Jason P. Dworkin

Jason P. Dworkin
Verified
Jason verified their affiliation via an institutional email.
Verified
Jason verified their affiliation via an institutional email.
  • Ph.D.
  • Senior Scientist at National Aeronautics and Space Administration

Full text of most publications are available at: https://science.gsfc.nasa.gov/sed/bio/jason.p.dworkin

About

359
Publications
106,988
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
21,812
Citations
Introduction
All of my NASA-funded manuscripts (virtually all of them) can be downloaded at https://science.gsfc.nasa.gov/sed/bio/jason.p.dworkin
Current institution
National Aeronautics and Space Administration
Current position
  • Senior Scientist
Additional affiliations
September 2002 - present
July 1997 - September 2002
August 1991 - June 1997
University of California, San Diego
Position
  • PhD Student

Publications

Publications (359)
Article
Full-text available
Organic molecules preserved in ancient Martian rocks provide a critical record of the past habitability of Mars and could be chemical biosignatures. Experiments conducted by the Sample Analysis at Mars instrument onboard the Curiosity rover have previously reported several classes of indigenous chlorinated and sulfur-containing organic compounds in...
Article
Full-text available
The OSIRIS‐REx mission returned a sample of regolith from the carbonaceous asteroid Bennu in September 2023. We present preliminary in situ investigations of the petrology and petrography of selected particles ranging in size from 0.5 to 3 mm. Using a combination of optical and electron beam techniques, we investigate whole specimens and polished s...
Article
Full-text available
Evaporation or freezing of water-rich fluids with dilute concentrations of dissolved salts can produce brines, as observed in closed basins on Earth¹ and detected by remote sensing on icy bodies in the outer Solar System2,3. The mineralogical evolution of these brines is well understood in regard to terrestrial environments⁴, but poorly constrained...
Article
Full-text available
Organic matter in meteorites reveals clues about early Solar System chemistry and the origin of molecules important to life, but terrestrial exposure complicates interpretation. Samples returned from the B-type asteroid Bennu by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer mission enabled us to study...
Article
Full-text available
Rationale Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass con...
Article
Full-text available
Amino acids have been identified in extraterrestrial materials such as meteorites and returned samples from asteroids and comets. Some of these amino acids or their precursors may have formed on icy interstellar dust grains or at a later phase when these grains became incorporated into larger parent bodies. In this work, we simulated parent body aq...
Article
Full-text available
Understanding how organics degrade under galactic cosmic rays (GCRs) is critical as we search for traces of ancient life on Mars. Even if the planet harbored life early in its history, its surface rocks have been exposed to ionizing radiation for about four billion years, potentially destroying the vast majority of biosignatures. In this study, we...
Article
Full-text available
Modern life is essentially homochiral, containing D-sugars in nucleic acid backbones and L-amino acids in proteins. Since coded proteins are theorized to have developed from a prebiotic RNA World, the homochirality of L-amino acids observed in all known life presumably resulted from chiral transfer from a homochiral D-RNA World. This transfer would...
Article
Full-text available
Returned samples from the carbonaceous asteroid (162173) Ryugu provide pristine information on the original aqueous alteration history of the Solar System. Secondary precipitates, such as carbonates and phyllosilicates, reveal elemental partitioning of the major component ions linked to the primordial brine composition of the asteroid. Here, we rep...
Article
Samples of B‐type asteroid (101955) Bennu returned by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) spacecraft will provide unique insight into the nature of carbonaceous asteroidal matter without the atmospheric entry heating or terrestrial weathering effects associated with meteoritic s...
Article
Full-text available
We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic ac...
Article
Full-text available
Mars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impact...
Article
Europa and Enceladus are key targets to search for evidence of life in our solar system. However, the surface and shallow subsurface of both airless icy moons are constantly bombarded by ionizing radiation that could degrade chemical biosignatures. Therefore, sampling of icy surfaces in future life detection missions to Europa and Enceladus require...
Article
Full-text available
On September 24, 2023, NASA's OSIRIS‐REx mission dropped a capsule to Earth containing ~120 g of pristine carbonaceous regolith from Bennu. We describe the delivery and initial allocation of this asteroid sample and introduce its bulk physical, chemical, and mineralogical properties from early analyses. The regolith is very dark overall, with highe...
Article
Full-text available
We analyzed 12 Apollo 17 samples through the Apollo Next Generation Sample Analysis (ANGSA) program to determine the abundances of a variety of compound classes, including amino acids, aldehydes, ketones, amines, carboxylic acids, and cyanide‐releasing species. Analyzed samples included portions of double drive tube 73001/73002, the bottom half of...
Article
Full-text available
Volatile organic compounds (VOCs) are carbon‐containing chemicals that may evaporate rapidly at room temperature and standard pressure. Such organic compounds can be preserved inside carbonaceous chondrite matrices. However, unlike meteoritic soluble organic matter (SOM) and insoluble organic matter (IOM), VOCs are typically lost (at least in part)...
Article
Polycyclic aromatic hydrocarbons (PAHs) contain ≲20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures ≳1000 kelvin), by (~10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryug...
Article
Full-text available
X‐ray computed tomography (XCT) is a valuable reconnaissance tool for three‐dimensional imaging and identification of distinct lithologies in extraterrestrial samples. It will be used as part of the preliminary examination of samples returned from asteroid (101955) Bennu by the Origins, Spectral Interpretation, Resource Identification, and Security...
Article
This study analyzed samples of the Murchison and Sutter's Mill carbonaceous chondrite meteorites in support of the future analysis of samples returned from the asteroid (10155) Bennu by the OSIRIS‐REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission. Focusing specifically on the insoluble organic m...
Article
Full-text available
The Sample Analysis at Mars (SAM) instrument aboard the Curiosity Rover at Gale crater can characterize organic molecules from scooped and drilled samples via pyrolysis of solid materials. In addition, SAM can conduct wet chemistry experiments which enhance the detection of organic molecules bound in macromolecules and convert polar organic compoun...
Article
Full-text available
The sample from the near-Earth carbonaceous asteroid (162173) Ryugu is analyzed in the context of carbonaceous meteorites soluble organic matter. The analysis of soluble molecules of samples collected by the Hayabusa2 spacecraft shines light on an extremely high molecular diversity on the C-type asteroid. Sequential solvent extracts of increasing p...
Article
Full-text available
Samples from the carbonaceous asteroid (162173) Ryugu provide information on the chemical evolution of organic molecules in the early solar system. Here we show the element partitioning of the major component ions by sequential extractions of salts, carbonates, and phyllosilicate-bearing fractions to reveal primordial brine composition of the primi...
Chapter
Full-text available
Article
Full-text available
The samples returned from near-Earth asteroid (162173) Ryugu provide a pristine record of the 4.6 billion years since the birth of the Solar System. The Hayabusa2 initial analysis team has integrated a range of analytical techniques to investigate Ryugu’s organic chemistry. Here, we highlight their latest findings, the potential questions which may...
Article
Full-text available
We performed in-situ analysis on a ~ 1 mm-sized grain A0080 returned by the Hayabusa2 spacecraft from near-Earth asteroid (162173) Ryugu to investigate the relationship of soluble organic matter (SOM) to minerals. Desorption electrospray ionization-high resolution mass spectrometry (DESI-HRMS) imaging mapped more than 200 CHN, CHO, CHO–Na (sodium a...
Article
Full-text available
NASA's OSIRIS‐REx spacecraft collected samples from carbonaceous near‐Earth asteroid (101955) Bennu on October 20, 2020, and will deliver them to the Earth on September 24, 2023. The samples will be processed at the NASA Johnson Space Center (JSC), where most of the sample collection will be subsequently curated in a new cleanroom suite. The spacec...
Article
Full-text available
The pristine sample from the near-Earth carbonaceous asteroid (162173) Ryugu collected by the Hayabusa2 spacecraft enabled us to analyze the pristine extraterrestrial material without uncontrolled exposure to the Earth’s atmosphere and biosphere. The initial analysis team for the soluble organic matter reported the detection of wide variety of orga...
Article
Full-text available
Evaluating the molecular distribution of organic compounds in pristine extraterrestrial materials is cornerstone to understanding the abiotic synthesis of organics and allows us to better understand the molecular diversity available during the formation of our solar system and before the origins of life on Earth. In this work, we identify multiple...
Article
Full-text available
The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a...
Preprint
Full-text available
Some families of carbonaceous chondrites are rich in prebiotic organics that may have contributed to the origin of life on Earth and elsewhere. However, the formation and chemical evolution of complex soluble organic molecules from interstellar precursors under relevant parent body conditions has not been thoroughly investigated. In this study, we...
Article
Full-text available
The stable isotope composition of soluble and insoluble organic compounds in carbonaceous chondrites can be used to determine the provenance of organic molecules in space. Deuterium enrichment in meteoritic organics could be a residual signal of synthetic reactions occurring in the cold interstellar medium or an indicator of hydrothermal parent-bod...
Preprint
Full-text available
We here study the transfer process of material from one hemisphere to the other (deposition of airfall material) on an active comet nucleus, specifically 67P/Churyumov-Gerasimenko. Our goals are to: 1) quantify the thickness of the airfall debris layers and how it depends on the location of the target area, 2) determine the amount of $\mathrm{H_2O}...
Preprint
Full-text available
Evaluating the molecular distribution of organic compounds in pristine extraterrestrial materials is cornerstone to understanding the abiotic synthesis of organics and allows us to better understand the molecular diversity available during the formation of our solar system and before the origins of life on Earth. In this work we identify multiple o...
Preprint
Full-text available
We performed in-situ analysis on a ~1 mm-sized Ryugu grain A0080 returned by the Hayabusa2 spacecraft to investigate the relationship of soluble organic matter (SOM) to minerals. The DESI-HRMS (desorption electrospray ionization-high resolution mass spectrometry) imaging using methanol spray identified more than 200 soluble organic compounds, which...
Article
Amino acids are fundamental to life as we know them as the monomers of proteins and enzymes. They are also readily synthesized under a variety of plausible prebiotic conditions and are common in carbon-rich meteorites. Thus, they represent a reasonable class of organics to target in the search for prebiotic chemistry or chemical evidence of life on...
Article
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, bio-sphere, geochemical cycles). During the Working...
Article
Full-text available
The impactor-to-crater size scaling relationships that enable estimates of planetary surface ages rely on an accurate formulation of impactor–target physics. An armouring regime, specific to rubble-pile surfaces, has been proposed to occur when an impactor is comparable in diameter to a target surface particle (for example, a boulder). Armouring is...
Article
Full-text available
NASA’s first asteroid sample return mission, OSIRIS-REx, collected a sample from the surface of near-Earth asteroid Bennu in October 2020 and will deliver it to Earth in September 2023. Selecting a sample collection site on Bennu’s surface was challenging due to the surprising lack of large ponded deposits of regolith particles exclusively fine eno...
Article
Full-text available
The lack of pyrimidine diversity in meteorites remains a mystery since prebiotic chemical models and laboratory experiments have predicted that these compounds can also be produced from chemical precursors found in meteorites. Here we report the detection of nucleobases in three carbonaceous meteorites using state-of-the-art analytical techniques o...
Article
Full-text available
Amino acid abundances in acid‐hydrolyzed hot water extracts of gold foils containing five Category 3 (carbon‐rich) Hayabusa particles were studied using liquid chromatography with tandem fluorescence and accurate mass detection. Initial particle analyses using field emission scanning electron microscopy with energy‐dispersive X‐ray spectrometry ind...
Article
Full-text available
Amino acids and polycyclic aromatic hydrocarbons (PAHs) belong to the range of organic compounds detected in meteorites. In this study, we tested empirically and theoretically if PAHs are precursors for amino acids in carbonaceous chondrites, as previously suggested. We conducted experiments to synthesize amino acids from fluoranthene (PAH), with a...
Article
Full-text available
The wet chemistry experiments on the Sample Analysis at Mars instrument on NASA’s Curiosity rover were designed to facilitate gas chromatography mass spectrometry analyses of polar molecules such as amino acids and carboxylic acids. Here we present the results of such a successful wet chemistry experiment on Mars on sand scooped from the Bagnold Du...
Article
Full-text available
Investigating the organic contents of enstatite chondrite meteorites may offer insights into both early inner solar system and early Earth chemistry. Enstatite chondrite meteorites have highly reduced and anhydrous compositions, and their bulk isotopic compositions closely resemble terrestrial values, suggesting that their parent body asteroids acc...
Article
Full-text available
Context. The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission detected an infrared absorption at 3.4 μm on near-Earth asteroid (101955) Bennu. This absorption is indicative of carbon species, including organics, on the surface. Aims. We aim to describe the composition of the organic matt...
Article
Full-text available
The abundances, distributions, and enantiomeric ratios of a family of three- and four-carbon hydroxy amino acids (HAAs) were investigated in extracts of five CM and four CR carbonaceous chondrites by gas chromatography-mass spectrometry analyses. HAAs were detected in both the acid hydrolysates of the hot water extracts and the 6 M HCl extracts of...
Preprint
Full-text available
The June 2, 2018, impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the...
Article
The June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the a...
Article
Full-text available
We manually mapped particles ranging in longest axis from 0.3 cm to 95 m on (101955) Bennu for the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission. This enabled the mission to identify candidate sample collection sites and shed light on the processes that have sha...
Article
Full-text available
The organic compositions of carbonaceous chondrite meteorites have been extensively studied; however, there have been fewer reports of other meteorite classes, and almost none from iron meteorites, which contain much less carbon than carbonaceous chondrites but make up ~4% of observed meteorite falls. Here, we report the bulk amino acid content of...
Article
Full-text available
Laboratory studies for planetary science and astrobiology aim at advancing our understanding of the Solar System through the promotion of theoretical and experimental research into the underlying processes that shape it. Laboratory studies (experimental and theoretical) are crucial to interpret observations and mission data, and are key incubators...
Preprint
The Sari\c{c}i\c{c}ek howardite meteorite shower consisting of 343 documented stones occurred on 2 September 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sari\c{c}i\c{c}ek experienced a complex cosmic ray exposure history, exposed during ~12-14 Ma in a regolith near the surface of a parent asteroid, and t...
Article
Full-text available
Abstract–The abundances, relative distributions, and enantiomeric and isotopic compositions of amines, amino acids, and hydroxy acids in Miller Range (MIL) 090001 and MIL 090657 meteorites were determined. Chiral distributions and isotopic compositions confirmed that most of the compounds detected were indigenous to the meteorites and not the resul...
Conference Paper
Carbonaceous chondrite meteorites are fragments of asteroids or comets, that have remained relatively unaltered since the formation of the Solar System. This extraterrestrial material contains a variety of organic compounds including amino acids, carboxylic acids, and nucleobases, among others. It has been suggested that carbonaceous chondrites may...
Article
Full-text available
Despite extensive studies on the formation of organic molecules in various extraterrestrial environments, it still remains under debate when, where, and how such molecules were abiotically formed. A key molecule to solve the problem, hexamethylenetetramine (HMT) has not been confirmed in extraterrestrial materials despite extensive laboratory exper...
Article
Full-text available
To characterize the ATLO (Assembly, Test, and Launch Operations) environment of the OSIRIS-REx spacecraft, we analyzed 17 aluminum witness foils and two blanks for bacterial, archaeal, fungal, and arthropod DNA. Under NASA’s Planetary Protection guidelines, OSIRIS-REx is a Category II outbound, Category V unrestricted sample return mission. As a re...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
The complex history of Bennu's surface The near-Earth asteroid (101955) Bennu is a carbon-rich body with a rubble pile structure, formed from debris ejected by an impact on a larger parent asteroid. The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft is designed to collect a sample of B...
Article
Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements...
Preprint
Full-text available
Comets hold answers to mysteries of the Solar System by recording presolar history, the initial states of planet formation and prebiotic organics and volatiles to the early Earth. Analysis of returned samples from a comet nucleus will provide unparalleled knowledge about the Solar System starting materials and how they came together to form planets...
Preprint
Laboratory studies for planetary science and astrobiology aimat advancing our understanding of the Solar System through the promotion of theoretical and experimental research into the underlying processes that shape it. Laboratory studies (experimental and theoretical) are crucial to interpret observations and mission data, and are key incubators f...
Article
We here study the transfer process of material from one hemisphere to the other (deposition of airfall material) on an active comet nucleus, specifically 67P/Churyumov–Gerasimenko. Our goals are to: 1) quantify the thickness of the airfall debris layers and how it depends on the location of the target area, 2) determine the amount of H2O and CO2 ic...
Article
The Asuka (A)‐12236 meteorite has recently been classified as a CM carbonaceous chondrite of petrologic type 3.0/2.9 and is among the most primitive CM meteorites studied to date. Here, we report the concentrations, relative distributions, and enantiomeric ratios of amino acids in water extracts of the A‐12236 meteorite and another primitive CM cho...
Article
In the origins of life field understanding the abiotic polymerization of simple organic monomers (e.g., amino acids) into larger biomolecules (e.g., oligopeptides), remains a seminal challenge. Recently, preliminary observations showed a limited set of peptides formed in the presence of the plausible prebiotic phosphorylating agent, diamidophosphat...
Preprint
Full-text available
We advocate for the realization of volatile sample return from various destinations including: small bodies, the Moon, Mars, ocean worlds/satellites, and plumes. As part of recent mission studies (e.g., Comet Astrobiology Exploration SAmple Return (CAESAR) and Mars Sample Return), new concepts, technologies, and protocols have been considered for s...
Article
The emergence of life on Earth could have benefitted from an extraterrestrial source of amino acids. Yet the origin of these amino acids is still debated because they may have formed prior to the solar nebula or inside the parent body of meteorites. Here, we experimentally produced amino acids by exposing an interstellar model molecule (hexamethyle...
Article
Evaluating the water-soluble organic composition of carbonaceous chondrites is key to understanding the inventory of organic matter present at the origins of the solar system and the subsequent processes that took place inside asteroid parent bodies. Here, we present a side-by-side analysis and comparison of the abundance and molecular distribution...
Conference Paper
The study of meteoritic organics in carbonaceous chondrites has shown how these extraterrestrial materials record valuable information about the formation of the Solar System and their potential as sources of starting materials for prebiotic organic synthesis [1]. In this study, a method for the analysis and quantification of aliphatic amides, a cl...
Conference Paper
Introduction: Meteorites provide a record of the chemical processes that occurred in the early solar system before life began on Earth. The delivery of organic compounds by carbonaceous chondrites to the early Earth and other planetary bodies could have been an important source of prebiotic material required for the emergence of life [1]. The amino...
Conference Paper
Full-text available
Introduction: Aliphatic monoalcohols with no other functionalization (hereafter "alcohols") are among the key potential precursors to several biologically-relevant organic compounds detected in carbonaceous chondrite meteorites (Figure 1), including amino acids and carboxylic acids, which are subunits of proteins and simple membranes, respectively....
Article
The abundances, distributions, enantiomeric ratios, and carbon isotopic compositions of amino acids in two fragments of the Aguas Zarcas CM2 type carbonaceous chondrite fall and a fragment of the CM2 Murchison meteorite were determined via liquid chromatography time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry....
Article
Full-text available
Bennu ejects material from its surface Most asteroids appear inert, but remote observations show that a small number experience mass loss from their surfaces. Lauretta and Hergenrother et al. describe close-range observations of mass loss on the near-Earth asteroid Bennu (see the Perspective by Agarwal). Shortly after arriving at Bennu, navigation...
Article
The search for evidence of extraterrestrial life in our Solar System is currently guided by our understanding of terrestrial biology and its associated biosignatures. The observed homochirality in all life on Earth, that is, the predominance of “left-handed” or l-amino acids and “right-handed” or d-sugars, is a unique property of life that is cruci...
Article
Full-text available
Significance Ribose is an essential sugar for present life as a building block of RNA, which could have both stored information and catalyzed reactions in primitive life on Earth. Meteorites contain a number of organic compounds including components of proteins and nucleic acids. Among the constituent molecular classes of proteins and nucleic acids...
Article
The Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) spacecraft launched on September 8, 2016, beginning a seven-year journey to return at least 60 g of asteroid material from (101955) Bennu to Earth. During the outbound cruise, Doppler tracking of the spacecraft observed a small but measurable...
Article
Full-text available
Extraterrestrial delivery of cyanide may have been crucial for the origin of life on Earth since cyanide is involved in the abiotic synthesis of numerous organic compounds found in extant life; however, little is known about the abundance and species of cyanide present in meteorites. Here, we report cyanide abundance in a set of CM chondrites rangi...

Network

Cited By