About
115
Publications
10,718
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,983
Citations
Current institution
Publications
Publications (115)
Weak-to-strong (W2S) generalization is a type of finetuning (FT) where a strong (large) student model is trained on pseudo-labels generated by a weak teacher. Surprisingly, W2S FT often outperforms the weak teacher. We seek to understand this phenomenon through the observation that FT often occurs in intrinsically low-dimensional spaces. Leveraging...
Large language models have demonstrated an impressive ability to perform factual recall. Prior work has found that transformers trained on factual recall tasks can store information at a rate proportional to their parameter count. In our work, we show that shallow transformers can use a combination of associative memories to obtain such near optima...
In deep learning theory, a critical question is to understand how neural networks learn hierarchical features. In this work, we study the learning of hierarchical polynomials of \textit{multiple nonlinear features} using three-layer neural networks. We examine a broad class of functions of the form $f^{\star}=g^{\star}\circ \bp$, where $\bp:\mathbb...
This work investigates stepsize-based acceleration of gradient descent with {\em anytime} convergence guarantees. For smooth (non-strongly) convex optimization, we propose a stepsize schedule that allows gradient descent to achieve convergence guarantees of $O(T^{-1.03})$ for any stopping time $T$, where the stepsize schedule is predetermined witho...
Optimization in deep learning remains poorly understood, even in the simple setting of deterministic (i.e. full-batch) training. A key difficulty is that much of an optimizer's behavior is implicitly determined by complex oscillatory dynamics, referred to as the "edge of stability." The main contribution of this paper is to show that an optimizer's...
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods...
We study the problem of learning an approximate equilibrium in the offline multi-agent reinforcement learning (MARL) setting. We introduce a structural assumption -- the interaction rank -- and establish that functions with low interaction rank are significantly more robust to distribution shift compared to general ones. Leveraging this observation...
Language model alignment methods, such as reinforcement learning from human feedback (RLHF), have led to impressive advances in language model capabilities, but existing techniques are limited by a widely observed phenomenon known as overoptimization, where the quality of the language model plateaus or degrades over the course of the alignment proc...
Optimization of convex functions under stochastic zeroth-order feedback has been a major and challenging question in online learning. In this work, we consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries. We provide the f...
A central issue lying at the heart of online reinforcement learning (RL) is data efficiency. While a number of recent works achieved asymptotically minimal regret in online RL, the optimality of these results is only guaranteed in a ``large-sample'' regime, imposing enormous burn-in cost in order for their algorithms to operate optimally. How to ac...
The recent surge of large language models (LLMs) highlights their ability to perform in-context learning, i.e., "learning" to perform a task from a few demonstrations in the context without any parameter updates. However, their capabilities of in-context learning are limited by the model architecture: 1) the use of demonstrations is constrained by...
In stochastic zeroth-order optimization, a problem of practical relevance is understanding how to fully exploit the local geometry of the underlying objective function. We consider a fundamental setting in which the objective function is quadratic, and provide the first tight characterization of the optimal Hessian-dependent sample complexity. Our...
Reinforcement Learning with Human Feedback (RLHF) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories, rather than explicit reward signals. While RLHF has demonstrated practical success in fine-tuning language models, existing empirical work does not address the challenge of how t...
The extraordinary capabilities of large language models (LLMs) such as ChatGPT and GPT-4 are in part unleashed by aligning them with reward models that are trained on human preferences, which are often represented as rankings of responses to prompts. In this paper, we document the phenomenon of \textit{reward collapse}, an empirical observation whe...
Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a prohibitively large amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients using only two forward passes but are theorized to be catastrophically slow for optimizing large models. In this wo...
In this paper, we investigate the problem of offline reinforcement learning with human feedback where feedback is available in the form of preference between trajectory pairs rather than explicit rewards. Our proposed algorithm consists of two main steps: (1) estimate the implicit reward using Maximum Likelihood Estimation (MLE) with general functi...
This paper studies tabular reinforcement learning (RL) in the hybrid setting, which assumes access to both an offline dataset and online interactions with the unknown environment. A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset and enable effective policy fine-tunin...
We focus on the task of learning a single index model $\sigma(w^\star \cdot x)$ with respect to the isotropic Gaussian distribution in $d$ dimensions. Prior work has shown that the sample complexity of learning $w^\star$ is governed by the information exponent $k^\star$ of the link function $\sigma$, which is defined as the index of the first nonze...
One of the central questions in the theory of deep learning is to understand how neural networks learn hierarchical features. The ability of deep networks to extract salient features is crucial to both their outstanding generalization ability and the modern deep learning paradigm of pretraining and finetuneing. However, this feature learning proces...
Policy optimization methods with function approximation are widely used in multi-agent reinforcement learning. However, it remains elusive how to design such algorithms with statistical guarantees. Leveraging a multi-agent performance difference lemma that characterizes the landscape of multi-agent policy optimization, we find that the localized ac...
Temporal difference learning (TD), coupled with neural networks, is among the most fundamental building blocks of deep reinforcement learning. However, because of the nonlinearity in value function approximation, such a coupling leads to nonconvexity and even divergence in optimization. As a result, the global convergence of neural TD remains uncle...
We study decentralized learning in two-player zero-sum discounted Markov games where the goal is to design a policy optimization algorithm for either agent satisfying two properties. First, the player does not need to know the policy of the opponent to update its policy. Second, when both players adopt the algorithm, their joint policy converges to...
Value function approximation is important in modern reinforcement learning (RL) problems especially when the state space is (infinitely) large. Despite the importance and wide applicability of value function approximation, its theoretical understanding is still not as sophisticated as its empirical success, especially in the context of general func...
In offline reinforcement learning (RL) we have no opportunity to explore so we must make assumptions that the data is sufficient to guide picking a good policy, taking the form of assuming some coverage, realizability, Bellman completeness, and/or hard margin (gap). In this work we propose value-based algorithms for offline RL with PAC guarantees u...
It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in training machine learning models. This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem, whose goal is to recover a low-rank ground-truth matrix from near-isotropic linear measurements. It is shown that GD wit...
Understanding when and how much a model gradient leaks information about the training sample is an important question in privacy. In this paper, we present a surprising result: even without training or memorizing the data, we can fully reconstruct the training samples from a single gradient query at a randomly chosen parameter value. We prove the i...
Traditional analyses of gradient descent show that when the largest eigenvalue of the Hessian, also known as the sharpness $S(\theta)$, is bounded by $2/\eta$, training is "stable" and the training loss decreases monotonically. Recent works, however, have observed that this assumption does not hold when training modern neural networks with full bat...
In this paper we study online Reinforcement Learning (RL) in partially observable dynamical systems. We focus on the Predictive State Representations (PSRs) model, which is an expressive model that captures other well-known models such as Partially Observable Markov Decision Processes (POMDP). PSR represents the states using a set of predictions of...
Significant theoretical work has established that in specific regimes, neural networks trained by gradient descent behave like kernel methods. However, in practice, it is known that neural networks strongly outperform their associated kernels. In this work, we explain this gap by demonstrating that there is a large class of functions which cannot b...
We study decentralized policy learning in Markov games where we control a single agent to play with nonstationary and possibly adversarial opponents. Our goal is to develop a no-regret online learning algorithm that (i) takes actions based on the local information observed by the agent and (ii) is able to find the best policy in hindsight. For such...
We give novel algorithms for multi-task and lifelong linear bandits with shared representation. Specifically, we consider the setting where we play $M$ linear bandits with dimension $d$, each for $T$ rounds, and these $M$ bandit tasks share a common $k(\ll d)$ dimensional linear representation. For both the multi-task setting where we play the task...
Policy-based methods with function approximation are widely used for solving two-player zero-sum games with large state and/or action spaces. However, it remains elusive how to obtain optimization and statistical guarantees for such algorithms. We present a new policy optimization algorithm with function approximation and prove that under standard...
Sample-efficiency guarantees for offline reinforcement learning (RL) often rely on strong assumptions on both the function classes (e.g., Bellman-completeness) and the data coverage (e.g., all-policy concentrability). Despite the recent efforts on relaxing these assumptions, existing works are only able to relax one of the two factors, leaving the...
Hierarchical reinforcement learning (HRL) has seen widespread interest as an approach to tractable learning of complex modular behaviors. However, existing work either assume access to expert-constructed hierarchies, or use hierarchy-learning heuristics with no provable guarantees. To address this gap, we analyze HRL in the meta-RL setting, where a...
In this work, a gradient based primal-dual method of multipliers is proposed for solving a class of linearly constrained non-convex problems. We show that with random initialization of the primal and dual variables, the algorithm is able to compute second-order stationary points (SOSPs) with probability one. Further, we present applications of the...
This paper considers two-player zero-sum finite-horizon Markov games with simultaneous moves. The study focuses on the challenging settings where the value function or the model is parameterized by general function classes. Provably efficient algorithms for both decoupled and {coordinated} settings are developed. In the {decoupled} setting where th...
Deep Reinforcement Learning (RL) powered by neural net approximation of the Q function has had enormous empirical success. While the theory of RL has traditionally focused on linear function approximation (or eluder dimension) approaches, little is known about nonlinear RL with neural net approximations of the Q functions. This is the focus of this...
Bandit problems with linear or concave reward have been extensively studied, but relatively few works have studied bandits with non-concave reward. This work considers a large family of bandit problems where the unknown underlying reward function is non-concave, including the low-rank generalized linear bandit problems and two-layer neural network...
Eluder dimension and information gain are two widely used methods of complexity measures in bandit and reinforcement learning. Eluder dimension was originally proposed as a general complexity measure of function classes, but the common examples of where it is known to be small are function spaces (vector spaces). In these cases, the primary tool to...
Transfer learning is essential when sufficient data comes from the source domain, with scarce labeled data from the target domain. We develop estimators that achieve minimax linear risk for linear regression problems under distribution shift. Our algorithms cover different transfer learning settings including covariate shift and model shift. We als...
In overparametrized models, the noise in stochastic gradient descent (SGD) implicitly regularizes the optimization trajectory and determines which local minimum SGD converges to. Motivated by empirical studies that demonstrate that training with noisy labels improves generalization, we study the implicit regularization effect of SGD with label nois...
Representation learning has been widely studied in the context of meta-learning, enabling rapid learning of new tasks through shared representations. Recent works such as MAML have explored using fine-tuning-based metrics, which measure the ease by which fine-tuning can achieve good performance, as proxies for obtaining representations. We present...
This work introduces Bilinear Classes, a new structural framework, which permit generalization in reinforcement learning in a wide variety of settings through the use of function approximation. The framework incorporates nearly all existing models in which a polynomial sample complexity is achievable, and, notably, also includes new models, such as...
One of the central problems in machine learning is domain adaptation. Unlike past theoretical work, we consider a new model for subpopulation shift in the input or representation space. In this work, we propose a provably effective framework for domain adaptation based on label propagation. In our analysis, we use a simple but realistic ``expansion...
Policy gradient methods are widely used in solving two-player zero-sum games to achieve superhuman performance in practice. However, it remains elusive when they can provably find a near-optimal solution and how many samples and iterations are needed. The current paper studies natural extensions of Natural Policy Gradient algorithm for solving two-...
Over-parametrization is an important technique in training neural networks. In both theory and practice, training a larger network allows the optimization algorithm to avoid bad local optimal solutions. In this paper we study a closely related tensor decomposition problem: given an $l$-th order tensor in $(R^d)^{\otimes l}$ of rank $r$ (where $r\ll...
We study how representation learning can improve the efficiency of bandit problems. We study the setting where we play $T$ linear bandits with dimension $d$ concurrently, and these $T$ bandit tasks share a common $k (\ll d)$ dimensional linear representation. For the finite-action setting, we present a new algorithm which achieves $\widetilde{O}(T\...
Meta-learning aims to perform fast adaptation on a new task through learning a "prior" from multiple existing tasks. A common practice in meta-learning is to perform a train-validation split where the prior adapts to the task on one split of the data, and the resulting predictor is evaluated on another split. Despite its prevalence, the importance...
Network pruning is a method for reducing test-time computational resource requirements with minimal performance degradation. Conventional wisdom of pruning algorithms suggests that: (1) Pruning methods exploit information from training data to find good subnetworks; (2) The architecture of the pruned network is crucial for good performance. In this...
Self-supervised representation learning solves auxiliary prediction tasks (known as pretext tasks), that do not require labeled data, to learn semantic representations. These pretext tasks are created solely using the input features, such as predicting a missing image patch, recovering the color channels of an image from context, or predicting miss...
We provide a detailed asymptotic study of gradient flow trajectories and their implicit optimization bias when minimizing the exponential loss over "diagonal linear networks". This is the simplest model displaying a transition between "kernel" and non-kernel ("rich" or "active") regimes. We show how the transition is controlled by the relationship...
The noise in stochastic gradient descent (SGD) provides a crucial implicit regularization effect for training overparameterized models. Prior theoretical work largely focuses on spherical Gaussian noise, whereas empirical studies demonstrate the phenomenon that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far mor...
We propose signed splitting steepest descent (S3D), which progressively grows neural architectures by splitting critical neurons into multiple copies, following a theoretically-derived optimal scheme. Our algorithm is a generalization of the splitting steepest descent (S2D) of Liu et al. (2019b), but significantly improves over it by incorporating...
This paper studies few-shot learning via representation learning, where one uses $T$ source tasks with $n_1$ data per task to learn a representation in order to reduce the sample complexity of a target task for which there is only $n_2 (\ll n_1)$ data. Specifically, we focus on the setting where there exists a good \emph{common representation} betw...
A recent line of work studies overparametrized neural networks in the "kernel regime," i.e. when the network behaves during training as a kernelized linear predictor, and thus training with gradient descent has the effect of finding the minimum RKHS norm solution. This stands in contrast to other studies which demonstrate how gradient descent on ov...
The current paper studies the problem of agnostic $Q$-learning with function approximation in deterministic systems where the optimal $Q$-function is approximable by a function in the class $\mathcal{F}$ with approximation error $\delta \ge 0$. We propose a novel recursion-based algorithm and show that if $\delta = O\left(\rho/\sqrt{\dim_E}\right)$...
We study the optimization problem for decomposing $d$ dimensional fourth-order Tensors with $k$ non-orthogonal components. We derive \textit{deterministic} conditions under which such a problem does not have spurious local minima. In particular, we show that if $\kappa = \frac{\lambda_{max}}{\lambda_{min}} < \frac{5}{4}$, and incoherence coefficien...
Neural networks are vulnerable to adversarial examples, i.e. inputs that are imperceptibly perturbed from natural data and yet incorrectly classified by the network. Adversarial training, a heuristic form of robust optimization that alternates between minimization and maximization steps, has proven to be among the most successful methods to train n...
A recent line of work studies overparametrized neural networks in the ``kernel regime,'' i.e.~when the network behaves during training as a kernelized linear predictor, and thus training with gradient descent has the effect of finding the minimum RKHS norm solution. This stands in contrast to other studies which demonstrate how gradient descent on...
With an eye toward understanding complexity control in deep learning, we study how infinitesimal regularization or gradient descent optimization lead to margin maximizing solutions in both homogeneous and non-homogeneous models, extending previous work that focused on infinitesimal regularization only in homogeneous models. To this end we study the...
Recent applications that arise in machine learning have surged significant interest in solving min-max saddle point games. This problem has been extensively studied in the convex-concave regime for which a global equilibrium solution can be computed efficiently. In this paper, we study the problem in the non-convex regime and show that an \varepsil...
In this short note, we consider the problem of solving a min-max zero-sum game. This problem has been extensively studied in the convex-concave regime where the global solution can be computed efficiently. Recently, there have also been developments for finding the first order stationary points of the game when one of the player's objective is conc...
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a deep over-parameterized neural network with residual connections (ResNet). Our analysis relies on the particular structure of the Gra...
Past works have shown that, somewhat surprisingly, over-parametrization can help generalization in neural networks. Towards explaining this phenomenon, we adopt a margin-based perspective. We establish: 1) for multi-layer feedforward relu networks, the global minimizer of a weakly-regularized cross-entropy loss has the maximum normalized margin amo...
We consider the problem of finding an approximate second-order stationary point of a constrained non-convex optimization problem. We first show that, unlike the unconstrained scenario, the vanilla projected gradient descent algorithm may converge to a strict saddle point even when there is only a single linear constraint. We then provide a hardness...
The Cheap Gradient Principle (Griewank 2008) --- the computational cost of computing the gradient of a scalar-valued function is nearly the same (often within a factor of $5$) as that of simply computing the function itself --- is of central importance in optimization; it allows us to quickly obtain (high dimensional) gradients of scalar loss funct...
We study the implicit regularization imposed by gradient descent for learning multi-layer homogeneous functions including feed-forward fully connected and convolutional deep neural networks with linear, ReLU or Leaky ReLU activation. We rigorously prove that gradient flow (i.e. gradient descent with infinitesimal step size) effectively enforces the...
We show that gradient descent on full-width linear convolutional networks of depth $L$ converges to a linear predictor related to the $\ell_{2/L}$ bridge penalty in the frequency domain. This is in contrast to linearly fully connected networks, where gradient descent converges to the hard margin linear support vector machine solution, regardless of...
One of the main difficulties in analyzing neural networks is the non-convexity of the loss function which may have many bad local minima. In this paper, we study the landscape of neural networks for binary classification tasks. Under mild assumptions, we prove that after adding one special neuron with a skip connection to the output, or one special...
This work considers the question: what convergence guarantees does the stochastic subgradient method have in the absence of smoothness and convexity? We prove that the stochastic subgradient method, on any semialgebraic locally Lipschitz function, produces limit points that are all first-order stationary. More generally, our result applies to any f...
This work considers the question: what convergence guarantees does the stochastic subgradient method have in the absence of smoothness and convexity? We prove that the stochastic subgradient method, on any semialgebraic locally Lipschitz function, produces limit points that are all first-order stationary. More generally, our result applies to any f...
The implicit bias of gradient descent is not fully understood even in simple linear classification tasks (e.g., logistic regression). Soudry et al. (2018) studied this bias on separable data, where there are multiple solutions that correctly classify the data. It was found that, when optimizing monotonically decreasing loss functions with exponenti...
We provide new theoretical insights on why over-parametrization is effective in learning neural networks. For a $k$ hidden node shallow network with quadratic activation and $n$ training data points, we show as long as $ k \ge \sqrt{2n}$, over-parametrization enables local search algorithms to find a \emph{globally} optimal solution for general smo...
In this work, we study two first-order primal-dual based algorithms, the Gradient Primal-Dual Algorithm (GPDA) and the Gradient Alternating Direction Method of Multipliers (GADMM), for solving a class of linearly constrained non-convex optimization problems. We show that with random initialization of the primal and dual variables, both algorithms a...
We study the bias of generic optimization methods, including Mirror Descent, Natural Gradient Descent and Steepest Descent with respect to different potentials and norms, when optimizing underdetermined linear regression or separable linear classification problems. We ask the question of whether the global minimum (among the many possible global mi...
Generative Adversarial Networks (GANs) are one of the most practical methods for learning data distributions. A popular GAN formulation is based on the use of Wasserstein distance as a metric between probability distributions. Unfortunately, minimizing the Wasserstein distance between the data distribution and the generative model distribution is a...
We consider the problem of learning a one-hidden-layer neural network with non-overlapping convolutional layer and ReLU activation function, i.e., $f(\mathbf{Z}; \mathbf{w}, \mathbf{a}) = \sum_j a_j\sigma(\mathbf{w}^\top\mathbf{Z}_j)$, in which both the convolutional weights $\mathbf{w}$ and the output weights $\mathbf{a}$ are parameters to be lear...
We consider the problem of learning a one-hidden-layer neural network: we assume the input $x\in \R^d$ is from Gaussian distribution and the label $y = a^\top \sigma(Bx) + \xi$, where $a$ is a nonnegative vector in $\R^m$ with $m\le d$, $B\in \R^{m\times d}$ is a full-rank weight matrix, and $\xi$ is a noise vector. We first give an analytic formul...
We establish that first-order methods avoid saddle points for almost all initializations. Our results apply to a wide variety of first-order methods, including gradient descent, block coordinate descent, mirror descent and variants thereof. The connecting thread is that such algorithms can be studied from a dynamical systems perspective in which ap...
We establish that first-order methods avoid saddle points for almost all initializations. Our results apply to a wide variety of first-order methods, including gradient descent, block coordinate descent, mirror descent and variants thereof. The connecting thread is that such algorithms can be studied from a dynamical systems perspective in which ap...
We analyze the convergence of (stochastic) gradient descent algorithm for learning a convolutional filter with Rectified Linear Unit (ReLU) activation function. Our analysis does not rely on any specific form of the input distribution and our proofs only use the definition of ReLU, in contrast with previous works that are restricted to standard Gau...
We propose a fast proximal Newton-type algorithm for minimizing regularized finite sums that returns an $\epsilon$-suboptimal point in $\tilde{\mathcal{O}}(d(n + \sqrt{\kappa d})\log(\frac{1}{\epsilon}))$ FLOPS, where $n$ is number of samples, $d$ is feature dimension, and $\kappa$ is the condition number. As long as $n > d$, the proposed method is...
In this paper we study the problem of learning a shallow artificial neural network that best fits a training data set. We study this problem in the over-parameterized regime where the number of observations are fewer than the number of parameters in the model. We show that with quadratic activations the optimization landscape of training such shall...
In this paper we study the problem of learning a shallow artificial neural network that best fits a training data set. We study this problem in the over-parameterized regime where the number of observations are fewer than the number of parameters in the model. We show that with quadratic activations the optimization landscape of training such shall...
Although gradient descent (GD) almost always escapes saddle points asymptotically [Lee et al., 2016], this paper shows that even with fairly natural random initialization schemes and non-pathological functions, GD can be significantly slowed down by saddle points, taking exponential time to escape. On the other hand, gradient descent with perturbat...
Hypothesis testing in the linear regression model is a fundamental statistical problem. We consider linear regression in the high-dimensional regime where the number of parameters exceeds the number of samples ($p> n$) and assume that the high-dimensional parameters vector is $s_0$ sparse. We develop a general and flexible $\ell_\infty$ projection...
Hypothesis testing in the linear regression model is a fundamental statistical problem. We consider linear regression in the high-dimensional regime where the number of parameters exceeds the number of samples ($p> n$). In order to make informative inference, we assume that the model is approximately sparse, that is the effect of covariates on the...
We devise a communication-efficient approach to distributed sparse regression in the high-dimensional setting. The key idea is to average "debiased" or "desparsified" lasso estimators. We show the approach converges at the same rate as the lasso as long as the dataset is not split across too many machines, and consistently estimates the support und...
The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing work focuses on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of the true model...
The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model para...
Importance sampling is widely used in machine learning and statistics, but its power is limited by the restriction of using simple proposals for which the importance weights can be tractably calculated. We address this problem by studying black-box importance sampling methods that calculate importance weights for samples generated from any unknown...
Sketching techniques have become popular for scaling up machine learning algorithms by reducing the sample size or dimensionality of massive data sets, while still maintaining the statistical power of big data. In this paper, we study sketching from an optimization point of view: we first show that the iterative Hessian sketch is an optimization pr...
Sketching techniques have become popular for scaling up machine learning algorithms by reducing the sample size or dimensionality of massive data sets, while still maintaining the statistical power of big data. In this paper, we study sketching from an optimization point of view: we first show that the iterative Hessian sketch is an optimization pr...
We develop a general approach to valid inference after model selection. At the core of our framework is a result that characterizes the distribution of a post-selection estimator conditioned on the selection event.We specialize the approach to model selection by the lasso to form valid confidence intervals for the selected coefficients and test whe...
We present the Communication-efficient Surrogate Likelihood (CSL) framework for solving distributed statistical learning problems. CSL provides a communication-efficient surrogate to the global likelihood that can be used for low-dimensional estimation, high-dimensional regularized estimation and Bayesian inference. For low-dimensional estimation,...
Matrix completion is a basic machine learning problem that has wide applications, especially in collaborative filtering and recommender systems. Simple non-convex optimization algorithms are popular and effective in practice. Despite recent progress in proving various non-convex algorithms converge from a good initial point, it remains unclear why...
We show that gradient descent converges to a local minimizer, almost surely with random initialization. This is proved by applying the Stable Manifold Theorem from dynamical systems theory.
We derive a new discrepancy statistic for measuring differences between two probability distributions based on a novel combination of Stein's method and the reproducing kernel Hilbert space theory. We apply our result to test how well a probabilistic model fits a set of observations, and derive a new class of powerful goodness-of-fit tests that are...
We study non-convex empirical risk minimization for learning halfspaces and
neural networks. For loss functions that are $L$-Lipschitz continuous, we
present algorithms to learn halfspaces and multi-layer neural networks that
achieve arbitrarily small excess risk $\epsilon>0$. The time complexity is
polynomial in the input dimension $d$ and the sam...