
loadings are strong on the factors they should load on (e.g., for the first factor the 
average bootstrapped loadings ranged from 0.79 to 0.91, with relatively narrow 
confidence intervals around each loading).  Again, these results leading to conclusion 
that a replication of this original EFA analysis would be likely to produce a strong, clear 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
36 I would recommend recoding all variables to be coded positively before analysis to 
minimize issues like this.  In some EFA analyses, factors can be arbitrarily flipped in space, 
leaving all loadings to be negative, but without substantively changing the meaning of the 
factor (if all loadings are negative or positive, but the same general magnitude, that shouldn’t 
change the meaning as it is a constant transform).  .   
37 There are further complexities to this process that leave it difficult when less clear factor 
structures are being extracted.  If one is not careful, through this process you can artificially 
move the highest loadings to where you want them regardless of whether the analysis meant 
for them to be there.  Be careful when manipulating factor loadings in this way! 
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factor structure similar to what we saw in Chapter 2.  
 
Bootstrap example 2:  Marsh SDQ data 

 
In this example we will not merely replicate the strong, clear results presented in 

Chapter 2.  Instead, we will assert that analysis of approximately 16,000 students 
represents the “gold standard” or population factor structure, and we will extract a 
small sample and see if bootstrapping a relatively small sample can accurately lead us to 
infer the “population” parameters with reasonable accuracy.  A random sample 300 
cases was selected and then subjected to bootstrap resampling and analysis (with 
identical extraction/rotation methods as in Chapter 2).   

Imagining this small sample was your only information about this scale, I started by 
performing an EFA on this sample only.  Three factors exceeded an eigenvalue of 1.0, 
which was corroborated by MAP criteria analysis, which produced a recommendation 
to extract three factors.  Thus, if this were my only sample, theory, Kaiser criterion, and 
MAP criteria would lead me to extract three factors (the factor loadings for this 
analysis, in addition to the analysis of the entire sample of over 15,000 participants is 
presented below in Table 5.4b).   

 
Bootstrap analysis of a small sample.  The bootstrap analyses extracted three 

factors.  First we will examine the basics of whether the known factor structure is likely 
to be replicated with such a small sample. As you can see from Table 5.4a, the 
“population” factor structure is largely replicated by bootstrapping this relatively small 
sample. 

 
Table 5.4a 
Bootstrap results for first four eigenvalues extracted Marsh SDQ 
 
 Mean 

eigenvalue 
Stnd. 
Dev. 

95% CI Mean % 
variance 

Stnd. 
Dev. 

95% CI 

Factor 1 4.24 (4.08) 0.25 3.76, 4.77 32.63 1.96 28.89, 36.68 
Factor 2 2.64 (2.56) 0.16 2.31, 2.96 20.29 1.27 17.79, 22.77 
Factor 3 2.11 (2.21) 0.16 1.80, 2.43 16.26 1.21 13.83, 18.66 

Note:  Actual eigenvalues from full “population” in parentheses.   
 

With three factors, the machinations to move the factors to the right column 
becomes more complex because there are more ways in which the factors can be re-
ordered.  There are also possibilities with less well-structured factors that one could 
have high cross-loadings that could get erroneously moved into a column it should not 
get moved into.  Thus, if you are going to be engaging in this type of analysis, you must 
be very cautious and thorough in examining your data to ensure you are not mis-
aligning the factor loadings, and inappropriately setting the analysis up to look more 
favorable than it should be.  At the end of the chapter is an example of the type of 
syntax I used to move the absolute values around to align them. 

Once the factor loadings were converted to absolute values and aligned consistently, 
5000 bootstrap replications let to estimates that were not far off of the full 
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“population” factor loadings.  In this case, at least, bootstrap analyses provides a good 
estimate of the population parameters. 

 
Table 5.4b 
Bootstrap results for factor loadings 

 

Var :  

Bootstrapped  
“small sample” 
Factor Loadings 

“Population” 
Factor Loadings 

Sample (N=300) 
Factor Loadings 

1 2 3 1 2 3 1 2 3 

Math1 .91 
(.82-.97) 

.04 
(.00-.10) 

.03 
(.00-.08) .901 -.040 -.037 .916 -.052 -.006 

Math2 .87 
(.80-.94) 

.04 
(.00-.08) 

.02 
(.00-.07) .863 .008 .012 .875 .001 -.034 

Math3 .87 
(.82-.92) 

.04 
(.00-.09) 

.02 
(.00-.08) .881 -.001 .023 .875 .038 -.010 

Math4 .51 
(.38-.63) 

.09 
(.01-.18) 

.06 
(.00-.17) -.601 -.049 .021 -.508 -.030 -.083 

Par1 .09 
(.01-.18) 

.75 
(.63-.84) 

.08 
(.00-.17) .002 .718 .023 .055 .753 -.109 

Par2 .06 
(.00-.13) 

.63 
(.50-.76) 

.03 
(.00-.11) .060 -.680 .052 .043 -.626 -.003 

Par3 .05 
(.00-.12) 

.87 
(.76-.95) 

.04 
(.00-.12) .028 .827 -.002 -.034 .873 .049 

Par4 .09 
(.01-.21) 

.59 
(.46-.73) 

.07 
(.00-.20) -.036 -.583 -.100 .023 -.592 -.113 

Par5 .07 
(.01-.16) 

.74 
(.63-.83) 

.04 
(.00-.11) .018 .749 -.030 .064 .742 -.023 

Eng1 .04 
(.00-.11) 

.05 
(.00-.11) 

.77 
(.69-.85) -.005 .031 .779 .033 .035 .770 

Eng2 .05 
(.00-.14) 

.06 
(.00-.15) 

.86 
(.80-.91) -.016 -.082 .842 .025 -.082 .859 

Eng3 .03 
(.00-.10) 

.05 
(.00-.11) 

.85 
(.78-.91) .052 -.017 .845 .052 .000 .855 

Eng4 .08 
(.01-.18) 

.09 
(.01-.18) 

.67 
(.56-.77) .060 -.102 -.609 .088 -.073 -.675 

Note:  95% CIs in parentheses.  Factor loadings highlighted are those expected to load on the 
factor.  Pattern coefficients reported. 

 
Even when the factor loadings from the bootstrap analysis are a bit off (e.g., Math4, 
English4), the population parameters are within the 95%CIs, reinforcing the fact that a 
reasonable sample, appropriately bootstrapped, can be helpful in understanding the 
likely values of the population parameters.  Not only are the point estimates on par 
with what we would expect, but the precision seems to be strong also- in other words, 
the confidence intervals are relatively narrow for most of the effects being examined. 
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Chapter 5 Summary 
 
Replication is an important principle of science.  However, replication for 

exploratory factor analysis is tricky.  Even with very large samples, the factor structure 
and parameter estimates are often unstable or inaccurate reflections of the population.  
In chapter 4 we explored a more classic replication methodology of splitting an existing 
sample (internal replication) or gathering two independent samples (external 
replication).  However, given what we know of EFA and sample size, it might be 
simple to argue that it is always better to have a larger sample than a smaller sample.  So 
in this chapter we explored a methodology that is relatively new to most of us- 
bootstrap resampling.  To my knowledge, this technique has not been applied to EFA, 
perhaps for obvious reasons:  it is very difficult to bootstrap and then evaluate all the 
myriad parameters produced in an exploratory factor analysis.  The two examples 
presented in this chapter took many hours of work to produce- but if this is an 
important study for you, those hours are a worthwhile investment, in my opinion.   

We rarely have the ability to know the “true” factor structure in the population 
(leaving aside the fact that factor structures can vary across subpopulations), and so 
most of the time we only have a sample, and a hope that the factor structure will match 
our theoretical model(s), and that they will generalize to new samples and studies.  The 
past century or so of exploratory factor analysis has been almost entirely devoted to 
truly exploring data in an atheoretical way, or seeking to confirm that an instrument 
matches a theoretical model.  It has been rare to see any attention given to what should 
be at least as important—whether the findings will generalize.  In this chapter, we 
describe and explore a methodology to move in that direction.  It is not a perfect 
methodology, as a poor sample will lead to bootstrap analyses that are poor- but at the 
least, we can show how precise our results are and how confident we can be about 
those estimates.  As Bruce Thompson has suggested, bootstrap methods can give us 
valuable information about our results.  With it being relatively accessible through 
adaptation of SPSS macros (like the ones I share in the chapter appendix and on this 
book’s website), or use of a statistical computing package that includes bootstrapping 
more well-integrated, you as a researcher can use your data to provide more valuable 
information about your results than you might otherwise get.  

You will note that I did not provide a bootstrap example of the Example 3 
(Geriatric Depression Scale) data.  There are several reasons for this.  First, I am not 
sure it is valuable to bootstrap a model that is so unclear.  I suspect that we would have 
learned that the CIs are very wide (in other words, that our point estimates are 
imprecise).  Second, after the analyses presented in Chapter 2, I am not sure what 
factor structure I would test in bootstrap analyses.  With more than 30 items, a 
bootstrap analysis would have been even more work than these, and if we looked at a 
5- or 8- factor model, the processing would have been exponentially more complicated.  
If this was my dissertation, and I was passionate about the GDS, I would consider it 
anyway.  But with two other good examples, I felt at liberty to pass it by.  Feel free to 
try it on your own and let me know how it turns out.   
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Chapter 5 Exercises  
 

1. Download bootstrap data sets from the examples in this chapter, as well as the 
syntax files (macros) for performing bootstrap replications.  See if you can 
replicate the results (your resampled bootstrap samples will be different from 
mine, so you will not exactly replicate the bootstrap analyses.  They should be 
close approximations, however. 

2. Download the data files containing my 5000 resampling analyses, and explore 
extracting the summary statistics from them (mean, standard deviations, 95% 
confidence intervals, etc.)   

3. With a new data set of your own, attempt a bootstrap analysis from beginning 
to end.  I will provide some new examples you can use for exploration as I 
have time.  Check my web site to see if new ones are up.   
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SPSS Bootstrap macro (download available on book website) 
 
Example 1:  Engineering data 
 

DEFINE EFA_bootstrap (samples=!CMDEND)                                         
COMPUTE dummyvar=1. 
AGGREGATE 
  /OUTFILE=* MODE=ADDVARIABLES 
  /BREAK=dummyvar 
  /filesize=N. 
!DO !other=1 !TO !samples 
SET SEED RANDOM. 
WEIGHT OFF. 
FILTER OFF. 
DO IF $casenum=1. 
- COMPUTE #samplesize=filesize. 
- COMPUTE #filesize=filesize. 
END IF. 
DO IF (#samplesize>0 and #filesize>0). 
- COMPUTE sampleWeight=rv.binom(#samplesize, 1/#filesize). 
- COMPUTE #samplesize=#samplesize-sampleWeight. 
- COMPUTE #filesize=#filesize-1. 
ELSE. 
- COMPUTE sampleWeight=0. 
END IF. 
WEIGHT BY sampleWeight. 
FILTER BY sampleWeight. 
 
***************************************. 
*** 
**** insert syntax for EFA here 
*** 
****************************************. 
FACTOR 
  /VARIABLES EngProbSolv1 EngProbSolv2 EngProbSolv3 

EngProbSolv4 EngProbSolv5 EngProbSolv6 EngProbSolv7 
EngProbSolv8 INTERESTeng1 INTERESTeng2 INTERESTeng3 
INTERESTeng4 INTERESTeng5 INTERESTeng6 

  /MISSING LISTWISE  
  /ANALYSIS EngProbSolv1 EngProbSolv2 EngProbSolv3 

EngProbSolv4 EngProbSolv5 EngProbSolv6 EngProbSolv7 
EngProbSolv8 INTERESTeng1 INTERESTeng2 INTERESTeng3 
INTERESTeng4 INTERESTeng5 INTERESTeng6 

  /PRINT INITIAL ROTATION 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION ML 
  /CRITERIA ITERATE(25) DELTA(0) 
  /ROTATION OBLIMIN. 
!DOEND 
!ENDDEFINE. 

Change highlighted syntax 
to change details of EFA 
analysis to be 
bootstrapped 
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***************************************. 
*** 
*** select data and run bootstrap N=5000;   
*** must change GET FILE syntax to point to your data file 
*** 
****************************************. 
 
PRESERVE. 
SET TVARS NAMES. 
DATASET DECLARE bootstrap_EFA1. 
OMS /DESTINATION VIEWER=NO /TAG='suppressall'. 
OMS 
  /SELECT TABLES 
  /IF COMMANDS=['Factor Analysis'] SUBTYPES=['Total Variance 

Explained'  'Communalities'  ' Rotated Factor Matrix'] 
  /DESTINATION FORMAT=SAV OUTFILE='bootstrap_EFA1'  
  /TAG='alpha_coeff'. 
 
GET 

FILE='C:\Users\jwosbo04\dropbox\Public\ECPY740\Ex1_EFA\data
.sav'. 

DATASET NAME bootstrap_EFA1 WINDOW=FRONT. 
Set MITERATE 10000. 
Execute. 
EFA_bootstrap  
   samples=5000 . 
OMSEND. 
RESTORE. 
 
************************************************************ 
*** 
**** allows you to select individual parameters to examine  
*** 
***********************************************************. 
 
DATASET ACTIVATE bootstrap_EFA1. 
TEMPORARY. 
Select if (Var1="1"). 
FREQUENCIES 
  VARIABLES=    InitialEigenvalues_Total 
  /FORMAT NOTABLE 
  /PERCENTILES= 2.5 97.5 
  /STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN 
  /HISTOGRAM NORMAL. 
 
  

Change highlighted 
OMS commands using 
OMS utility in SPSS to 
get different data from 
EFA 

This section actually 
performs the 5000 
bootstrap analyses of EFA. 
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SPSS Syntax to align absolute values of factor loadings into columns for 
bootstrapping 
 
String Factor (A2). 
Compute factor= substr(var1, 1, 2). 
execute. 
compute F1=abs(@1). 
compute F2=abs(@2). 
compute F3=abs(@3). 
execute. 
*move Math loadings to F1. 
do if (Factor = "Ma"). 
do if (abs(@3)>abs(@1)). 
Compute F1=abs(@3) . 
compute F3=abs(@1) . 
end if. 
end if. 
execute. 
do if (Factor = "Ma"). 
do if (F2>F1). 
compute junk=F1. 
Compute F1=f2. 
compute f2=junk. 
recode junk (lo thru hi=sysmis). 
end if. 
end if. 
execute. 
*move Eng loadings to F3. 
do if (Factor = "En"). 
do if (abs(@3)<abs(@1)). 
Compute F1=abs(@3) . 
compute F3=abs(@1) . 
end if. 
end if. 
execute. 
do if (Factor = "En"). 
do if (F2>F3). 
compute junk=F3. 
Compute F3=f2. 
compute f2=junk. 
recode junk (lo thru hi=sysmis). 
end if. 
end if. 
execute. 
***move PA to F2. 
do if (Factor = "Pa"). 
do if (abs(@3)>abs(@2)). 
compute F2=abs(@3) . 
compute F3=abs(@2) . 
end if. 
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end if. 
execute. 
do if (Factor = "Pa"). 
do if (f1>f2). 
compute junk=F1. 
Compute F1=f2. 
compute f2=junk. 
recode junk (lo thru hi=sysmis). 
end if. 
end if. 
execute. 
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6 DATA CLEANING AND EFA 
 
 

If this is not the first work of mine you have come across, you might know that I 
have been a constant (perhaps tiresome) advocate of the argument that data are not 
ready to analyze until they are clean and missing data are dealt with.  My second book 
was entirely about all the different –legitimate- things a researcher can do to improve 
the quality of their data and the results that come from analysis of those data.   

Exploratory factor analysis is no exception, but there are different issues, and 
different priorities when dealing with EFA.  In many inferential statistics, we can utilize 
tools like residuals to help us identify cases that are inappropriately influential.  With 
EFA being an exploratory technique, we do not have those types of tools to work with.  
Nevertheless, in this chapter I will briefly review some data cleaning issues relevant to 
this analytic technique.   

 
Two types of outliers in EFA:  individual cases and variables 

 
In factor analysis, there are actually two different types of outliers.38 The first type 

of outlier is a case (or value) that does not belong.  There are many reasons why cases 
become outliers:  the case could be from a different population, could be the result of 
data recording or entry error, could have resulted from motivated mis-responding, or 
could represent a small subgroup with a different factor structure that has not been 
recognized.  Whatever the reason, having these “illegitimate” cases in the data does not 
serve any useful purpose.  Values that do not belong can arise from data entry errors 
(such as a 9 accidentally entered for a Likert-type item that only has values from 1-6).  
If the original data is available, you can check the data manually and fix the problem.  If 
this is not possible, you could remove it and then use missing-data techniques 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
38 In this context, I will use the term “outlier” to loosely describe a thing that does not belong.  
There are more technical definitions for different contexts, but you will have to indulge me 
here.  There are also some in the scholarly community who insist that removing outliers (and 
indeed, data cleaning in general) is detrimental to the scientific process.  I have published 
many articles, given numerous talks, and ultimately, wrote an entire book to empirically 
demonstrate why this position is wrong-headed.  
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(described below) to replace it with a reasonable estimate of what it might have been. 
The second type of outlier in EFA is when a variable is an outlier.  In this context, a 

variable can be considered an outlier when it loads on its own factor as a single-item 
factor.  If an item does not load on any other factor, and no other items load on that 
factor, it is considered an outlier, and should be removed from the analysis (or the scale 
should be reworked to more fully represent that dimension of the latent construct if it 
is a legitimate facet of the construct. 

The second type of outlier is easier to identify, obviously.  There is a variable in your 
analysis that does not play well with others.  Remove it and try the analysis again.  The 
accidental value that is out of bounds is easy to identify by perusing frequency 
distributions for the variables to be analyzed.  This should always be a first step for 
researchers.   

The individual case that is an outlier is more tricky to identify in EFA.  Visual 
examination of the data can help one identify odd patterns (like the participant who 
answers “3” to every item).  Other patterns, like random responding or motivated mis-
responding are more difficult to identify.   

 
Response sets and unexpected patterns in the data39  

 
Response sets can be damaging to factor analysis and to the quality of measurement 

in research.  Much of the research we as scientists perform relies upon the goodwill of 
research participants (students, teachers, participants in organizational interventions, 
minimally-compensated volunteers, etc.) with little incentive to expend effort in 
providing data to researchers.  If we are not careful, participants with lower motivation 
to perform at their maximum level may increase the error variance in our data, masking 
real effects of our research.  In the context of this book, random and motivated mis-
responding can have deleterious effects such as masking a clear factor structure or 
attenuating factor loadings and communalities.   

Response sets (such as random responding) are strategies that individuals use 
(consciously or otherwise) when responding to educational or psychological tests or 
scales.  These response sets range on a continuum from unbiased retrieval (where 
individuals use direct, unbiased recall of factual information in memory to answer 
questions) to generative strategies (where individuals create responses not based on 
factual recall due to inability or unwillingness to produce relevant information from 
memory; see Meier 1994, p. 43).  Response sets have been discussed in the 
measurement and research methodology literature for over seventy years now 
(Cronbach, 1942; Goodfellow, 1940; Lorge, 1937), and some (e.g., Cronbach, 1950) 
argue that response sets are ubiquitous, found in almost every population on almost 
every type of test or assessment. In fact, early researchers identified response sets on 
assessments as diverse as the Strong Interest Inventory (Strong, 1927), tests of clerical 
aptitude, word meanings, temperament, and spelling, and judgments of proportion in 
color mixtures, seashore pitch, and pleasantness of stimuli, (see summary in Cronbach, 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
39 Parts of this section are adapted from Osborne, J.W., & Blanchard, M. R. (2011).  Random 
responding from participants is a threat to the validity of social science research results.  
Frontiers in Psychology, Vol 1, Article 220, pp. 1-7 doi: 10.3389/ fpsyg.2010.00220.  
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1950, Table 1). 
Researchers (myself included) are guilty of too often assuming respondents 

exclusively use unbiased retrieval strategies when responding to questionnaires or tests, 
despite considerable evidence for the frequent use of the less desirable and more 
problematic generative strategies (Meier, 1994; pp. 43-51).   

 
Commonly discussed response sets 

 
Examples of common response sets discussed in the literature include: 
 
Random responding is a response set where individuals respond with little pattern 

or thought (Cronbach, 1950).  This behavior, which completely negates the usefulness 
of responses, adds substantial error variance to analyses.  Meier (1994) and others 
suggest this may be motivated by lack of preparation, reactivity to observation, lack of 
motivation to cooperate with the testing, disinterest, or fatigue (Berry et al., 1992; Wise, 
2006).  Random responding is a particular concern in this paper as it can mask the 
effects of interventions, biasing results toward null hypotheses, smaller effect sizes, and 
much larger confidence intervals than would be the case with valid data.   

 
Malingering and dissimulation.  Dissimulation refers to a response set where 

respondents falsify answers in an attempt to be seen in a more negative or more 
positive light than honest answers would provide.  Malingering is a response set where 
individuals falsify and exaggerate answers to appear weaker or more medically or 
psychologically symptomatic than honest answers would indicate, often motivated by a 
goal of receiving services they would not otherwise be entitled to (e.g., attention deficit 
or learning disabilities evaluation; Kane (2008); see also Rogers, 1997) or avoiding an 
outcome they might otherwise receive (such as a harsher prison sentence; see e.g., Ray, 
2009; Rogers, 1997).  These response sets are more common on psychological scales 
where the goal of the question is readily apparent (e.g., “Do you have suicidal 
thoughts?”;see also Kuncel & Borneman, 2007).  Clearly, this response set has 
substantial costs to society when individuals dissimulate or malinger, but researchers 
should also be vigilant for these response sets, as motivated responding such as this can 
dramatically skew research results. 

 
Social desirability is related to malingering and dissimulation in that it involves 

altering responses in systematic ways to achieve a desired goal—in this case, to 
conform to social norms or to “look good” to the examiner (see, e.g., Nunnally & 
Bernstein, 1994).  Many scales in psychological research have attempted to account for 
this long-discussed response set (Crowne & Marlowe, 1964), yet it remains a real and 
troubling aspect of research in the social sciences that may not have a clear answer, but 
can have clear affects for important research (e.g., surveys of risky behavior, 
compliance in medical trials, etc.).   

 
Other response styles such as acquiescence and criticality, are response patterns 

wherein individuals are more likely to agree with (acquiescence) or disagree with 
(criticality) questionnaire items in general, regardless of the nature of the item (e.g., 
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Messick, 1991; Murphy & Davidshofer, 1988).   
 
Response styles peculiar to educational testing are also discussed in the 

literature.  While the response styles above can be present in educational data, other 
biases peculiar to tests of academic mastery (often multiple choice) include:  (a) 
response bias for particular columns (e.g., A or D) on multiple choice type items, (b) 
bias for or against guessing when uncertain of the correct answer, and (c) rapid 
guessing (Bovaird, 2003), which is a form of random responding discussed above.  As 
mentioned above, random responding (rapid guessing) is undesirable as it introduces 
substantial error into the data, which can suppress the ability for researchers to detect 
real differences between groups, change over time, and the effect(s) of interventions.   

 
Summary.  We rely upon quantitative research to inform and evaluate instructional 

innovations, often with high stakes and financial implications for society as a whole.  
Some interventions involve tremendous financial and time investment (e.g., 
instructional technology, community outreach agencies), and some might even be 
harmful if assessed validly, and therefore can be costly to individuals in terms of 
frustration, lost opportunities, or actual harm.  Thus, it is important for researchers to 
gather the best available data on interventions to evaluate their efficacy.  Yet research 
must rely upon the good faith and motivation of participants (students, teachers, 
administrators, parents, etc.) for which they may find neither enjoyment nor immediate 
benefit.  This leaves us in a quandary of relying on research to make important 
decisions, yet often having flawed data.  This highlights the importance of all data 
cleaning (including examining data for response bias) in order to draw the best possible 
inferences.  This paper, and our example, focuses on educational research, but the 
lesson should generalize to all social sciences research (and beyond). 

 
Is random responding truly random? 

 
An important issue is whether we can be confident that what we call “random 

responding” truly is random, as opposed to some other factor affecting responses.  In 
one study attempting to address this issue, Wise (2006) reported that answers identified 
as random responding on a four-choice multiple choice test (by virtue of 
inappropriately short response times on a computer based tests) were only correct 
25.5% of the time, which is what one would expect for truly random responses in this 
situation.  On the same test, responses not identified as random responding (i.e., having 
appropriately long response times) were correct 72.0% of the time.40  Further, this issue 
does not appear to be rare or isolated behavior.  In Wise’s (2006) sample of university 
sophomores, 26% of students were identified as having engaged in random responding, 
and Berry et al. (1992) reported the incidence of randomly responding on the MMPI-2 
to be 60% in college students, 32% in the general adult population, and 53% amongst 
applicants to a police training program.    In this case, responses identified as random 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
40 Wise utilized computer based testing, allowing him to look at individual items rather than 
students’ total test score.  While computer-based testing can eliminate some aspects of 
random responding, such as choosing illegitimate answers, it does not eliminate random 
selection of items, or rapid guessing. 
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were more likely to be near the end of this lengthy assessment, indicating these 
responses were likely random due to fatigue or lack of motivation. 

In my study on this topic (Osborne & Blanchard, 2011), we found that about 40% 
of the 560 students involved in a study designed to assess the effects of an educational 
intervention were engaging in motivated mis-responding – in this case, probably 
random responding.  They were identified by two different criteria, discussed below:  
Rasch outfit measures and performance on a random responding scale.  To confirm the 
label, we demonstrated that random responders received substantially lower test scores 
than other students, and also showed much less change over time (before vs. after 
intervention) compared to other students.  We went through other analyses to validate 
that those identified as random responders were indeed random responders that I will 
not go into now, as it is not central to the point of this chapter.   
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Figure!6.1:!!Random!responders!vs.!other!students’!performance!on!an!educational!test!
before!and!after!an!educational!intervention.!

  
Detection of random responding 

 
There is a well-developed literature on how to detect many different types of 

response sets that goes far beyond the scope of this paper to summarize.  Examples 
include addition of particular types of items to detect social desirability, altering 
instructions to respondents in particular ways, creating equally desirable items worded 
positively and negatively, and for more methodologically sophisticated researchers, 
using IRT to explicitly estimate a guessing (random response) parameter.  Meier (1994; 
see also Rogers, 1997) contains a succinct summary of some of the more common 
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issues and recommendations around response set detection and avoidance.  However, 
our example and focus for the rest of this paper will remain one of the most damaging 
common response sets (from an inference perspective): random responding.   

 
Creation of a simple random responding scale.  For researchers not familiar 

with IRT methodology, it is still possible to be highly effective in detecting random 
responding on multiple choice educational tests (and often on psychological tests using 
likert-type response scales as well).  In general, a simple random responding scale 
involves creating items in such a way that 100% or 0% of the respondent population 
should respond in a particular way, leaving responses that deviate from that expected 
response suspect.  There are several ways to do this, depending on the type of scale in 
question.  For a multiple-choice educational test, one method (most appropriate when 
students are using a separate answer sheet, such as a machine-scored answer sheet, used 
in this study, and described below) is to have one or more choices that are illegitimate 
responses.41   

A variation of this is to have questions scattered throughout the test that 100% of 
respondents should answer in a particular way if they are reading the questions (Beach, 
1989).  These can be content that should not be missed (e.g., 2+ 2= __), 
behavioral/attitudinal questions (e.g., I weave the fabric for all my clothes), nonsense 
items (e.g., there are 30 days in February) or targeted multiple choice test items, such as: 

 
How do you spell ‘forensics’?  
(a) fornsis,  
(b) forensics,  
(c) phorensicks,  
(d) forensix). 
 
Item response theory.  One application of item response theory has implications 

for identifying random responders using item-response theory to create person-fit 
indices (Meijer, 2003).  The idea behind this approach is to quantitatively group 
individuals by their pattern of responding, and then use these groupings to identify 
individuals who deviate from an expected pattern of responding.  This could lead to 
inference of groups using particular response sets, such as random responding.  Also, it 
is possible to estimate a “guessing parameter” and then account for it in analyses, as 
mentioned above. 

A thorough discussion of this approach is beyond the scope of this article, and 
interested readers should consult references such as Edelen and Reeve (2007; see also 
Hambleton, Swaminathan, & Rogers, 1991; Wilson, 2005).  However, IRT does have 
some drawbacks for many researchers, in that it generally requires large (e.g., N ≥ 500) 
samples, significant training and resources, and finally, while it does identify individuals 
who do not fit with the general response pattern, it does not necessarily show what the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
41 One option, used in this particular data set included having twenty questions with four 
choices: A-D, with other questions scattered throughout the test, and particularly near the 
end, with items that contain only three (A-C) or two (A-B) legitimate answers.   Students or 
respondents choosing illegitimate answers one or more times can be assumed to be randomly 
responding, as our results show. 
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response set, if any, is.  Thus, although useful in many instances, we cannot use it for 
our study. 

 
Rasch measurement approaches.  Rasch measurement models are another class 

of modern measurement tools with applications to identifying response sets.  Briefly, 
Rasch analyses produce two fit statistics of particular interest to this application:  infit 
and outfit, both of which measure sum of squared standardized residuals for 
individuals.42  Large infit statistics can reflect unexpected patterns of observations by 
individual (usually interpreted as items mis-performing for the individuals being 
assessed), while large outfit mean squares can reflect unexpected observations by 
persons on items (may be the result of haphazard or random responding).  Thus, large 
outfit mean squares can indicate an issue that deserves exploration, including haphazard 
or random responding.   

Again, the challenge is interpreting the cause (response set or missing knowledge, 
for example, in an educational test) of the substantial outfit values.  We will use this 
application of Rasch as a check on the validity of our measure of random responding 
below. Again, a thorough discussion of this approach is beyond the scope of this article 
but interested readers can explore Bond and Fox (2001) and/or Smith and Smith 
(2004).   

 
Summary.  No matter the method, we assert that it is imperative for educational 

researchers to include mechanisms for identifying random responding in their research, 
as random responding from research participants is a threat to the validity of 
educational research results. Best practices in response bias detection is worthy of more 
research and discussion, given the implications for the quality of the field of educational 
research.  In order to stimulate discussion and to encourage researchers to examine 
their data for this issue, we share an example from our own research demonstrating 
how a small number of individuals engaging in random responding can mask the 
effects of educational interventions, decreasing researchers’ ability to detect real effects 
of an educational intervention.   

 
An example of the effect of random or constant responding 

  
In this section we will review two types of problematic responding: random 

responding and constant responding.  Random responding is randomly entering 
numbers within a given range.  Humans tend not to engage in true random responding, 
however.  So the other extreme is for individuals to respond with a constant number 
across all questions (such as “3”).  For each of the examples below, 100 of the 300 
cases in the small Marsh SDQ data set (the same one we bootstrapped in Chapter 5), 
were either replaced with randomly generated cases with a uniform random distribution 
from 1-6 (integers only), or with a “3” to represent a 33% random responding or 
constant responding rate. 

As you can see in Table 6.1, the effect is noticeable.  When 33% of a sample is 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
42 infit is an abbreviation for “information weighted mean square goodness of fit statistic” 
and outfit is an abbreviation for "outlier sensitive mean square residual goodness of fit 
statistic,” (Smith and Smith, 2004, p. 13) 
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engaging in random responding on an instrument that has very strong and clear factor 
structure, the initial and extracted eigenvalues are attenuated, as is common in most 
statistical procedures when random error is introduced into the data.  The extracted 
variance in the random condition is reduced 26.83% compared to the original data 
(44.17% vs. 60.50%).   
 

Table 6.1a 
Effects of random or constant responding on Marsh SDQ data 
 

 Original 33% random 33% constant 

Factor: Initial 
ML 

Extraction Initial 
ML 

Extraction Initial 
ML 

Extraction 
1 4.082 3.399 3.891 3.296 5.888 5.486 
2 2.555 2.446 1.800 1.361 2.041 1.843 
3 2.208 1.874 1.637 1.086 1.728 1.435 
4 .908  .890  .786  
5 .518  .797  .635  
6 .487  .671  .436  

% var 68.83% 60.50% 56.37% 44.17% 74.28% 67.41% 
 

Table 6.1b 
Effects of random or constant responding on factor loadings 

 

 
Sample (N=300) 
Factor Loadings 

Random responding 
sample 

Constant responding 
sample 

1 2 3 1 2 3 1 2 3 
Math1 .916 -.052 -.006 .815 -.038 -.015 .967 -.109 -.005 
Math2 .875 .001 -.034 .758 .032 .003 .901 .008 -.009 
Math3 .875 .038 -.010 .681 -.002 .063 .851 .070 .022 
Math4 -.508 -.030 -.083 -.337 -.247 .023 -.525 -.106 .002 
Par1 .055 .753 -.109 .041 .721 -.049 .069 .815 .046 
Par2 .043 -.626 -.003 .007 -.600 -.010 .055 -.745 .022 
Par3 -.034 .873 .049 -.031 .736 -.002 -.033 .897 .060 
Par4 .023 -.592 -.113 .026 -.574 -.151 .013 -.583 -.058 
Par5 .064 .742 -.023 .090 .578 -.095 .088 .816 -.123 
Eng1 .033 .035 .770 .099 .034 .541 .081 .061 .805 
Eng2 .025 -.082 .859 -.149 .016 .740 -.153 .007 .931 
Eng3 .052 .000 .855 -.038 .079 .688 -.022 .041 .870 
Eng4 .088 -.073 -.675 -.255 .144 -.446 -.180 .114 -.691 
Note:  ML extraction with Promax rotation. 

 
In the constant condition, the initial eigenvalue is increased dramatically, as this 

pattern of responding makes the data look much closer to a single strong factor 
solution.  The other eigenvalues are attenuated, yet the overall variance accounted for is 
inappropriately increased due to the first factor.   

Random data can also lead to potential confusion about the factor structure.  For 
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example, according to MAP Criteria, the data with 33% random recommends 
extraction of two factors according to the revised (2000) map criteria (although the 
original 1976 criteria still recommend extraction of three factors). The constant 
responding did not introduce this issue into the MAP analysis, at least with this low a 
percentage of cases exhibiting the response set. 

As you can see in Table 6.1b, the factor loadings for the random sample are 
attenuated, sometimes markedly (e.g., English items).  In the constant responding data, 
many of the factor loadings are inflated.  Although the basic factor pattern is present in 
all three data sets despite these challenges, in a more marginal data set this might make 
a difference between a clear factor structure and an analysis that does not produce the 
appropriate factor structure.  Replication might also be an issue, particularly if the 
portion of respondents engaging in random or constant responding changes markedly.   

 
Data cleaning 

 
Unless there is an odd pattern to outliers, failure to check for data quality issues 

would lead to similar effects as the random responding data, depending on how 
egregious the outliers are.  In general, outliers introduce error variance into the analysis, 
as random responding does.  Thus, we should see similar results.  

Where one might see a difference is in the common case of government data sets, 
where missing data values are often something like 98 or 99.  In the case like this where 
all variables should range from 1-6, values of 98 or 99 can cause a large amount of error 
variance to be introduced into the analysis.  

 
Missing data 

 
Missing data is an issue in exploratory factor analysis as EFA will only analyze 

complete cases, and thus any case with missing data will be deleted.  This can reduce 
sample size, causing estimates to be more volatile.  If missingness is random, then your 
estimates should be unbiased.  However, it is unusual for missing data to be completely 
at random.  Thus, it is likely that missing data is causing bias in the results in addition to 
reducing sample size—unless you deal with the missing data in some appropriate 
manner.   

 
What Is Missing or Incomplete Data?   If any data on any variable from any 

participant is not present, the researcher is dealing with missing or incomplete data. In 
many types of research, it is the case that there can be legitimate missing data. This can 
come in many forms, for many reasons. Most commonly, legitimate missing data is an 
absence of data when it is appropriate for there to be an absence. Imagine you are 
filling out a survey that asks you whether you are married, and if so, how long you have 
been married. If you say you are not married, it is legitimate for you to skip the follow-
up question on how long you have been married. If a survey asks you whether you 
voted in the last election, and if so, what party the candidate was from, it is legitimate to 
skip the second part if you did not vote in the last election. 

 
Legitimately missing data can be dealt with in different ways. One common way 
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of dealing with this sort of data could be using analyses that do not require (or can deal 
effectively with) incomplete data. These include things like hierarchical linear modeling 
(HLM; Raudenbush & Bryk, 2002) or survival analysis. Another common way of 
dealing with this sort of legitimate missing data is adjusting the denominator. Again 
taking the example of the marriage survey, we could eliminate non-married individuals 
from the particular analysis looking at length of marriage, but would leave non-married 
respondents in the analysis when looking at issues relating to being married versus not 
being married. Thus, instead of asking a slightly silly question of the data—“How long, 
on average, do all people, even unmarried people, stay married?”—we can ask two 
more refined questions: “What are the predictors of whether someone is currently 
married?” and “Of those who are currently married, how long on average have they 
been married?” In this case, it makes no sense to include non-married individuals in the 
data on how long someone has been married. 

 
Illegitimately missing data is also common in all types of research. Sensors fail or 

become mis-calibrated, leaving researchers without data until that sensor is replaced or 
recalibrated. Research participants choose to skip questions on surveys that the 
researchers expect everyone to answer. Participants drop out of studies before they are 
complete. Missing data also, somewhat ironically, can be caused by data cleaning (if you 
delete outlying values). 

Few authors seem to explicitly deal with the issue of missing data, despite its 
obvious potential to substantially skew the results (Cole, 2008). For example, in a recent 
survey my students and I performed of highly regarded journals from the American 
Psychological Association, we found that more than one-third (38.89%) of authors 
discussed the issue of missing data in their articles. Do those 61% who fail to report 
anything relating to missing data have complete data (rare in the social sciences, but 
possible for some authors), do they have complete data because they removed all 
subjects with any missing data (undesirable, and potentially biasing the results, as we 
discuss below), did they deal effectively with the missing data and fail to report it (less 
likely, but possible), or did they allow the statistical software to treat the missing data 
via whatever the default method is, which most often leads to deletion of subjects with 
missing data? If our survey is representative of researchers across the sciences, we have 
cause for concern. Our survey found that of those researchers who did report 
something to do with missing data, most reported having used the classic methods of 
listwise deletion (complete case analysis) or mean substitution, neither of which are best 
practices (Schafer & Graham, 2002).  In only a few cases did researchers report doing 
anything constructive with the missing data, such as estimation or imputation.  

Regression and multiple imputation have emerged as two more progressive 
methods of dealing with missing data, particularly in cases like factor analysis where 
there are other closely correlated variables with valid data.  Regression imputation (also 
referred to as simple imputation) creates a regression equation to predict missing values 
based on variables with valid data.  This has been shown to be superior to mean 
substitution or complete case analysis, particularly when data are not missing 
completely at random.   

Multiple imputation uses a variety of advanced techniques—e.g., EM/maximum 
likelihood estimation, propensity score estimation, or Markov Chain Monte Carlo 
(MCMC) simulation—to estimate missing values, creating multiple versions of the 
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same data set (sort of a statistician’s view of the classic science fiction scenario of 
alternate realities or parallel universes) that explore the scope and effect of the missing 
data. These parallel data sets can then be analyzed via standard methods and results 
combined to produce estimates and confidence intervals that are often more robust 
than simple (especially relatively weak) imputation or previously mentioned methods of 
dealing with missing values (Schafer, 1997, 1999). 

 
 The effects of nonrandom missingness.  To simulate some non-random 

missingness, I recoded “1” or “2” to system missing values for the first three English 
items: 

 
Eng1:  I learn things quickly in English classes 
Eng2:  English is one of my best subjects 
Eng3:  I get good marks in English 
 

This created a biased sample eliminating those small numbers of students who 
answered the most pessimistically on the English items (67 out of 300 cases).    

 
Table 6.2a 
Effects of nonrandom missing data (N=67) on Marsh SDQ data 

 
 Original Nonrandom missing 

Factor: Initial 
ML 

Extraction Initial 
ML 

Extraction 
1 4.082 3.399 4.242 3.891 
2 2.555 2.446 2.582 2.179 
3 2.208 1.874 1.904 1.690 
4 .908  1.267 .953 
5 .518  .561  
6 .487  .466  

% variance 68.83% 60.50% 76.88% 67.02% 
 
As you can see in Table 6.2a, with some cases deleted from the analysis in a non-

random fashion we suddenly have a different factor structure.  We now have four 
factors with an eigenvalue greater than 1.0, and MAP criteria confirm that in this data 
set, four is the recommended number of factors that should be extracted.  Because of 
the extra factor extracted, the variance accounted for is somewhat inflated.   

As you can see in Table 6.2b, the new factor structure is mostly intact for math and 
English, but the parent factor is now split into two factors.  The fourth factor seems to 
represent some sort of general negativity.  It is not uncommon in EFA for negatively 
worded items to load on a separate factor from positively worded items on the same 
latent construct, but of course this is not ideal nor is it consistent with the theoretical 
framework.   
!  
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Table 6.2b 
Effects of random or constant responding on factor loadings 

 

 Original Marsh 
SDQ sample Non-random missing 

 1 2 3 1 2 3 4 
Math1 .916 -.052 -.006 .022 .881 .021 .080 
Math2 .875 .001 -.034 .078 .825 .058 .123 
Math3 .875 .038 -.010 -.015 .882 -.007 -.084 
Math4 -.508 -.030 -.083 .140 -.509 .098 .438 
Par1 .055 .753 -.109 .797 .028 .052 .011 
Par2 .043 -.626 -.003 -.359 .074 .140 .667 
Par3 -.034 .873 .049 .927 -.059 .102 -.019 
Par4 .023 -.592 -.113 -.346 -.061 .064 .536 
Par5 .064 .742 -.023 .747 .064 -.028 -.030 
Eng1 .033 .035 .770 .096 -.051 .728 -.048 
Eng2 .025 -.082 .859 -.006 -.021 .804 .069 
Eng3 .052 .000 .855 .048 .127 .813 -.077 
Eng4 .088 -.073 -.675 .232 .091 -.324 .752 

Note:  ML extraction with Promax rotation. 
 
 Summary.  The tradition within quantitative methods (and indeed, the default 

in statistical computing packages) is to delete cases with missing data.  However, this is 
almost never the ideal solution, even if the assumption that the data are missing 
completely at random is met (which it almost never is). When data are missing not at 
random, you may be introducing serious bias into your results by ignoring this issue.  
Simulations presented in my chapter on missingness (Osborne, 2013, Chapter 6) shows 
that modern methods of dealing with missing data (simple or multiple imputation, for 
example) can effectively ameliorate the harmful effects of nonrandom missingness- and 
as a bonus, keep all those hard-earned data points in your analysis.   

 
Chapter 6 Conclusions 

 
Data quality is a continual issue in almost all sciences.  In EFA, as in most other 

quantitative analyses, data quality issues can bias or completely derail your analyses.  
Thus, I encourage you to closely examine all data prior to analysis for extreme cases, 
random or other types of motivated mis-responding, and to deal with missing data 
effectively.   
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7 ARE FACTOR SCORES A GOOD IDEA? 
 
 

Factor scores seemed cutting-edge back in the 1980s when I was beginning to take 
graduate statistics courses.  The concept and practice of computing factor scores 
extends back to the 1920s, although early on it was considered a much less important 
aspect of factor analysis than the determination of the actual factors themselves.  In the 
early decades of the 20th century there also was extended arguments about whether it 
was even proper to compute factor scores, due to something called “indeterminancy”- 
essentially meaning that there are more unknowns than equations being estimated in 
EFA (for an excellent overview of the issue, see Grice, 2001) and the same individuals 
could be ranked multiple ways, leaving their relative ranking indeterminant.  I will not 
delve into this issue further because I do not believe that factor scores are useful for us 
to be calculating, as you will see as the chapter plays out.   

In essence, what a factor score is an approximation of what an individual might 
score on a latent construct/factor.  There are several methods for calculating factor 
scores.  The most common is to simply sum or average scores from a scale.  Most 
researchers do this without considering the implicit assumption that action entails-  that 
all items are equally weighted.  In other words, when you sum or average items, you are 
explicitly asserting that all items contribute equally to the construct, and thus, they are 
appropriate for averaging or summing.  However, decades ago, researchers using factor 
analysis started thinking about this assumption, and realizing that EFA explicitly shows 
that this assumption is often not warranted.  Some items are more indicative of a 
construct than others.  Thus, researchers started weighting items according to the 
results of EFA analyses—and in fact, modern statistical software packages often 
include this as an option when performing an EFA.   

Attempting to improve measurement, researchers could weight each variable 
differently as a function of the strength of its loading and then sum to approximate 
what might be the true score of each individual on the construct being examined.43  In 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
43 refined techniques are actually a bit more complex, taking into account more information 
than just factor loading—for example, the correlation between factors.  However, as the 
point of this chapter is to discourage the use of factor scores, I will refrain from providing 
more detail. 
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structural equation modeling today, we can also use those capabilities to save and 
analyze scores on latent constructs (or just analyze the latent constructs as variables).  It 
makes sense and was a natural progression over a period of many decades of research. 

However, we now have a different assumption: that the factor loadings (correlations 
between an item and the factor) are stable and generalizable.  This issue is similar to 
that of researchers using multiple regression to predict outcomes for individuals (for 
papers on prediction in regression, see Osborne, 2000, 2008a).  Specifically, the issue is 
that these procedures overfit the data.  Most samples contain idiosyncratic aspects that 
most quantitative analyses will take advantage of to fit the model, despite those sample 
characteristics being non-reproducible (Thompson, 2004, p. 70).  Because EFA suffers 
from the same overfitting, I recommended in earlier chapters that we focus on 
replication and evaluate the anticipated precision or variability across samples to 
evaluate the goodness of EFA results.   

 
This is going to be a short chapter for the following reasons: 
 

1. I think I have clearly staked a position that EFA should be used as an 
exploratory technique only, and as prelude to follow-up with confirmatory 
methods or modern measurement analyses like Rasch or IRT methods.  
Thus, from a philosophical point of view, I find factor scores problematic in 
that EFA was not designed to produce highly refined estimates of latent 
variables for use in subsequent analyses. 

2. The solutions that we often receive from EFA are highly unstable across 
samples, and thus factor scores would be highly unstable.  This is not a good 
situation for scientific inquiry 

3. There are excellent resources for researchers to refer to about the technical 
details of factor scores, various options, and potential issues (e.g., DiStefano, 
Zhu, & Mindrila, 2009).  However, in light of points #1 and 2, above, this 
information is not a good use of our time. 

 
Pedagogical Example:  Engineering data 

 
We will start with the same first example from chapter 2:  the engineering data.  I have 
copied the items and information below so you do not have to flip back and forth 
between this chapter and chapter 2.   

 
 
 
 

!  
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Table 7.1 
Factor loadings matrix from engineering data 

 
 
Variable: 

Rotated pattern 
coefficients 
1 2 

EngProbSolv1 .859 -.016 
EngProbSolv2 .841 -.071 
EngProbSolv3 .879 -.008 
EngProbSolv4 .909 -.025 
EngProbSolv5 .886 .021 
EngProbSolv6 .869 .020 
EngProbSolv7 .868 .033 
EngProbSolv8 .790 .072 
INTERESTeng1 .042 .801 
INTERESTeng2 -.023 .921 
INTERESTeng3 -.014 .922 
INTERESTeng4 -.001 .904 
INTERESTeng5 -.007 .897 
INTERESTeng6 .009 .864 

 
Proper vs. improper factor scores 
!

One issue of terminology will be the issue of whether you compute factor scores 
using all the variables (a proper factor score) or just the variables that compose a 
particular factor.  Proper factor scores take into account all variables in the analysis, not 
just the ones that are considered to be part of a factor.  So, referring to Table 7.1, a 
proper factor score for the first factor would include both the engineering problem 
solving variables and the identification with engineering variables.  Of course, those 
second loadings are relatively small, and as such, would contribute very little to the 
analysis.  An improper factor score would include only those variables considered to be 
part of the factor.  In fact, authors have shown that these two types of factor scores are 
generally highly correlated, and that improper factor scores are a bit more replicable 
and robust.  And both, in my opinion, are equally flawed.   
 
How unstable are factor scores? 

 
It is arguable whether factor scores are actually an improvement over equally-

weighted composites (averaging, summing).  On one hand, factor scores do account for 
the fact that some items contribute much more strongly to constructs than others (this 
is also part of the fundamental approach of Rasch measurement).  On the other hand, 
if we care at all about replicability, and if factor loadings are not likely to be replicable, 
we could be causing more harm than good by using this approach.  Of course, we have 
already established that smaller samples have more variability than large samples, so let 
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us examine a few random samples at the 10:1 (participant: item) ratio (N= 140). 44  
 

Table 7.2 
Variability in engineering data pattern coefficients across four random samples 

 
 
Variable: 

Sample # 
1 2 31 4 

EngProbSolv1 .83 .86 .79 .89 
EngProbSolv2 .86 .73 .59 .93 
EngProbSolv3 .90 .93 .87 .74 
EngProbSolv4 .92 .91 .77 .96 
EngProbSolv5 .89 .80 .77 .86 
EngProbSolv6 .76 .55 .99 .86 
EngProbSolv7 .80 .51 .98 .77 
EngProbSolv8 .61 .75 .72 .91 
 
Identification with engineering scale 
INTERESTeng1 .90 .87 1.02 .81 
INTERESTeng2 .99 .93 .95 .97 
INTERESTeng3 .78 .85 1.01 .83 
INTERESTeng4 .98 .97 .81 .91 
INTERESTeng5 .83 .93 .94 .95 
INTERESTeng6 .98 .92 .87 .81 
1. In the third sample, we observe some values over 1.0.  This is usually 

a sign of trouble, but SPSS would calculate factor scores anyway.   
 
The pattern matrix for both the engineering problem solving and interest in 

engineering scales are presented in Table 7.2.  Examining these four small random 
samples, you should see enough variability to encourage you to be skeptical the concept 
of factor scores.  For example, the sixth item in engineering problem solving ranges 
from 0.55 to 0.99 across the four samples.  Several other items have similar ranges.  
Remember that this is a scale that had very strong psychometric properties.   

If you find yourself unconvinced, review the previous chapter on bootstrap 
resampling and review how volatile some of the other scales can be.  This scale seems 
to be solid and stable even at low sample sizes.  However, it is probably much more 
stable than most.  You can also refer to Grice’s (2001) excellent work on the topic for 
more information.   

 
What are modern alternatives? 

 
Structural Equation modeling.  As I have already mentioned, structural equation 

modeling explicitly models latent variables, while factor scores tend to estimate what 
individuals might score on a factor.  If the goal is to attempt to understand how latent 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
44 of course this sample size is entirely too small, but 10:1 ratio is about average for most 
EFAs reported in the literature.   
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variables (constructs) relate to each other, we have been able to directly model this for 
the better part of a quarter century.  I would encourage you to do just that.  However, 
SEM has many of the same drawbacks in terms of replication that we just discussed in 
relation to multiple regression and EFA.  Most notably, it will tend to overfit the model 
to the sample, so if the sample is quirky, small, or contains biases or error, the solution 
will not be as generalizable as we would hope.  So SEM is not a panacea.  You must 
have an unbiased, large sample in order to hope for replicability—and then you should 
test whether the results replicate or not.   
 

Rasch (or IRT) modeling.  Rasch measurement is similar to item response theory 
in that it seeks to understand how patterns of responses across items of different 
“difficulty” can help estimate a person score on a construct.  I am more familiar with 
Rasch than IRT, and although they have similarities, scholars in both groups will tell 
you they are different in important ways.  I leave it to you to pursue, as there are great 
books on both.  For example, I find Bond and Fox (2006) an accessible and helpful 
book on Rasch measurement.   

 
Chapter 7 Summary 
 

I attempted to keep this chapter short as I think in the 21st century pantheon of 
quantitative methods, factor scores really don’t have a legitimate place.  Given what we 
know about the volatility of EFA analyses, even when the scale is traditionally strong 
with an unusually clear factor structure, and the conceptual and mathematical issues 
with factor scores (e.g., controversial mathematical issues like indeterminancy dating 
back to the early 20th century), I think we should close this chapter by affirming that we 
will use modern methods of modeling latent variables (e.g., SEM, Rasch, IRT) instead.  
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8 HIGHER ORDER FACTORS 
 
 

Whenever factors are correlated, there is, naturally, a question as to whether there 
truly are several independent factors or whether there is a single “higher-order” 
factor. 45   This has been a point of discussion for many decades, and is often 
conceptually and theoretically important.  For example, is self-concept a single thing, or 
several separate things?  Is depression a single construct composed of several sub-
constructs, or is it really not a coherent construct?   

Scholars writing in this area since the early 20th century have argued that when initial 
factor analyses (we can refer to these as “first order” factors as then come from the 
first level of analysis) produce correlated factors, researchers should explore whether 
there are second- or higher-order factors in order to more fully explicate the model 
(e.g., Gorusch, 1983; Thompson, 2004).   

There are at least two issues with higher-order factors that we need to address.  First 
is how to perform the analysis and interpret the results.  The second issue is more 
conceptual:  if initial EFA produces abstractions (unobservable variables called factors) 
that might or might not be precise representations of population dynamics, in higher-
order factor analysis we then propose to analyze these imperfect abstractions to create 
possibly more imperfect higher-order abstractions.  This makes me a bit uneasy, 
particularly in an exploratory framework.  Given how volatile and unpredictable the 
results of EFA can be, it seems that taking those results and analyzing them again 
doubles (or raises to a power) the risk of going awry and far afield of the true character 
of the population dynamics.   

Since almost all factors are correlated in the population, the assertion that this 
analysis needs to take place under these conditions should be regarded carefully.  
Researchers must decide: (a) whether higher-order exploratory analyses are desirable, and 
(b) how strong a correlation warrants this extra exploration.  If factors are correlated 
around r = 0.25 (about 6.25% overlap), is that enough of a correlation to justify higher-
order analysis?  What about r = 0.40, which equates to only 16% overlap?  We do not 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
45 Actually, my first question is usually whether the initial EFA got it right in asserting there 
were several “first-order” factors, or whether the analysis should have concluded there were 
fewer-or one – factors. 
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have a good sense of what a second-order factor really means, in my opinion.   
 

Did the initial solution get it right? 
 
In my mind, the primary issue to be decided prior to a higher-order factor analysis is 

whether the initial factor structure is appropriate or not.  If we extract five factors, and 
then decide there is a single second-order factor (or even two second-order factors), the 
first question I would ask is whether the original solution was correct, or whether the 
correct first-order structure should have been one (or two) factors rather than five.46  

In the seven or eight decades since this discussion began in earnest, many things 
have changed in quantitative methods.  One is the easy access to confirmatory factor 
analysis techniques.  Although we have not discussed confirmatory techniques, they are 
methods for directly testing hypotheses such as whether a particular data set is best 
characterized as one, two, or five factors.  Thus, before launching into higher-order 
factor analysis, I would evaluate (and replicate) whether the initial solution was correct.  
I suspect that in many cases, the initial solution was indefensible or sub-optimal, and 
that the “higher-order factors” are really just the more parsimonious version of what 
should have been extracted initially.  I would only explore higher-order factors after the 
initial factor structure has been thoroughly vetted through CFA as the most 
parsimonious and desirable.  Of course, once in CFA, higher-order factors can be 
modeled and tested in that confirmatory framework!47   

If you want to explore this aspect of your data, in the spirit of intrepid exploration 
we can briefly cover some of the mechanics of the process.   

 
Mechanics of performing second-order factor analysis in SPSS 

 
In general, second-order factor analysis consists of analysis of correlation matrices.  

If you are performing principal components analysis, you can save component scores 
and examine them as variables in a second-order analysis, as only in PCA will the 
component correlations and component scores match exactly (Thompson, 2004, p. 
73).48   When using common factor analysis, we must analyze the correlation matrix. 

To illustrate this methodology, I will use the engineering data we started exploring 
from Chapter 2, adding a third subscale that asked eight questions about feelings of 
belongingness in engineering.  Using PAF extraction and Promax rotation (as before), 
there were 372 cases with valid data on all variables.  The syntax to perform the higher-
order analysis will be available through the book web site, and is annotated in Appendix 
A at the end of this chapter.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
46 This sort of question can spawn endless debate amongst scholars, and the literature is 
replete with examples of this type of debate.  In my opinion, these (often vitriolic) debates 
fester because of the exploratory, volatile, and non-replicable nature of these analyses.  If 
authors would quickly replicate or (ideally) move to confirmatory analyses, these debates are 
less apt to erupt as there are clear ways to test competing hypotheses. 

47 I tend to recommend Barbara Byrne’s excellent reference on structural equation 
modeling (Byrne, 2010) for readers interested in CFA/SEM and higher-order factor 
analysis in a confirmatory context. 
48 This is not, in my mind, a reason to decide to use PCA, by the way.   
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First-order analysis of engineering data.  The first eigenvalue was 9.58, the 

second was 3.73, the third was 1.84.  This might indicate that there is a single factor, or 
based on theory, there might be three factors with a single, second-order factor.  CFA 
would help test the first question.  For the sake of expediency, let us assume three 
factor structure due to the strong theoretical basis. 

The pattern and structure coefficients, presented in Table 8.1, show both a strong 
factor structure and some indication that there might be a higher order factor (or there 
should be a single factor).  The structure coefficients show relatively strong loadings 
across factors, and the factors are moderately correlated (r range from 0.36 to 0.52).   

 
Table 8.1 
First-order factor loadings from engineering data 

 

 
Pattern Coefficients Structure Coefficients 

1 2 3 1 2 3 
BELONGeng1 .283 .019 .504 .554 .368 .662 
BELONGeng2 -.055 .130 .479 .242 .345 .514 
BELONGeng3 -.042 -.088 .848 .369 .313 .783 
BELONGeng4 -.087 -.025 .835 .340 .353 .778 
BELONGeng5 .020 .094 .278 .198 .237 .334 
BELONGeng6 .238 -.035 .626 .553 .357 .733 
BELONGeng7 -.243 .392 .363 .087 .483 .428 
BELONGeng8 .162 .100 .512 .465 .409 .645 
EngProbSolv1 .856 -.026 .010 .852 .286 .444 
EngProbSolv2 .833 -.075 .012 .813 .230 .411 
EngProbSolv3 .880 -.018 .009 .879 .302 .460 
EngProbSolv4 .929 -.012 -.046 .900 .298 .432 
EngProbSolv5 .891 .021 -.011 .893 .335 .464 
EngProbSolv6 .886 .033 -.041 .876 .331 .438 
EngProbSolv7 .863 .039 -.005 .874 .345 .464 
EngProbSolv8 .779 .052 .041 .820 .352 .474 
INTERESTeng1 .038 .778 .053 .344 .817 .453 
INTERESTeng2 .010 .931 -.053 .316 .909 .409 
INTERESTeng3 .020 .929 -.041 .331 .916 .424 
INTERESTeng4 .035 .922 -.059 .335 .906 .411 
INTERESTeng5 -.014 .859 .068 .329 .887 .482 
INTERESTeng6 .011 .850 .025 .329 .867 .448 

 
Second order factor analysis.  The correlation matrix was analyzed via EFA to 

determine whether it might be reasonable to assume a second-order factor that 
incorporates all three first-order factors (keep in mind my concerns over performing 
this analysis at all…). I used PAF extraction and would have used Promax rotation 
(authors such as Thompson recommend using oblique rotations for higher-order EFA) 
but as I asked for a single factor to be extracted, there was no rotation.  
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Table 8.2 
Results of second-order factor analysis 

 
 

Factor Matrixa 

 
Factor 

1 
factor_1 .619 
factor_2 .581 
factor_3 .842 

 
The results (presented in Table 8.2) support an argument that there is one single 

second-order factor, and that all three scales load moderately to strongly on it (ranging 
from 0.58 to 0.84).  This latent variable seems to be more interest than problem-solving 
and belongingness, but you would have to ask my colleague who created the scale what 
it all means.   

 
Replication example of second-order factor 

 
While intriguing, and perhaps conceptually sensible, these results are not definitive, 

and the replicability of second-order factors are not well-studied. It is also possible (or 
likely) that this scale should have been a single-factor scale from the beginning.  As 
mentioned previously, the best way to test this competing hypothesis is to perform 
confirmatory factor analysis comparing model fit between the three-factor model, the 
three-factor model with higher order factor, and a one-factor model, using a different, 
large sample.  Then and only then would we be able to draw conclusions about the best 
fitting model for these data.  For now, let us take a simple example of replication and 
see how well these results might replicate.  Unfortunately this original sample is 
relatively small, so I randomly selected two samples of N=150 each (with replacement) 
from the original sample, and performed the same analysis twice to explore whether in 
this particular case, replication of second-order factors is a reasonable expectation.  
There are endless caveats to what I am about to do, including the lousy sample size.  
Let’s explore anyway! 

As you can see in Table 8.3a, the initial communalities were not terribly close, and 
not terribly far off.    Remembering that these represent percent variance accounted 
for, factor 2, for example, ranges from about 30% accounted for to about 15%-- a wide 

Factor 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulative 

% Total 
% of 

Variance 
Cumulative 

% 
1 1.917 63.898 63.898 1.430 47.665 47.665 
2 .643 21.438 85.336    
3 .440 14.664 100.000    
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margin.  Likewise, the extracted communalities varied a bit.  The extracted eigenvalues 
were 1.36, 1.43, and 1.18 (representing  45.43%, 47.67%, and 39.43% variance 
accounted for, respectively).  Table 8.3b shows the factor matrix from the two analyses.  
As you can see, they are not terribly different, but not terribly similar.  

 
 

Table 8.3a 
Communalities from second-order factor analysis 
 

 
Sample 1 Sample 2 Sample 3 

Initial Extract Initial Extract Initial Extract 
factor_1 .220 .317 .286 .383 .200 .284 
factor_2 .299 .456 .255 .337 .158 .222 
factor_3 .335 .591 .378 .709 .276 .677 

 
 

Table 8.3b 
Factor loadings from second-order factor analysis 

 

 
Sample 1 Sample 2 Sample 3 

factor_1 .563 .719 .533 
factor_2 .675 .566 .471 
factor_3 .769 .866 .823 

!
Of note in the factor loadings table is the fact that these would be what we use to 
construct the meaning of the higher-order factor.  Between the first two samples, the 
order of importance of the three factors changes.  In the third sample, the third factor 
is even more strongly dominant and the second factor is even less important.  This 
might be nitpicky, because I don’t think EFA applied for this purpose is a best practice.  
If you are going to use this, I hope you replicate or bootstrap to give the reader an idea 
of how robust and/or precise your estimates are.  
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Chapter 8 Summary 
!

Higher order factors are not commonly discussed in the literature, but they are 
present, and it is likely that you will run across discussion of this topic at some point.  I 
included this chapter because I feel that it is not discussed enough in research methods, 
and too much in the content literature.   

Higher order factors are tricky.  They are not difficult to evaluate once you figure 
out how to perform the analyses (syntax will be provided on the book web site).  The 
trickier issue is deciding whether there truly is a higher-order factor or whether the 
original analysis should have specified a single factor structure.  I remain convinced that 
these exploratory techniques are fun, but relatively low in value without confirmatory 
techniques to evaluate the competing hypotheses in a more rigorous manner, and 
replication in independent samples.  Also, if you are committed to performing this type 
of analysis within an EFA framework, Thompson (2004) has described in detail a more 
modern methodology for presenting this information.   
!  
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Chapter 8 exercises 
 
1. Download the engineering data along with the syntax for higher-order factor 

analysis and replicate the results presented above. 
2. Examine the Marsh SDQ data and evaluate whether it appears there is a 

higher-order factor of “self concept” involved in those data. 
3. Using your own or another data set, perform primary and secondary factor 

analyses. 
 
 

! !
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Appendix 8A:  Syntax for performing higher-order EFA 
!

Below I have pasted the syntax I used to perform the analyses contained in the chapter.  
I will also have it available for download on the book web site.  Note that this is closely 
adapted from syntax provided by IBM/SPSS on their web site (http://www-
01.ibm.com/support/docview.wss?uid=swg21479182).   

 I also have highlighted the sections that you will need to examine or edit to 
perform the analyses yourself.  If you keep the data and variables the same, you only 
need to edit the file locations.  If you use this for another data set, you need to change 
the variable names, and perhaps also extraction and rotation details.  You also, as 
described below, have to manually edit the extracted correlation matrix before saving in 
order for it to be suitable for SPSS to analyze.  This is simple if you follow the 
directions, again provided kindly by SPSS on that web site above.    
!

*This&section&sets&up&the&extraction&of&correlation&table,&and&performs&the&analysis.&&

*It&will&produce&a&new&data&set&(correlation&matrix)&in&another&SPSS&data&file&

window.&
OMS 
/SELECT TABLES 
/IF COMMANDS = ["Factor Analysis"] 
SUBTYPES = ["Factor Correlation Matrix"] 
/DESTINATION FORMAT = SAV  
OUTFILE = "C:\temp\Factor_correlation_matrix.sav". 
FACTOR 
/VARIABLES  BELONGeng1 BELONGeng2 BELONGeng3 BELONGeng4 
BELONGeng5 BELONGeng6 BELONGeng7 BELONGeng8 EngProbSolv1 
EngProbSolv2 EngProbSolv3 EngProbSolv4 EngProbSolv5 
EngProbSolv6 EngProbSolv7 EngProbSolv8 INTERESTeng1 
INTERESTeng2 INTERESTeng3 INTERESTeng4 INTERESTeng5 
INTERESTeng6 
/MISSING LISTWISE 
/PRINT INITIAL EXTRACTION ROTATION 
/CRITERIA FACTORS(3) ITERATE(50) 
/EXTRACTION PAF 
/CRITERIA ITERATE(25) 
/ROTATION PROMAX(4) 
/METHOD=CORRELATION . 
OMSEND. 
GET FILE='C:\temp\Factor_correlation_matrix.sav'. 
RENAME VARIABLES (@1=factor_1) (@2=factor_2) (@3=factor_3). 
STRING ROWTYPE_ (a8) VARNAME_ (a8). 
COMPUTE ROWTYPE_='CORR'. 
COMPUTE VARNAME_='factor_1'. 
IF $CASENUM=2 VARNAME_='factor_2'. 
IF $CASENUM=3 VARNAME_='factor_3'. 
EXECUTE. 
 

If!you!have!more!than!
3!factors,!you!have!to!
add!them!here!!
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*You&then&have&to&manually&add&a&case&to&the&data&file.&Insert&this&case&before&

*the&other&cases.&It&should&have&"N"&for&the&ROWTYPE_&variable,&nothing&for&the&

*VARNAME_&variable,&and&for&each&of&the&factor_&variables,&the&N&from&the&original&

*factor&analysis.&After&you&do&this,&run&the&SAVE&command.&

!
SAVE OUTFILE='C:\temp\Second_order_factor_input.sav' 
/KEEP=ROWTYPE_ VARNAME_ factor_1 to factor_3. 
!
*Before&running&the&FACTOR&command,&you'll&need&to&decide&on&the&extraction&

*and&rotation&methods&and&how&many&factors&you&want&extracted&if&you&don't&&

*want&FACTOR&to&choose&based&on&the&eigenvalues&greater&than&1&default&

*criterion.&Replace&the&question&marks&with&your&choices.&If&you&want&FACTOR&

*to&choose&the&number&of&factors,&remove&the&"FACTORS(?)"&keyword&from&the&

*CRITERIA&subcommand.&If&you&don't&want&the&second&order&solution&rotated,&

*specify&NONE&on&the&ROTATION&subcommand.&

!
FACTOR /MATRIX=IN(COR='C:\temp\Second_order_factor_input.sav') 
/PRINT INITIAL EXTRACTION ROTATION 
/CRITERIA FACTORS(1) ITERATE(50) 
/EXTRACTION PAF 
/ROTATION promax. 
!  
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9 AFTER THE EFA:  INTERNAL CONSISTENCY 
 
 

After you are done with the exploratory factor analysis, your journey is just 
beginning, rather than ending.  The exploration phase might be drawing to a close, but 
the psychometric evaluation of an instrument is merely starting.  The process of 
performing exploratory factor analysis is usually seeking to answer the question of 
whether a given set of items forms a coherent factor (or several factors).  After we 
decide whether this is likely, evaluating how well those constructs are measured is 
important.  Along the way, we can also ask whether the factor being examined needs all 
the items in order to be measured effectively.  

To fully evaluate an instrument, we should evaluate whether the factors or 
scales that we derive from the EFA are reliable, confirmed in a new sample, and stable 
(invariant) across multiple groups.  In this chapter, we will briefly look at the most 
common method of assessing scale reliability, Cronbach’s alpha.   

Let us first start with a discussion of the modern view of reliability and validity.  
When developing a scale to be used in research, there is a delicate dance between 
focusing on creating a scale that is a “good” scale, and the acknowledgment in modern 
research methods that things like factor structure, reliability, and validity are joint 
properties of a scale and of the particular sample data being used (Fan & Thompson, 
2001; Wilkinson, 1999).  It should be self-evident to modern researchers that a scale 
needs to be well-developed in order to be useful, and that we do that in the context of a 
particular sample (or series of samples, as we recommended when discussing 
replication).  Thus, those of us interested in measurement must hold two somewhat 
bifurcated ideas in mind simultaneously- that a scale can be stronger or weaker, and 
that scales are only strong or weak in the context of the particular sample being used.  
This can lead to a nihilistic mindset if carried too far, so I recommend we take a 
moderate position in this discussion:  that scales can be more or less strong, but that all 
scales need to be evaluated in the particular populations or data that they reside in.   
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What is Cronbach’s alpha (and what is it not)? 
 

Cronbach’s alpha (Cronbach, 1951) is one of the most widely reported 
indicators of scale reliability in the social sciences.  It has some conveniences over other 
methods of indicating reliability, and it also has some drawbacks.  It also has many 
misconceptions.  There is even a test to determine if alpha is the same across two 
samples (Feldt, 1980), and others have proposed methods to compute confidence 
intervals for alpha (see Barnette, 2005).49 

Let us start with the original goal for alpha.  Prior to Cronbach’s seminal work 
in this area, the reliability of a scale in a particular sample50 was evaluated through 
methods such as test-retest correlations.  This type of reliability is still discussed today 
in psychometrics textbooks, but has serious drawbacks.  This can include the difficulty 
of convening the same group of individuals to re-take instruments, memory effects, and 
attenuation due to real change between administrations.  Another serious drawback is 
particular to constructs (e.g., mood, content knowledge) that are expected to change 
over time.  Thus, as Cronbach himself put it, test-retest reliability is generally best 
considered an index of stability rather than reliability per se.   

The split-half reliability estimate was also developed early in the 20th century.  
To perform this evaluation, items are divided into two groups (most commonly, even 
and odd numbered items) and scored.  Those two scores are then compared as a proxy 
for an immediate test-retest correlation.  This too has drawbacks—the number of items 
is halved, there is some doubt as to whether the two groups of items are parallel, and 
different splits of items can yield different coefficients.  The Spearman-Brown 
correction was developed to help correct for the reduction in item number and to give 
a coefficient intended to be similar to the test-retest coefficient.  As Cronbach (1951) 
pointed out, this coefficient is best characterized as an indicator of equivalence between 
two forms, much as we today also talk about parallel forms.   

Alpha and Kuder-Richardson coefficient of equivalence.  The Kuder 
Richardson Formula 20 (KR-20) was developed to address some of the concerns over 
other forms of reliability, particularly split half, and preceded alpha.  It is specific to 
items scored ether “0” or “1” as in many academic tests or scales such as the Geriatric 
Depression Scale we use as an example earlier in the book.  Alpha is more general than 
KR20, but KR20 and alpha will arrive at the same solution if items are binary.  Thus, it 
does not appear that KR-20 is necessary in modern statistical methodology. 

 
The correct interpretation of alpha.  Cronbach (1951) himself wrote and 

provided proofs for several assertions about alpha.   These include: 
• Alpha is n/n-1 times the ratio of inter-item covariance to total variance—in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
49 Although neither practice seems to have been adopted widely in the literature I am familiar 
with 
50 Back in the middle 20th century, reliability and validity was discussed as a property of the 
scale (i.e., the Osborne Obsequiousness Scale is reliable and valid).  Modern APA and other 
guidelines recommend we talk about reliability and validity as the property of samples not 
instruments.  However, some instruments do tend to appear more reliable across samples, 
and some less so.  Hence the need for replication… 
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other words, a direct assessment of the ratio of error (unexplained) variance 
in the measure 

• The average of all possible split half coefficients for a given test.51   
• The coefficient of equivalence from two tests composed of items randomly 

sampled (without replacement) from a universe of items with the mean 
covariance as the test or scale in questions 

• A lower-bound estimate of the coefficient of precision (accuracy of the test 
with these particular items) and coefficient of equivalency (simultaneous 
administration of two tests with matching items)  

• The proportion (lower bound) of the test variance due to all common 
factors among the items 

 
All of these lead me to conclude that the standards we use for alpha, and the 

average alphas found in strong journals, are not good enough.  As Nunnally and 
Bernstein (1994, p. 235) point out distill from all this, alpha is an expected correlation 
between one test and an alternative form of the test containing the same number of 
items.  The square root of alpha is also, as they point out, the correlation between the 
score on a scale and errorless “true scores.”  Let us unpack this for a moment. 

This means that if one has an alpha of 0.80 for a scale that is interpreted as the 
expected correlation between that scale and another scale sampled from the same 
domain of items with the same covariance and number of items.  The square root of 
0.80 is 0.89, which represents an estimate of the correlation between that score and the 
“true scores” for that construct.  As you probably know, the square of a correlation is 
an estimate of shared variance, so squaring this number leaves us back to the 
proportion of “true score” in the measurement (and 1- α is the proportion of error 
variance in the measurement).   

A review of educational psychology literature from 1969 and 1999 indicated average 
(reported) alphas of 0.86 and 0.83, respectively (Osborne, 2008b).  This is not bad, but 
keep in mind that even in modern, high-quality journals, only 26% of articles reported 
this basic data quality information.  Despite these optimistic averages, it is not difficult 
to find journal articles in almost any discipline reporting analyses with alphas much 
lower.  Poor measurement can have profound (and often unpredictable) effects on 
outcomes.   

Taking the example of multiple regression, with each independent variable added to 
a regression equation, the effects of less than perfect reliability on the strength of the 
relationship becomes more complex and the results of the analysis more questionable.  
One independent variable with less than perfect reliability can lead to each subsequent 
variable claiming part of the error variance left over by the unreliable variable(s).  The 
apportionment of the explained variance among the independent variables will thus be 
incorrect and reflect a mis-estimation of the true population effect.  In essence, low 
reliability in one variable can lead to substantial over-estimation of the effect of another 
related variable.  As more independent variables with low levels of reliability are added 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
51 This implies that there is a distribution of split half coefficients based on different splits, 
and that alpha is the mean of all these splits.  An interesting idea that many of us miss, as we 
focus just on the one number we calculate. 
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to the equation, the greater the likelihood that the variance accounted for is not 
apportioned correctly.  Ultimately, some effects can end up masked (creating a Type II 
error), with other effects inflated inappropriately in the same analysis, potentially 
leading to Type I errors of inference (Osborne, 2013).  Thus, one thesis of this chapter 
is that better measurement is preferable to less good measurement.52 

 
What alpha is not .  Although Note that α is not a measure of unidimensionality (an 

indicator that a scale is measuring a single construct rather than multiple related 
constructs) as is often thought  (Cortina, 1993; Schmitt, 1996).  Unidimensionality is an 
important assumption of α, in that scales that are multidimensional will cause α to be 
under-estimated if not assessed separately for each dimension, but high values for α are 
not necessarily indicators of unidimensionality (e.g., Cortina, 1993; Schmitt, 1996).   

 
Factors that influence alpha 
!

Average inter-item correlation.  All other things being equal, alpha is higher 
when the average correlation between items is higher.  But even Cronbach specifically 
pointed out that when inter-item correlations are low, alpha can be high with enough 
items with low intercorrelations.  This is one of the chief drawbacks to interpretability 
of alpha- that with enough mostly unrelated items, alpha will move into the 
“reasonable” range that most researchers use as a rule of thumb. 

 
Length of the scale.  As mentioned above, all other things being equal, longer 

scales will have higher alphas.   
 
Reverse coded items (negative item-total correlations).  Many scales are 

constructed with reverse-coded items.  However, alpha cannot provide accurate 
estimates when the analysis includes items with negative item-total correlations.  Thus, 
any item that is expected to have a negative item-total correlation (e.g., if the factor 
loading is negative when most others are positive) should be reversed prior to analysis.   

 
Random responding or response sets.  Random responding (discussed earlier) 

tends to attenuate all of these estimates because it primarily adds random error.  Thus, 
failure to identify this issue in your data will lead to under-estimation of the internal 
consistency of the data.  Response sets can have a variety of effects, depending on the 
response set.  Some  types of response sets will inflate alpha estimates and some can 
attenuate alpha (for an overview of response sets, and how one can identify them, you 
might see Osborne & Blanchard, 2011) 

 
Multidimensionality.  The assumption of alpha is that all items within a particular 

analysis represent a single dimension, or factor.  To the extent that assumption is 
violated, the estimate of alpha will be mis-estimated.  Thus, the factor structure of the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
52 Most people would agree this statement is “self-evident”- a nice way of saying “well, duh!” 
but it is surprising that this simple “well, duh!” sentiment is so problematic in practice… 
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scale should be considered before submitting items to this type of analysis. 
 
Outliers.  Outliers (inappropriate values) usually have the effect of increasing error 

variance, which would have the effect of attenuating the estimate of alpha.  Thus, data 
should be carefully screened prior to computing alpha. 

 
Other assumptions of alpha.  Alpha was built for a time when researchers often 

summed or averaged items on scales.  Many researchers do this today.  Of course, 
when summing or averaging items in a scale, you are making an assumption that all 
items contribute equally to the scale- that the weighting of each item is identical.  Alpha 
also assumes that all items contribute equally.  Yet from what we have seen in earlier 
chapters, that might not be a valid assumption.  For example, in Chapter 2 we saw that 
the pattern loadings for the engineering problem solving items ranged from 0.79 to 
0.91, and for the GDS the loadings ranged from 0.23 to 0.68 when only one factor was 
extracted.  If you square the loadings to estimate the shared variance, this amounts to a 
range of 0.62 to 0.82 (for engineering problem solving) and from 0.05 to 0.46 for GDS.   

Historically, this led to researchers creating “factor scores” which weighted each 
item by the factor loading to more closely approximate that a latent variable score 
might be.  There is a whole chapter coming on why this is not a good idea.  More 
modern measurement methods (IRT, Rasch) account for this more directly, and latent 
variable modeling (structural equation modeling, for example) also directly addresses 
this issue when estimating individual scores on latent variables.   

There is not currently a good way to deal with this issue (in my opinion).  Rasch and 
IRT have different methods of estimating reliability of measures, and in CFA/SEM 
there are also ways to assess goodness of fit, but those interested in estimating internal 
consistency via alpha must live with the violation of this assumption. 

 
What is “good enough” for alpha? 
!

Many authors have asserted that an alpha of 0.70 or 0.80 represent “adequate” and 
“good” reliability, respectively (e.g., Nunnally & Bernstein, 1994).  Let us just say for 
the present that it is a continuous variable, and thus, higher is better, probably with 
diminishing returns once one exceeds 0.90 (which still represents about 10% error 
variance in the measurement).   

What constitutes “good enough” also depends on the purpose of the data, and the 
method of analysis.  Better data is always better, of course, but using the data to choose 
children for an educational program is different than evaluating correlations between 
constructs for a dissertation.  And use of modern measurement (e.g., Rasch or IRT 
measurement) and modern analysis techniques (e.g., structural equation modeling) can 
help improve the situation.   

 
Would error-free measurement make a real difference? 

 
 To give a concrete example of how important good measurement is, we can use the 

example from my survey of the Educational Psychology literature from 1998 to 1999 
(Osborne, 2008b).  This survey consisted of recording all effects from all quantitative 
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studies published in the Journal of Educational Psychology (usually considered one of 
our top empirical journals) during the years 1998-1999.   

Studies from these years indicate a mean effect size (d) of 0.68, with a standard 
deviation of 0.37.  When these effect sizes are converted into simple correlation 
coefficients via direct algebraic manipulation (formulae and conversions derived from 
information in Cohen, 1988), d = .68 is equivalent to r = .32.  Effect sizes one standard 
deviation below and above the mean equate to rs of .16 and .46, respectively (we will 
use these to represent “small” and “large” effects in the example below). 

From the same review of the literature, where reliabilities (Cronbach’s α) are 
reported, the average reliability is about  α = .80, with a standard deviation of .10.   

Table 9.1 demonstrates what effects researchers might be expected to find if they 
had error-free measurement under a variety of scenarios.  In all three columns, we can 
see that observed effects are substantially under-estimated.  For example, looking at an 
average observed effect (r = 0.32), we can see that even if reliability was good (α = .90), 
the effect is under-estimated by 30%.  With “good” reliability of about α = 0.80 we can 
see this effect is under-estimated by 60%, and by over 100% if alphas were 0.70 (which 
is often considered acceptable in top journals).   

 
 
Table 9.1 
The effects of imperfect measurement from Educational Psychology literature. 
 
 And the observed effect was: 
If 
measurement 
was: 

Small effect 
( r  = .16, r 2 =  

.025) 

Average effect 
( r  = .32, r 2 =  

.10)  

Large effect 
(r  = .46, r 2 = 

.21)  
Poor  
(α  = .70) 

r = .23 
r2 = .052 

r = .46 
r2 = .21 

r = .66 
r2 = .43 

Average  
(α  = .80) 

r = .20 
r2 = .040 

r = .40 
r2 = .16 

r = .58 
r2 = .33 

Good 
(α  = .90) 

r = .18 
r2 = .032 

r = .36 
r2 = .13 

r = .51 
r2 = .26 

Note:  these data are adapted from those originally published in Osborne (2008b) 
 
An example from my research.  I now review an example from my personal 

research on identification with academics (self-concept vis a vis school).  In one study a 
long while ago, I administered two closely-related scales (the School Perceptions 
Questionnaire and the Identification with School questionnaire, (Osborne, 1997; 
Voelkl, 1997) to high school students.  Alphas were calculated to be α = 0.88 and 0.81, 
respectively.  These levels are widely considered “good.”  After averaging the items to 
create composite scores and testing assumptions, the simple correlation53 was calculated 
to be r = 0.75, which translates to a coefficient of determination (% variance accounted 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
53 You didn’t expect the guy writing the book on data cleaning to skip that part, did you?  All 
assumptions met. 
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for) of 0.56.  This is generally a pretty strong correlation for the social sciences, and is 
reasonable considering these are two measures of similar constructs.  The corrected 
correlation (formulae available in many places including (Cohen, Cohen, West, & 
Aiken, 2002) is calculated to be r = 0.89, which would represent a coefficient of 
determination of 0.79.  If we assume that this corrected effect size of 0.79 is the correct 
population estimate, the original correlation between two measures with “good” 
reliability lost almost 30% of the effect size.    

Although we cannot directly know the population correlation for this example, we 
can simulate what perfect measurement might yield as a correlation between these two 
variables using AMOS structural equation modeling software to construct latent 
variables representing each of these scales.  While structural equation modeling is a 
relatively advanced procedure, and getting into the intricacies of the analysis is beyond 
the scope of this chapter, for our purposes all you need to understand is that SEM can 
be used to estimate relationships between variables as though they were measured 
perfectly.  The estimate, therefore, of the correlation under perfect correlation was r = 
0.90 (coefficient of determination of 0.81), very close to the calculated corrected 
correlation effect size.   

Unfortunately, while alphas in the 0.80 range are common, published research based 
on data with much lower reliabilities are also not difficult to find.  In fact, it is not 
difficult to find alphas under 0.70, despite the fact that means that a substantial portion 
of the effect size is lost!  This should be considered an undesirable state of affairs in the 
21st century, particularly when it is relatively simple to improve measurement in scales 
by increasing item numbers or through analysis by using modern methods like 
structural equation modeling. 
 
Sample size and the precision/stability of alpha-empirical confidence 
intervals 
!

Fan and Thompson (2001) point out that few authors provide context in their 
papers as to the precision of their effect size point estimates.  But alpha is merely a 
point estimate like any other statistic that we have talked about thus far.  Alpha is also 
sample-dependent, with representative samples better than biased samples, and larger 
samples better than smaller samples.  When authors report alpha without the context of 
confidence intervals, readers have no way to understand how precise that estimate is, 
and how likely that alpha is to replicate.  As we briefly discussed earlier in the chapter, 
there have been attempts to construct methods to calculate CIs for alpha, but these 
have not gained traction in routine practice.  However, with bootstrapping, we can 
easily provide empirical estimates that are valuable for readers. 

 
Marsh SDQ.  First, let’s start with some exploration in the variability of alphas as a 

function of effect size.  Let us return to the Marsh SDQ example we have been using 
throughout the book.  The parent subscale is composed of 5 items; 

 
(Par1) My parents treat me fairly 
(Par2) I do not like my parents very much 
(Par3)  I get along well with my parents 
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(Par4) My parents are usually unhappy or disappointed with what I do 
(Par5) My parents understand me 

 
Obviously PAR2 and PAR4 are reversed in direction.  If you calculate alpha using 

these five items as is you will see a negative alpha (which is impossible) and some sage 
advice from SPSS (as you can see in Table 9.2): 

 
Table 9.2 
Initial alpha is negative from reverse coded items 

 
Reliability Statistics 

Cronbach's Alphaa N of Items 
-.338 5 

 
Item-Total Statistics 

 

Scale Mean 
if Item 

Deleted 

Scale 
Variance if 

Item Deleted 

Corrected 
Item-Total 
Correlation 

Cronbach's 
Alpha if Item 

Deleted 
Par1 13.41 4.864 .194 -.834a 
Par2 16.48 8.945 -.417 .195 
Par3 13.45 4.791 .175 -.829a 
Par4 16.03 8.790 -.406 .220 
Par5 13.89 4.188 .115 -.873a 
a. The value is negative due to a negative average covariance 
among items. This violates reliability model assumptions. You may 
want to check item codings. 

 
Table 9.3 
Final alpha statistics 

 
Item-Total Statistics 

 

Scale Mean 
if Item 

Deleted 

Scale 
Variance if 

Item Deleted 

Corrected 
Item-Total 
Correlation 

Cronbach's 
Alpha if Item 

Deleted 
Par1 19.1763 19.792 .643 .801 
Par2r 18.9161 19.525 .596 .812 
Par3 19.2172 18.575 .733 .776 
Par4r 19.3684 19.075 .569 .820 
Par5 19.6597 17.206 .659 .796 

 

Once the items are recoded so that they all have positive intercorrelations, α =  
0.834 with an N = 15661.  Further, the item-total correlations all range from 0.569 to 
0.733, which is reasonable.  If we saw very low statistics in that column, we could 
examine whether the scale was appropriate for modification/removal of that item.   

Let’s start with this as our gold standard “population” statistic, and see what small 
samples can do to the estimation of alpha.  I have seen alpha estimated on samples 
much smaller than 50, but will use that as our “small sample” example.  I had SPSS 
randomly pull 1000 samples of N = 50 each, and compute alpha for the same scale.   
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Figure'9.1:''Distribution'of'Cronbach’s'alpha'with'samples'of'N=50'

 

 
Figure'9.2:''Distribution'of'Cronbach’s'alpha'with'samples'of'N=100'
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As you can see in Figure 9.1, with such small samples, alpha became somewhat volatile.  
Interestingly, the mean alpha of the 1000 samples was 0.91, much higher than the 
“population” mean of  α = 0.83.  The range of observed alphas was from a low of α = 
0.76 to a high of α = 0.98.  Thus, with small samples, even a scale such as this (which 
has reasonably strong psychometric properties) had a good deal of volatility.  In 
particular, the small sample alphas seemed to tend toward significant over-estimation of 
alpha. 

 

'Figure'9.3:''Distribution'of'Cronbach’s'alpha'with'samples'of'N=250'

Doubling the sample size to N = 100 helped narrow range somewhat, but still 
allowed for some troubling outliers, as you can see in Figure 9.2.  The minimum was 
0.673, and the maximum was 0.938.  However, the mean was 0.88, which was closer to 
the “population” alpha.  Even at N = 250, the distribution of samples has a broad 
range (from α = 0.77 to 0.91, with a mean of α = 0.855, but a much smaller standard 
deviation, as you can see in Figure 9.3). 
 

Geriatric Depression Scale.  You may remember that the GDS gave us some 
problems when attempting to perform EFA, as it was unclear whether it was a single 
factor or multiple factors.  Let us assume that we decided it was a single factor 
(remember that alpha is not a test of unidimensionality!).  If we calculate alpha for the 
GDS, we estimate α =  0.889 and in interesting list of item statistics (presented in Table 
9.4).  If you examine the item-total correlations, you will see a wide range of 
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correlations, ranging between 0.256 and 0.615.  What this seems to indicate is that, if 
this is used as a single scale, there are items that could be deleted with little loss to 
reliability of measurement. 

Sample size also influenced the instability of alpha estimates for this scale.  With 
1000 random samples of N = 50 each examined, the range of alpha was 0.75 to 0.95, 
with a mean of 0.89.  Doubling the sample size to N = 100 in this case did not produce 
a significant improvement.  The range of alpha across 1000 samples was α = 0.74 to α 
= 0.93 (mean α =  0.87).  Increasing the sample size to N = 250 in this case decreased 
the variability a bit, with 100 samples of this size ranging from α = 0.80 to α = 0.91 
(mean α =  0.87).   

 
Table 9.4 
Item-total statistics for the GDS 

 
Item-Total Statistics 

 
Scale Mean 

if Item 
Deleted 

Scale 
Variance if 

Item Deleted 

Corrected 
Item-Total 

Correlation 

Cronbach's 
Alpha if Item 

Deleted 
GDS01 5.34 27.593 .523 .885 
GDS02 5.21 27.414 .403 .887 
GDS03 5.37 27.739 .545 .885 
GDS04 5.27 27.217 .504 .885 
GDS05 5.33 27.723 .456 .886 
GDS06 5.28 27.229 .512 .884 
GDS07 5.39 28.364 .401 .887 
GDS08 5.37 28.297 .363 .887 
GDS09 5.35 27.608 .540 .884 
GDS10 5.32 27.241 .575 .883 
GDS11 5.21 27.386 .411 .887 
GDS12 5.14 27.411 .365 .888 
GDS13 5.25 27.645 .380 .887 
GDS14 5.30 28.299 .256 .889 
GDS15 5.36 28.090 .415 .887 
GDS16 5.32 27.116 .612 .883 
GDS17 5.32 27.169 .615 .883 
GDS18 5.38 28.290 .388 .887 
GDS19 5.12 26.505 .549 .883 
GDS20 5.16 27.081 .446 .886 
GDS21 4.99 26.747 .464 .886 
GDS22 5.39 28.180 .479 .886 
GDS23 5.36 28.211 .373 .887 
GDS24 5.23 27.547 .382 .887 
GDS25 5.35 27.715 .521 .885 
GDS26 5.20 27.067 .478 .885 
GDS27 5.25 27.726 .355 .888 
GDS28 5.22 27.369 .421 .886 
GDS29 5.20 27.699 .329 .889 
GDS30 4.97 27.244 .363 .889 
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Does bootstrapping small samples provide valuable information?   
 
Ideally, bootstrap analyses of small samples would include the population parameter 

in the 95% confidence interval, and provide information about the precision of the 
estimate (and thus the potential replicability of the statistic).  To explore this, we return 
to the SDQ parent subscale (with reverse coded items).  I randomly selected a sample 
of N = 100 from the “population” of 15,661.  The alpha in this small sample was a 
good estimate of the population:  α = 0.84.  Analysis of 5000 bootstrapped samples 
revealed an empirical 95%CI of [0.77, 0.89], which does include the population 
parameter.  The broad span of the CI suggests other similar samples would see 
variation but all within a reasonable range.  

Larger samples produce more precise estimates and narrower confidence intervals.  
A bootstrap resampling analysis of a different random sample of N = 500 (see Figure 
9.4) produced a 95%CI of [0.80, 0.86].  

 
Figure 9.4:  Bootstrap resampling of the Marsh SDQ data set, N=500 each. 

 
Bootstrap analysis of item-total correlations.  We can bootstrap many different 

statistics, such as item-total correlations.  Table 9.5 presents bootstrapped estimates of 
the first 10 items from the GDS data using 5000 samples.  There is substantial variation 
(as presented in Figure 9.5) and some broad confidence intervals (e.g., item 8), and 
some narrower CIs (e.g., item 10).  I have purposely left the rest of the table blank so 
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you can have the enjoyment of playing with this analysis.  Your challenge is to fill in the 
rest (or at least some) of the table.   

 
Table 9.5 
Bootstrap analysis of GDS the first 10 item-total correlations. 

 

 
Average 

item-total 
correlation 

95% CI 
 

GDS01 0.44 0.26, 0.59 
GDS02 0.37 0.23, 0.50 
GDS03 0.50 0.33, 0.65 
GDS04 0.50 0.36, 0.63 
GDS05 0.48 0.32, 0.62 
GDS06 0.44 0.29, 0.58 
GDS07 0.19 0.04, 0.35 
GDS08 0.27 0.06, 0.46 
GDS09 0.43 0.25, 0.58 
GDS10 0.64 0.52, 0.74 

 
 

!
Figure 9.5:  Item-total correlation from GDS item #1 bootstrap analysis 
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Chapter 9 Summary  
 
Cronbach’s alpha is one of the most widely-reported statistics relating to reliability 

in the social sciences.  However, it is still not reported in a majority of articles in 
modern, high-quality research journals.  This might stem from the anachronistic 
assertion that scales are more or less reliable.  The modern view of reliability is that it is 
a property of the data and sample, not the scale or test, and as such, should be 
evaluated and reported in every study where it applies.   

Alpha is interpreted as an estimate of all possible split-half statistics, and can also be 
interpreted as the percent of variance that is “true score” variance.  Thus, if you have a 
measure with α = 0.80, there is about 80% that is “true score” and about 20% error in 
the measurement.  Of course, this is both a classical test theory view, and an estimate, 
since we just demonstrated that alpha can vary widely across samples (particularly small 
samples).   

This variability across samples is not something often discussed in the 
psychometrics literature, but it is important.  This highlights the view that reliability is a 
property of the sample, and should be attended to and reported in each study.  
Additionally, we reviewed an application of bootstrap analysis for estimation of 95% 
confidence intervals around alpha.   

 
Alternatives to alpha.  Alpha is the most widely-accepted evaluation of reliability 

(internal consistency) in the modern literature, despite the fact that most papers in top 
journals fail to report reliability information.  Alpha is over sixty years old, however, 
and in the meanwhile other alternatives have been developed.  Rasch modeling, for 
example, produces interesting information about reliability from that perspective, as 
does Item Response Theory analyses.  Structural equation modeling (SEM) allows us to 
explicitly model the latent construct and directly analyze it, eliminating the need for 
alpha altogether.  Where possible, it seems desirable to utilize modern measurement 
methodologies.   
!

! !
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Chapter 9 exercises 
   
 
1. Describe the conceptual meaning of Cronbach’s alpha.  If your scale has α = 

0.85, how do you interpret that number? 
2. Download the N = 100 and N = 500 random samples of the SDQ data from 

the book web site and replicate the bootstrapped 95%CIs for alpha.   
3. Using another data set from the book or your own data: 

a. Make sure all items are coded in the same direction (recode items 
where necessary) and calculate alpha.  Also examine the item-total 
correlations to see if any items could be removed from the scale to 
improve reliability. 

b. Bootstrap various size samples to see how confidence intervals around 
alpha become wider or narrower with sample size.   

c. Interpret alpha in terms of quality of measurement, and also discuss the 
results of bootstrap analysis.   

4. Explore bootstrap analysis of item-total correlations on the GDS data, 
replicating the first 10 items and filling in the rest.  Remember, your data will 
vary in small ways as you resample because of the random nature of the 
resampling.  However, the overall distributions and means should be close 
within a few decimal points. 
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10 SUMMARY AND CONCLUSIONS 
 
 

This journey started about a decade ago when one of my students walked into my 
office and shared with me her frustration over conflicting advice and directives from 
different doctoral committee members.  We talked for a while about exploratory factor 
analysis during that meeting, and I ended up deciding that there was not a clear 
literature on the issue, but that the issue at hand was an empirical question that we 
could answer together by running a bunch of simulations.  Our initial discussions and 
commitment to find empirically driven guidelines led to two articles and several 
conference presentations on best practices related to EFA, one of which (Costello and 
Osborne, 2005) has been cited about 2700 times as I write this.   

It has been a fun and unexpected journey.  I never set out to focus on EFA, but it is 
such a confounding, controversial, and mis-used technique that it has provided lots of 
fun and fodder for this type of endeavor.  After publishing each article, I routinely 
assumed that was the last time I would write on factor analysis.  It was never my goal to 
focus so much effort on EFA throughout a good portion of my career.  Then, after 
publishing my most recent book on logistic regression, I was mulling over the direction 
I would take for my next project.  I was leaning in a completely different direction – 
and still am—but woke up one morning and realized I needed to write this book first.  
I don’t know why, but it has been fun bringing this decade-long strand of work to 
fruition in a single place, and adding new perspectives (bootstrap analysis, for example).   

I hope you agree it has been worthwhile.  My goal is to collect and elaborate on the 
lessons learned over the recent decade, and to put them in a single place that is easily 
accessible.  For those of you who have persevered and have reached this part of the 
book, I hope that you have drawn the following conclusions: 

 
1.  Keep the “E” in EFA!  Many researchers have attempted to perform 

confirmatory analyses by performing exploratory analyses.  Many researchers use 
confirmatory language and draw confirmatory conclusions after performing exploratory 
analyses.  This is not appropriate.  EFA is a fun and important technique, but it is what 
it is.  We need to remember to honor that and use confirmatory techniques when we 
desire to draw those types of conclusions.   
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2.  EFA is a large sample technique.  I hope that through the course of the book 
you have become convinced that the best results from EFA come when the sample is 
appropriately large.  A starting point for that is a sample that includes 20 cases for each 
variable in the analysis—and that is what I would consider the minimum, not the 
maximum, if you want a robust, generalizable result.  I have had students and 
colleagues show me analyses that had fewer cases than variables.  That is never a good 
state of affairs, in my opinion. 

 
3.  Useful results are those that are precise and generalizable.  In my mind, the 

most useful results are those that we can generalize to other samples, or use to draw 
good inferences about the population as a whole.  In my mind, the worst use of 
anyone’s time is to publish or present results that are not replicable, or are so imprecise 
that we cannot draw any conclusions about anything other than the individuals in the 
original sample.   Large samples and clean data (in addition to strong factor loadings 
and larger numbers of strongly-loading variables per factor) contribute to this mission.  
Small samples and weak loadings (and few variables per factor) make for messy, 
conflicting, and useless results.   

 
4.  Principal Components Analysis is not Exploratory Factor Analysis.  I 

cannot tell you how tired I am of this debate, and of those who insist there is a use for 
PCA.  Honestly, I don’t really care which side of the debate you are on.  If you feel 
some compelling reason to use PCA, then I hope this book can guide you as well.  
Most of the best practices we have covered in this book also apply to PCA.  If you 
insist on using PCA, at least do it with large samples, clean data, and with the 
limitations of the procedure clearly and overtly admitted.  ANOVA has limitations too, 
but I use it on occasion, when appropriate, and with best practices in mind.   

 
5.  If you use EFA, don’t use the defaults!  If you want to consider yourself to be 

modeling and exploring latent variables in the best way possible, you want to use ML or 
PAF extraction (depending on whether your data meets the assumptions of ML), and I 
think you want to use oblique rotation (either Oblimin or Promax seems to work fine 
in most cases—if one doesn’t work, try the other).  Scholars in this area spend so much 
energy arguing about which extraction or rotation technique is best.  But keep mantra 
in mind- this is just an exploration.  Thus, it is a low-stakes endeavor.  Whatever you 
find from EFA has to be confirmed in a large sample confirmatory analysis.  With this 
in mind, all this arguing seems to be a bit of a waste of effort, in my opinion.   

 
6. Use multiple decision rules when deciding how many factors to extract.  

Another point of constant argument in this field seems to be what decision rule is best 
in guiding someone on how many factors to extract.  We reviewed several, and none 
are perfect.  Just in our three examples, one had a clearly uninterpretable scree plot, one 
parallel analysis produced what I consider to be questionable guidance, and one MAP 
analysis that was clearly (to my eye, anyway) ambiguous.  The other criteria were also at 
times confusing and problematic.  The best guide is theory, and beyond that, whatever 
provides the results that make the most sense.  If you cannot make sense of the results—in 
other words, if you cannot easily explain to someone what each factor means—then 
you need to go back to exploring.  Because any model you produce has to be 
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confirmed with CFA in the context of a new sample, this seems to me the most 
sensible approach.  Thanks to Brian O’Connor, we have easily accessible ways of trying 
out modern decision criteria (MAP, Parallel analysis).  Use them, but no one decision 
rule will be perfect in all situations.  

 
7.  Replicate your results.  If you have two good samples, you can present 

replication statistics like I reviewed in Chapter 4, or you can put a single sample to 
work in bootstrap analysis, like I explored in Chapter 5.  It’s not easy nor is it 
automatic, but with the syntax/macro I share, it is not impossible.  And I think that it 
provides invaluable perspective on your results.  I wish this mandate to replicate results 
would permeate every research lab, regardless of what statistical techniques they use.  
The lessons contained in these chapters are equally valid if you are performing 
ANOVA or regression analyses, hierarchical linear modeling, or nonparametric 
techniques.  Replicate your results, bootstrap your analyses, and report (and interpret) 
confidence intervals for important effects so we, as readers, can get more out of the 
hard work you put into your research. 

 
8.  Clean your data, and deal with missing data appropriately.  Garbage in, 

garbage out.  I won’t belabor this point- but I hope you take it seriously.  If I don’t see 
you address whether you checked your data, tested assumptions, and dealt 
appropriately with missing data, I am going to be wondering whether anything else you 
report matters.   

 
9.  Have fun!  The ability and training to perform research like this is a wonderful 

gift.  I have been lucky enough to spend the last twenty-five years doing quantitative 
research, primarily in the social sciences, and I have enjoyed every minute of it.  Those 
of us who perform data analysis54 are the ones who are present at the moment each tiny 
bit of knowledge is created.  We create knowledge- we ask questions and find answers.  
Sometimes those answers are not what we expect, which is an opportunity to ask better 
questions or learn something unexpected.  I cannot think of a more rewarding way to 
spend my career, and I hope each one of you experiences the same joy and thrill from 
your research.   
 

Thank you for taking time to read my work.  I always welcome feedback or 
communication from readers.  The best way to reach me is through email at:  
jasonwosborne@gmail.com.  I hope you find the ancillary materials I will put, and will 
continue to develop, on my website (http://jwosborne.com) useful.  Happy 
researching! 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
54 My respected colleagues who perform qualitative research are included in this 
generalization here.  What I find so compelling is the process of analyzing data, not the 
mode of analysis. 
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