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Abstract Fungal biofilms are highly resilient to antifungal therapies, of which there
are relatively few licensed options available in clinical medicine. Nonetheless, there
is a vibrant research culture aimed at enhancing and expanding the arsenal of
antifungals capable of inhibiting, killing, and disrupting fungal biofilms. This
chapter aims to explore the wide variety of fungal biofilms affecting human health
and to discuss the clinical options for existing and novel chemotherapeutics.

1 Introduction

Fungal biofilms have gained notoriety over the past two decades, with studies and
reviews of Candida biofilms alone amassing approximately 4000 publications.
Whilst relatively slower to generate general interest within the biofilm community,
it is increasingly clear that they are a clinically challenging issue due to the
difficulties in treating these infections (Ramage et al. 2009). Microbiologically,
fungi are amongst the most important clinical infections, globally accounting for
300 million infections, and mortality rates of up to 50% in some diseases (Brown
et al. 2012). Many of these fungal infections predominantly affect immunocompro-
mised individuals and may be impacted by a diverse range of risk factors (Table 1),
which can result in a wide range of fungal infections (Table 2). Management of these
patient groups, or lack thereof, is exacerbated by a limited arsenal of antifungal
agents capable of killing or disrupting these tenacious structures.

So, what antifungals are commonly used to manage fungal infections, and how do
they fare against biofilms? Classically, azole antifungals are the mainstay of treat-
ment for many pathogenic fungi, albeit with a few exceptions; e.g. C. glabrata and
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C. krusei are intrinsically insensitive. Azoles function as fungistatic antimicrobials,
targeting ergosterol biosynthesis. Specifically, they act upon the 14-lanosterol
demethylase enzyme pathway, which results in depletion of ergosterol molecules
in the cell membrane, and at the same time an accumulation of sterol precursors, such
as 14-alpha methylase (Pristov and Ghannoum 2019). This leads to membrane
instability of growing cells and a static impact on fungal growth. The triazoles are
the most widely used azoles, which are heterocyclic compounds that include flu-
conazole, itraconazole, and voriconazole, amongst some others. These are not
without their problems though, as resistance is common through alterations in the
ergosterol biosynthesis pathway, upregulated efflux pumps, activation of heat shock
proteins, and of course biofilm-mediated tolerance.

Polyenes, such as amphotericin B (AMB), nystatin, and their liposomal formu-
lations, offer a fungicidal option. These antifungal drugs are thought to insert into the
lipid membrane adjacent to ergosterol, which in turn destabilises the cell membrane
by forming pores and enabling cellular lysis (Carolus et al. 2020). Moreover,
oxidative stress induction is also thought to additionally contribute to its effective-
ness as a fungicidal agent. Resistance is rare due to its membrane-based target, but in
some cases alterations to sterols and anti-oxidative stress mechanisms can protect the
cell. Cell wall changes in the form of enhanced 1,3-alpha- and 1,3-beta-glucans have
also been shown to correlate with AMB resistance.

Echinocandins, which include caspofungin, micafungin, and anidulafungin, act
by inhibiting 1,3-beta-glucan synthase, which results in cell wall destabilisation and
fungicidal activity. They can be considered analogous to penicillin interfering with
peptidoglycan in bacteria. They have a wide spectrum of activity, though are limited
against septate fungi such as Aspergillus fumigatus, as they require actively growing
cells to be fungicidal. Notably, these compounds are effective, albeit paradoxically,
against Candida albicans biofilms (Pristov and Ghannoum 2019). Nevertheless, as a

Table 1 Predisposing factors for fungal infections

Systemic Local

Human immunodeficiency virus (HIV) Dentures

Broad-spectrum antibiotic treatment Xerostomia

Cancers Indwelling prosthetic devises

Immunosuppressive therapy or condition, e.g. organ transplant Burns

Hyperglycemia Trauma

Cytotoxic chemotherapy Vaginal douching

Radiotherapy Contraceptive pills

Nutrition, e.g. iron, folate, and vitamin C, B, A

Infections such as tuberculosis

Chronic renal failure

Pregnancy

Impaired liver function

Genetic susceptibility
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second option for azole-insensitive yeasts and moulds, their rise in use has led to
echinocandin resistance through alteration of the glucan synthase enzymes (Fks1-
Fks2 complex), changes in chitin composition, and stimulation of stress pathways.

Other antifungals do exist, but these are used more infrequently. This emphasises
why there is a need to improve our pipeline of antifungal drugs (Perfect 2017). These
are taking the form of oral formulations, nanoparticles, pathway inhibitors, and
augmentative strategies. This chapter outlines how conventional and novel

Table 2 Clinical manifestations of fungal infections. A non-exhaustive overview of the most
associated fungal pathogens, their predominant affected sites, and alternative names for several
clinically relevant fungal infections

Clinical
manifestation Alias Affected site Common pathogen

Seborrheic
dermatitis

Dandruff Scalp, hair
follicles

Malassezia species (Grimshaw et al. 2019)

Dermatophytosis Ringworm Skin (Scalp) Trichophyton rubrum (Wang et al. 2006)

Fungal
Meningitis

None CSF/Brain Cryptococcus neoformans (Charalambous
et al. 2018)

Mycotic keratitis Corneal
inflammation

Eye Candida albicans or filamentous Fusar-
ium solani and Aspergillus spp. (Thomas
and Kaliamurthy 2013)

Endophthalmitis Intraocular
inflammation

Eye Candida albicans (Regan et al. 2020)

Otomycosis Ear infection Ear Candida species and Aspergillus niger
(Anwar and Gohar 2014)

Fungal sinusitis Rhinosinusitis Mucosa/
paranasal
sinuses

Aspergillus fumigatus (Chakrabarti et al.
2009)

Angular cheilitis Lip disease Exterior cor-
ners of mouth

Candida albicans (Lugovic-Mihic et al.
2018)

Oral candidiasis Oral thrush Interior mouth
mucosa/
submucosa

Candida albicans (Singh et al. 2014)

Onychomycosis Nail infection Nail bed Trichophyton rubrum (Ghannoum and
Isham 2014)

Vulvovaginal
candidiasis

Yeast
infection

Vagina/Vulva Candida albicans (McKloud et al. 2021)

Blastomycosis Gilchrist’s/
Chicago
disease

Lungs Blastomyces dermatitidis (McBride et al.
2017)

Aspergillosis Brooder’s
pneumonia

Bronchioles Aspergillus species (Sherif and Segal
2010)

Mycetoma Madura foot Skin/subcuta-
neous tissue

Madurella mycetomatis (Emmanuel et al.
2018)

Fungal
septicaemia

Bloodstream
infection

Systemic Candida albicans (Delaloye and Calandra
2014)
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antifungals are being used for consideration in the management of different diseases
associated with fungal biofilms, as illustrated in Fig. 1.

2 Oropharyngeal Infections

Fungal infections of the oral cavity are mainly opportunistic in nature due to host
immunity impairment, which is a result of local, or more importantly, systemic
factors. The frequency of these infections is increasing globally due to rise in the use
of immunosuppressive drugs, broad-spectrum antibiotics, malignancies, diabetes,
human immunodeficiency virus (HIV), and increased life expectancy (Richardson
and Lass-Flörl 2008). Importantly, within the oral cavity these fungal species have
the capacity to co-aggregate with microbial species in the form of biofilms on
biological and inert substrates, or as aggregates within saliva. This has a profound
effect on our ability to manage these infections with antifungal agents.

Oral fungal infections, or “oral mycoses”, are broadly categorised as candidal and
non-candidal fungal infections, or as superficial and deep mycoses (Santosh et al.

Fig. 1 Examples of sources of fungal biofilms on the human body (images produced in BioRender
[biorender.com])
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2021). Oral candidiasis (candidosis) is the most frequently reported oral fungal
infection. This form of superficial mycoses is a result of the overgrowth of
Candida species, mainly Candida albicans. Other non-albicans species, Candida
parapsilosis, Candida krusei, Candida stellatoidea, Candida tropicalis, Candida
glabrata, Candida guilliermondii, and Candida dubliniensis, have also contributed
to oral candidiasis to a lesser extent. The diagnosis of oral candidiasis is usually
based on the cytological/histopathological examinations and clinical presentation of
the infection (Rautemaa and Ramage 2011). As C. albicans is a natural habitant of
the oral microbiome in the majority of healthy individuals, oral samples with a
positive culture for Candida species with absence of clinical manifestation are
diagnostically inconclusive. Non-candidal oral mycoses (deep mycoses) are less
common, and most infections are exotic with specific geographic distribution (Iatta
et al. 2009). These infections are usually deep mycoses of other body areas other
than the oral cavity, mainly pulmonary infections, which present with oral manifes-
tations as an indication of systemic and disseminated condition. However, isolated
oral lesions without systemic involvement are also reported (Scully 1913). Examples
of oral non-candida infections are aspergillosis, cryptococcosis, histoplasmosis,
blastomycosis, zygomycosis, mucormycosis, geotrichosis, and rhinosporidiosis
(Williams and Ramage 2015)

Dental caries and periodontal diseases are amongst the most prevalent chronic
diseases in humans, and both are biofilm related (Casamassimo et al. 2009; Nazir
et al. 2020). Whilst the role of bacteria in such conditions is well recognised, the role
of fungi is largely unknown or unexplored due to the bias towards bacterial biofilm
communities. There is growing evidence that fungi have a significant influence on
oral microbiome composition and pathogenicity (Delaney et al. 2018). Clearly,
interkingdom interactions play a critical role in promoting tolerance to biocides
and antifungals through their extra-polymeric substrates acting like “drug sponges”
(Kim et al. 2018). High levels of Candida species were shown to be found in
children with caries (Raja et al. 2010). Though, there is limited evidence for its
direct association with dental caries (Sridhar et al. 2020). Indeed, it was recently
shown that C. albicans was not more abundant in children with caries, although
those children showed less fungal abundance and diversity compared with caries-
free children (Fechney et al. 2019). Likewise, higher fungal abundance was reported
in patients with periodontal diseases compared with healthy individuals and shown
to be associated with disease severity (Canabarro et al. 2013; Urzúa et al. 2008;
Peters et al. 2017). Indeed, a recent systematic review from 21 available studies
showed a positive association between periodontal disease and Candida species
(Suresh Unniachan et al. 2020). Again, it is unclear whether this higher abundance
has a direct role in disease causation, or it is simply a consequence of bacterial
dysbiosis and environmental change that favours fungal growth. There is a signif-
icant growth of studies investigating synergism and antagonism amongst these
interkingdom diseases to define the importance of Candida in the oral cavity
(Delaney et al. 2018), so the increasing use of newer molecular tools begins to
define a clearer idea of the role that fungi play in these seemingly bacterial centric
infections. The advent of mycobiome research has helped, but also hindered our
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progress of understanding. The first ever mycobiome study by Ghannoum (2010)
and colleagues reported over 101 separate species from 21 individuals, though
whether these fungi play defined roles remains to be ascertained (Ghannoum et al.
2010). The same authors contend that changes to the basal mycobiome can be
observed in patients admitted to intensive care units (ICU) (Watkins et al. 2017).

The traditional clinical management of oral fungal infections involves the use of
topical and systemic antifungals. In oropharyngeal candidiasis, identification and
removal of local and systemic predisposing factors is paramount if feasible. Oral
candidiasis is usually successfully managed with topical azoles and polyenes in the
form of oral suspensions, lozenges, gels, creams, and ointment. Nystatin is usually
effective for treatment of oral candidiasis. Amphotericin and miconazole can also be
used, both of which elicit positive fungicidal effects (Farah et al. 2010). Refractory
and recurrent infections usually require the use of systemic antifungals such as
ketoconazole, fluconazole, and itraconazole and amphotericin in conjunction with
topical agents to control the infection (Epstein and Polsky 1998). Despite treatment
with antifungal, recurrence of oral candidiasis is not uncommon (Rautemaa and
Ramage 2011). Recurrent infection can be due to incorrect diagnosis, inability to
identify or treat underlying factors or inappropriate drug selection, or simply that the
infection is biofilm-based and therefore intrinsically tolerant (Darwazeh and
Darwazeh 2014). Systemic antifungals are mainly used for the treatment of deep
mycoses, and drug selection depends on the severity of the infection and may require
surgical debridement of necrotic tissue in some infections such mucormycosis and
invasive aspergillosis. Amphotericin B, caspofungin, voriconazole, itraconazole,
miconazole, ketoconazole, and fluconazole are the most commonly used systemic
agents for deep fungal infections (Santosh et al. 2021).

Given that the currently available antifungal agents have many limitations,
mainly drug resistance and cytotoxicity, efforts have been directed towards discov-
ering novel antifungals. Repurposing drugs that have been previously approved for
human use, plant derivatives and high-throughput screening are an appealing
approach. Many anticancer, antimalarial, and antibacterial compounds have shown
antifungal activity either alone or in combination with classical antifungals with less
potential to develop drug resistance. However, most novel compounds are not
translated into clinical trials for many reasons, mainly cost and lack of sufficient
evidence. Antifungal resistance is a serious concern with classical antifungal espe-
cially with azoles. Therefore, drug combination was proposed to overcome drug
resistance. With β-1,3-D-glucan of fungi being an ideal drug target, combining drugs
that act on this essential cell wall component will potentially help in resolving
antifungal resistance. MK-3118 (SCY-078) is a semisynthetic potent β-1,3-D-glucan
synthases inhibitor. It showed a powerful in vitro effect on wild-type and resistant
strains of Aspergillus species (Pfaller et al. 2013). It was also effective against
C. albicans, C. parapsilosis, and C. tropicalis (Scorneaux et al. 2017). MK-3118
was also tested in a murine model of invasive candidiasis, and its effect was similar
to that of intravenous echinocandin (Lepak et al. 2015).
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3 Respiratory Tract Infections

Typically, fungi in the respiratory tract are often thought of as an innocent
by-stander, but there are increasing amounts of evidence suggesting they play a
major role in respiratory biofilm-associated diseases such as cystic fibrosis (CF),
bronchiectasis, and chronic obstructive pulmonary disease (COPD) (Pendleton et al.
2017; Garczewska et al. 2016). However, as for fungal biofilms, our understanding
of their role in COPD and bronchiectasis is in its infancy.

CF is an autosomal recessive condition, and although it is a multi-organ disease,
mortality is most often determined by excess mucus production plugging the air-
ways, chronic inflammation, and infection (Mall and Hartl 2014). Bacteria remain
the most common causative agent of CF infections, but the isolation of fungi is
becoming more common (Delfino et al. 2019). Lower respiratory tract infections of
the CF lung are often associated with biofilms due to a decrease in volumes of
periciliary fluid and diminished mucus detachment (Singh et al. 2000; Høiby et al.
2010). Indeed, there are reliable studies reporting the importance of fungal cells as a
critical component of these biofilm aggregates (Mowat et al. 2007; Muller et al.
2011).

The loss of this innate clearance mechanism in the airways provides prime
conditions for long-term colonisation. Spores formed by Aspergillus, one of the
most abundant fungal species found throughout the environment (Paulussen et al.
2017), are readily inhaled, with Aspergillus fumigatus being the most common
species identified in sputum cultures (Sabino et al. 2015). We were the first to
demonstrate the biofilm forming capacity of this organism (Mowat et al. 2007),
which has been followed up and expanded upon by us and others (Boisvert et al.
2016; Ramage et al. 2011). However, many CF airway infections are polymicrobial
where microbe–microbe interactions can influence patient outcome. Pseudomonas
aeruginosa is the most frequently isolated bacterial pathogen from CF sputum
(Williams and Davies 2012). In vitro, A. fumigatus and P. aeruginosa exhibit a
mutually antagonistic relationship (Reece et al. 2018; Shirazi et al. 2016). However,
in vivo co-isolation of these organisms is associated with poorer patient outcomes,
which may be explained by an increase in P. aeruginosa elastase production in the
presence of A. fumigatus (Reece et al. 2017; Smith et al. 2015).

In cases where A. fumigatus colonises CF patients, the most commonly prescribed
antifungals are triazoles such as voriconazole and itraconazole (Boyle et al. 2019).
The consensus regarding the efficacy of azoles in CF is obscured with several
smaller, non-controlled, open-label studies reporting a beneficial role for azole
treatments (Hilliard et al. 2005; Shoseyov et al. 2006; Coughlan et al. 2012), whereas
the only published randomised control trial (RCT) study investigating the efficacy of
azoles in CF therapy reported no significant benefit in patients who were chronically
colonised by A. fumigatus (Aaron et al. 2012). The chronic colonisation and
ineffectiveness of azole interventions in this RCT points towards the presence of
fungal biofilms which display high levels of azole resistance (Rajendran et al. 2011).
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Aspergillus is not the only fungal species identified from the lungs of CF patients.
Candida albicans is the most commonly isolated yeast and can be isolated from up
to 75% of patients (Williams et al. 2016). As with A. fumigatus, co-isolation of
C. albicans and P. aeruginosa from the same patient is associated with worse
clinical outcomes (Dhamgaye et al. 2016). P. aeruginosa within these dual-species
biofilms has displayed increased tolerance to meropenem when compared to a
mono-species biofilm (Alam et al. 2020). This has been attributed to fungal mannans
and glucans within the extracellular matrix of the biofilm. This trend of C. albicans
protecting bacteria within a biofilm has been observed with other bacteria such as
Staphylococcus aureus, another commonly found bacteria in CF, through production
of ECM components such as glucans and extracellular DNA (Kean et al. 2017;
Harriott and Noverr 2009; Kong et al. 2016).

Unlike A. fumigatus, there is some controversy surrounding the treatment of
C. albicans in the airways due to clouded lines distinguishing colonisation and
active infection (Pendleton et al. 2017). However, several studies have identified
an association between Candida colonisation and worsening FEV1 in CF patients
(Gileles-Hillel et al. 2015; Dhamgaye et al. 2016; Williams et al. 2016). Although
C. albicans may not be actively causing infection, its interactions with certain
bacteria indicate an indirect role in disease through protecting pathogenic bacteria
and increasing their virulence (Dhamgaye et al. 2016; Kean et al. 2017; Todd et al.
2019). This raises the question: should Candida colonisation be addressed in order to
improve patient outcomes? Although there is not a generally accepted treatment
option for C. albicans in CF, azoles will likely prove to be ineffective due to high
levels of azole tolerance in C. albicans biofilms, and the ease in which the organism
develops resistance (El-Azizi et al. 2015; Kean et al. 2017; Rajendran et al. 2016b).
Therefore, the use of echinocandins or polyenes may yield more promising clinical
outcomes, particularly if nebulised to enhance delivery (Liao and Lam 2021).

Although things may appear bleak concerning our current ability to treat fungal
and interkingdom biofilms in CF, there are novel drugs that show promising results.
For example, a recent study by Miesel and colleagues reported on the efficacy of
rezafungin, an echinocandin for use in respiratory therapy (Miesel et al. 2021). Their
findings showed that prophylactic rezafungin of 10 and 20mg/kg resulted in 100%
survival of mice who were subsequently challenged with A. fumigatus. Rezafungin
has also shown promising effects against Candida and Pneumocystis (Miesel et al.
2021). Other studies have aimed to identify novel therapeutics or repurpose old ones
that can be recruited in the fight against fungal biofilms. One 2016 study aimed to
identify compounds with anti-Candida activities (Vila and Lopez-Ribot 2017),
which identified several compounds that were capable of inhibiting C. albicans
biofilm formation by more than 50%. However, only one was effective against
pre-formed biofilms (MMV688768).

Currently, there are a few other potential agents with antifungal activities in
preclinical stages, one of which is aureobasidin A. Although it was discovered in
1989, more recently it has shown promise as an agent to inhibit inositol phosphor-
ylceramide synthase, an enzyme involved in sphingolipid synthesis, with activity
against both planktonic and biofilm Candida species (Tan and Tay 2013). An
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alternative compound whose exact mechanism of action remains unknown but
causes mitochondrial membrane collapse is T-2307. T-2307 is a novel arylamidine
that has been tested against a panel of relevant fungi such as Aspergillus, Candida,
and Cryptococcus species and was more effective than fluconazole, micafungin, and
amphotericin B (Yamashita et al. 2019; Mitsuyama et al. 2008). At the time of
writing, T-2307 is in phase 1 clinical trials and no clinical efficacy data are available.

4 Vulvovaginal Infections

It is estimated that up to three-quarters of women will suffer from at least one episode
of vulvovaginal candidiasis (VVC) during their child-bearing years (Sobel 1992).
Up to 8% of these women are expected to develop recurrent VVC (RVVC) (Sobel
et al. 1998), defined as three or more episodes within one year (Sobel 2016).
Although not associated with mortality, the symptoms of RVVC are debilitating,
impact quality of life, and can result in psychological implications (Yano et al.
2019). C. albicans is reported as the causative organism in up to 90% of VVC
episodes (Sobel et al. 1998). Uncomplicated (sporadic) VVC is associated with mild
symptoms caused by C. albicans and can be treated with a single dose of oral or
topical fluconazole in 80% of cases (Dovnik et al. 2015; Pappas et al. 2009).
Fluconazole has remained the frontline treatment for VVC owing to its high cure
rates and availability at clinics as well as over the counter. It is unclear whether any
azole is more effective and whether oral or topical agents can impact clinical
outcome (Dharmik et al. 2013; Whaley et al. 2016).

Treatment for complicated VVC (RVVC) requires prolonged maintenance azole
therapies which are often unsuccessful. Fluconazole treatments are ineffective
against C. albicans biofilms, suggesting their formation could contribute to failed
clinical treatment. Treatment for RVVC caused by azole-resistant C. glabrata
involves daily treatment with boric acid or nystatin pessaries for 14 days (Sobel
et al. 2003; Fan et al. 2015). Alternative treatments include topical 17% flucytosine
administered alone or in combination with 3% amphotericin B, daily for 14 days
(Phillips 2005). Failed treatment of RVVC is suppressed with 10–14-day mainte-
nance therapy using topical or oral fluconazole followed by a weekly dose of
fluconazole for the next 6 months (Donders et al. 2008). Although suppressive
therapies are often sufficient to relieve symptoms and recurrence during treatment,
RVVC remains uncured and subsequently patients are prescribed these treatments
for years (Sobel et al. 2004). Long-term use of azoles can drive antifungal resistance
in Candida; however, if treatment options remain limited for women with persistent
RVVC, this is inevitable.

The presence of Candida biofilms on vaginal mucosa during VVC is an area of
controversy. Some authors dispute the presence of these biofilms, suggesting VVC is
a result of polymicrobial invasion of vaginal tissues (Swidsinski et al. 2019; Sobel
2015). Conversely, C. albicans biofilm formation on vaginal mucosa in a murine
model of VVC has been visualised using confocal and electron microscopy (Harriott
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et al. 2010). At present, there are no large-scale studies which aim to visualise
Candida biofilm formation on mucosa from vaginal biopsies from women with
VVC/RVVC, such as those carried out to investigate biofilm formation of
Gardnerella vaginalis in bacterial vaginosis (Machado et al. 2015). Further, there
are no characterised biofilm models representative of the vaginal environment during
VVC to study potential Candida biofilm formation. Studies such as these would
provide important knowledge of pathogenesis and resistance of RVVC which could
improve future diagnosis and improve clinical treatment.

A novel potential avenue for the treatment of RVVC in the presence or absence of
biofilms is the novel drug, ibrexafungerp (Ghannoum et al. 2019). It is the first of a
new class of triterpenoid glucan synthase inhibitor antifungals. Orally administered
ibrexafungerp has been shown to destabilise the fungal cell wall through the
reduction of (1,3)-β-D-glucan polymers. This novel drug has shown efficacy against
a range of Candida species, including azole and echinocandin-resistant isolates
(Jimenez-Ortigosa et al. 2017). Importantly, it has been shown to inhibit
C. albicans and C. glabrata biofilms in vitro, displaying lower MICs than flucon-
azole (Marcos-Zambrano et al. 2017). The recent FDA approval of ibrexafungerp
and its broad range of activity against Candida species mean it could be used for the
treatment of RVVC soon. Additionally, it displayed tolerability and low toxicity in
phase 1 and 2 clinical trials (Akizawa et al. 2018). Although the presence of biofilms
may not be universally accepted or currently diagnosed in RVVC, this drug could
provide an exciting alternative treatment for women with azole-resistant, potential
biofilm-associated VVC/RVVC. Moreover, topical echinocandin CD101 has also
displayed significant promise against azole-resistant fungal species in the context of
RVVC (Boikov et al. 2017). There is now even scope for consideration of probiotics
for the management of RVVC (Pendharkar et al. 2015; Vladareanu et al. 2018).

5 Wound and Skin-Related Infections

There has been a growing recognition that complex biofilm communities of the
mucosa and skin contain cross-kingdom biofilm communities of fungi and bacteria
(Dowd et al. 2011; Kalan and Grice 2018; Kalan et al. 2016). Intriguingly, these
relationships elicit reciprocal antimicrobial tolerance (Kong et al. 2016), meaning
that we need to carefully consider and target fungi within complex infections until
we more fully understand the consequences of broad-spectrum antimicrobial thera-
pies. Regarding the local fungal microbiota, a publication by Oh et al. (2014)
investigated the biogeography of the human skin, suggesting that the mycobiome
consists of <10% of the total microbial population (Oh et al. 2014). The authors
demonstrated that such multi-kingdom diversity is strongly shaped by the local skin
microenvironment, with levels of fungal organisms varying from site to site.
Malassezia species have been identified as the most prevalent fungal species at the
skin barrier (Findley et al. 2013; Oh et al. 2014), comprising of up to 80% of the total
skin population (Gao et al. 2010). Such organisms are also well represented within
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chronic wounds, alongside several opportunistic fungal pathogens such as
Trichosporon, Rhodotorula, Candida, and Cladosporidium species (Chellan et al.
2010; Dowd et al. 2011; Kalan and Grice 2018). Alongside the common knowledge
that bacterial accumulation in the infected wound can interfere with sufficient
healing and repair, it is clear from the above studies that polymicrobial biofilm
formation in the wound bed needs careful consideration during clinical management
of chronic wounds such as diabetic foot ulcers (DFUs).

For most infected wounds, physical debridement of the tissue is recommended
which largely results in removal of the biofilm and appropriate dressing of the
infected area. Empirical antibiotic therapy is then often utilised as the first-line
treatment for patients, to primarily target a wide range of Gram-positive cocci,
including Staphylococcus species such as S. aureus which is often the most common
pathogen in infected wounds (Lipsky et al. 2016b). However, as outlined by
guidance published by the International Working Group on the Diabetic Foot
(IWGDF), initial treatment is often administered based on “likely or proven causa-
tive pathogens”, which can obviously be problematic to determine in polymicrobial
infections (Lipsky et al. 2016a). Nevertheless, depending on severity, in antibiotic
naïve patients, early therapy for mild infections often consists of flucloxacillin
treatment and used in combination with metronidazole for more moderate to severe
infections, whilst ciprofloxacin use is recommended in severe cases particularly
when DFUs are accompanied by osteomyelitis (Barwell et al. 2017). Follow-up
definitive therapies may be required based on culture and susceptibility results, and
the patients’ response to the empirical therapy (Lipsky et al. 2016b). At this juncture,
it is important to note that antifungal therapeutics are not commonly recommended
for DFU and other related chronic wound therapy.

With other skin infections, antifungal treatments are only utilised for nail infec-
tions such as onychomycosis, tinea pedis (athlete’s foot), and tinea corporis (ring-
worm), whereby the sole causative agent is fungi. For example, in onychomycosis,
dermatophytes such as Trichophyton species can account for almost 90% of all cases
(Thomas et al. 2010). Typical onychomycosis or tinea-related antifungal therapy
includes oral administration of terbinafine, with azoles such as itraconazole as the
first line of treatment, with fluconazole used in some cases as an alternative therapy
(Thomas et al. 2010; Hay 2018). For such infections, early management involves
application of topical ointments, which can contain a range of antifungals, including
azoles (Kawa et al. 2019). Common disinfectants and antiseptics such as chlorhex-
idine and povidone iodine have also been used to treat cases of onychomycosis
(Capriotti and Capriotti 2015; Silva-Neves et al. 2021), whilst such treatments are
also commonplace in wound care to prevent regrowth of the microbial population
(Atiyeh et al. 2009). However, careful consideration for use of such antiseptics is
required given concerns over their cytotoxic effects to the host, affecting wound
healing and skin regeneration.

As discussed above, although antifungal therapies are uncommon for infected
wounds, they have been shown to be effective in a small number of clinical studies
and in vitro model systems. For example, a study by Heald et al. (2001) demon-
strated that antifungal treatment (a mixture of flucytosine, fluconazole, itraconazole,
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and terbinafine) resulted in an improvement in wound healing in 17 DFU patients
who were non-responsive to antibacterial therapy (Heald et al. 2001). Similar results
were demonstrated elsewhere, where diabetic foot wounds in 38 patients given
standard care alongside oral administration of fluconazole healed faster than those
that received standard care alone (Chellan et al. 2012). Moving forward, research
into biomaterials for “local delivery” of antibiotics has peaked in the last few years,
providing a potential alternative for drug administration to infected wounds
(Saghazadeh et al. 2018). Indeed, recent publications have highlighted that antifun-
gals can be incorporated into materials such as calcium sulphate beads or polymer
microparticles that can be used to effectively control fungal growth, both in vitro
using a wide range of fungal isolates (Butcher et al. 2021) and in vivo in a murine
model of cutaneous aspergillosis (Tatara et al. 2019). Nanotechnology is also
beginning to be considered as prospective therapeutic avenue to revolutionise
wound treatment using nano-drug delivery systems, although at the time of writing
such research is still well in its infancy (Wang et al. 2019).

6 Medical Device-Related Infections

Nosocomial infection is a wide-scale health concern across the world, with approx-
imately 60–70% of all hospital-based infections being accounted for by direct
contact with implanted medical devices (Bryers 2008). Infection management can
be successfully maintained through the removal, sterilisation, and replacement of
implanted biomaterials (Khatoon et al. 2018), though biofilms remain an issue.
Indeed, there is a vast range of indwelling biomaterials that have been associated
with fungal biofilm infection, which have been reviewed extensively elsewhere
(Ramage et al. 2006; Williams and Ramage 2015).

Prosthetic joint infection (PJI) is a significant complication to an otherwise
ordinarily successful procedure. Despite strict surgical hygiene protocols, as well
as carefully administered antimicrobial regimens before and after the procedure, PJI
is still a prevalent outcome of joint replacement (van de Belt et al. 2001). This is not
surprising given that prostheses can provide an optimal substrate and surrounding
environment for the growth and development of polymicrobial biofilms (Tande and
Patel 2014). PJI presents a unique issue for post-clinical management, which pre-
sents very significant and fundamental therapeutic challenges, including sepsis,
amputation, and even death,

Colonisation of PJI implants is predominantly driven by biofilm adhesion and
growth, which have the propensity to haematologically spread and impact distal sites
(Ramage et al. 2006; Kaplan 2010). Typically there is a panel of usual suspects
associated with PJIs, with the prime candidate being Staphylococcus species (Hall
and Mah 2017; Perry and Hanssen 2017). Notably though, pathogenic fungi have
been shown to exist in these biofilm-centric infections. The ability for interkingdom
relationships within the biofilm can present extreme difficulty for establishing a
therapeutic regimen. For example, fungal organisms account for only approximately
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1% of PJI cases (Brown et al. 2018), but this small percentage can result in drastic
oversight and clinical repercussions if not addressed with rapidity.

In recent years, research surrounding the management of PJI has highlighted the
need for void-filling and moisture stability within the surgical site (Jones et al. 2016).
This has, in turn, presented potential for novel therapeutics and the release of
antimicrobial agents in a localised manner to areas of compromised vasculature
using conventional filler material such as drug-loaded calcium sulphate (Butcher
et al. 2021). This allows exposure to much higher effective doses of antimicrobials
than would normally only be possible through a systemic route. While evidence has
shown these methods to be effective, there remains the threat of infectious organisms
developing antimicrobial resistance. Indeed, prevention of biofilm formation at the
point of contact through alteration of the biomaterial surface proposes an interesting
alternative to conventional therapy. Through alteration of variables which may
significantly impact microbial adhesion, such as surface roughness and electrostatic
charge (Gallo et al. 2014), the possibility for colonisation may also significantly
diminish (Rzhepishevska et al. 2013; Yoda et al. 2014). Indeed, work conducted by
Mayahara et al. in 2014 highlighted that adhesion of Candida yeast cells was up to
two times greater on rougher surfaces when comparing roughness across the same
substrate (Mayahara et al. 2014). Additional work has also taken place in investi-
gating the efficacy of antimicrobial peptides against fungal pathogens (Delattin et al.
2017). More recently, it was shown that nanotopographical alterations to surface
structure could significantly decrease yeast adhesion, paving out a promising strat-
egy for implanted biomaterials (Alalwan et al. 2018).

Indwelling medical devices, such as intravascular catheters, voice prostheses, and
ventricular-assisted devices (VADs), are commonly colonised with Candida spp.
(Aslam et al. 2010; Elving et al. 2002). These infections are highly problematic due
to the difficulty in effectively diagnosing them due to similar clinical symptoms to
bacterial biofilm infections. Moreover, Candida, as in colonisation of the vocal
prosthesis, is often discovered in a polymicrobial community, further exacerbating
clinical identification (Leonhard and Schneider-Stickler 2015). Clinically, unless
swiftly diagnosed the failure to treat a Candida infection in the ICU in the first
24 h can lead to a 30-fold increased likelihood of mortality (Kollef et al. 2012).
Therefore, diagnosis, speed, and the choice of antifungal are all critically important
in managing Candida spp. biofilms.

Within critical care there are a plethora of indwelling lines where adherent biofilm
communities can thrive, from which cells can detach and cause a fungemia by
spreading throughout the human body. These detached cells have been shown to
be pathogenically primed and are associated with higher mortality rates in a murine
model (Uppuluri et al. 2010). Literature has reported that biofilm formation corre-
lates with clinical outcome, with those biofilms forming the greatest levels of
bioburden being independent predictors of mortality (Rajendran et al. 2016a, b;
Tumbarello et al. 2007). Moreover, it is clear from these studies that the choice
of antifungal agent used is an important driver of clinical outcome, where the use of
azoles is negatively correlated with clinical outcomes, whereas the use of
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echinocandins and liposomal formulations of amphotericin B leads to positive
patient outcomes (Tumbarello et al. 2007).

Innovations in biofilm prevention, as well as novel methods of drug delivery,
indicate a hopeful outlook for future therapy. A range of studies, such as those
conducted by Free et al., in 2001, and Rodrigues et al., in 2004, have indicated the
production of biosurfactants produced by probiotic bacteria as having significant
potential for treatment of Candida-driven infection of prostheses (Free et al. 2001;
Rodrigues et al. 2004). Additionally, there has been a series of studies that positively
highlight the use of antifungals, such as liposomal amphotericin B, as antifungal line
locks in the prevention and management of fungal line infections (McGhee et al.
2016; Paul DiMondi et al. 2014). Though, the wide acceptance of such approaches is
still limited due to clinical apprehensiveness of fungal line infection management,
apart from line removal. Caspofungin remains an important antifungal in the man-
agement of fungal line infection and has even been shown in formulations to be
useful against Candida auris (Sumiyoshi et al. 2020).

7 Candida auris: The New Superfungus on the Block

Since its discovery in 2009 (Satoh et al. 2009), the nosocomial pathogen Candida
auris has received global attention in the world of medical mycology. This is largely
due to the organisms’ ability to persist within the environment (Welsh et al. 2017),
exhibit unique biofilm forming capabilities (Borman et al. 2016; Sherry et al. 2017),
and demonstrate an unusually high resistance to three common classes of antifungals
(Kean and Ramage 2019). The simultaneous emergence of four independent geo-
graphical clades (Lockhart et al. 2017), which have been linked with the rising
temperature around the globe (Casadevall et al. 2019), has added further complexity
to this enigmatic panfungal pathogen. In addition, a certain biofilm heterogeneity
exists within this species, which is determined by an aggregative and
non-aggregative morphology: whereby some isolates can form relatively large
clusters of cells vs. some that remain as single-celled entities (Borman et al. 2016;
Sherry et al. 2017; Brown et al. 2020). The geographical clade and these unique
morphological phenotypes can influence antifungal susceptibility. It is widely
accepted that most isolates are resistant to fluconazole, likely a result of a mutation
in ERG11 gene (which encodes for lanosterol 14-alpha-demethylase) and/or
overexpression in drug efflux pumps. Varying rates in susceptibility to echinocandin
and polyenes have been reported in the literature too, resistance to the former likely
owing to genetic mutation in the FKS1 gene, responsible for synthesis of β-glucan, a
key component of the fungal cell wall (reviewed in Chaabane et al. 2019; Kean and
Ramage 2019). Due to these multidrug resistance mechanisms, the search is now on
for innovative therapeutics to combat C. auris pathogenicity. To date, several in vitro
biofilm studies, in vivo model systems, and clinical trials are in the process of
investigating the novel antifungal agents. Of note, fosmanogepix (Berkow et al.
2017; Larkin et al. 2017; Ghannoum et al. 2020; Arendrup et al. 2020) and

454 G. Ramage et al.



ibrexafungerp (Hager et al. 2018; Zhao et al. 2018; Wiederhold et al. 2019), which
target β-glucan synthase pathways, have been reported as effective alternatives in
controlling C. auris biofilm formation in vitro and/or associated candidiasis in
animal models. At the time of writing, both drugs are in phase 2 and phase 3 of
clinical trials, respectively. This yeast is certainly one that will continue to be a
global threat, and its propensity to form biofilms in healthcare environments,
coupled with panfungal resistance, is a significant issue in this COVID era.

8 Concluding Comments

Fungal biofilms are an important clinical entity, and increasingly they are recognised
as interkingdom structures alongside a myriad of bacterial species throughout the
body. These difficult-to-treat infections are poorly responsive to antifungal agents
routinely used in the clincial environment. However, this book chapter has demon-
strated that above and beyond azoles, polyenes, and echinocandins, there are options
that are in clinical trials and many other in preclinical development. The future is
promising for management of fungal biofilms, but only if the wider clinical and
scientific community recognise their importance.
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