About
163
Publications
75,640
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,496
Citations
Introduction
Head of the Tromsø Arctic-Alpine Botanic Garden (Arctic University Museum of Norway, UIT the Arctic University of Norway).
Side position: Senior researcher at the Department of Arctic Ecology, Norwegian Institute for Nature Research, at the Fram Centre in Tromsø
Current institution
Publications
Publications (163)
We analysed the history behind the current contrasting lichen covers of two adjacent reindeer herding districts at the Finnish–Norwegian border. We conducted vegetation field inventories across the border fence and reconstructed a lichen cover history from 1959 to 2020 using aerial and satellite images. The oldest images showed only a slight differ...
Arctic landscapes occupy a nexus of environmental change processes, globally significant soil carbon stores, wildlife populations, and subsistence-based human societies. In response to rapid climate warming, tundra ecosystems are experiencing widespread changes to vegetation and underlying permafrost, coupled with an array of ecological disturbance...
The Arctic’s environmental and heritage management authorities face increasing challenges regarding degradation and destruction of natural and cultural heritage, especially due to increasing impacts from tourism and climate change. Tourism is now an important industry in the Arctic, and a major cause of negative impacts on the environment and biodi...
In an era marked by accelerating climate change, habitat loss, and shifting land use patterns, it is crucial to understand the intricate effects of multiple stressors on ecosystems. This long‐term study sheds light on the complex interplay between grazing and habitat characteristics on pasture dynamics and offers insights into how various stressors...
Extreme weather events influence carbon cycling and lead to pervasive changes in ecosystem structure and function. Vegetation at high latitudes and in alpine bioclimatic zones can be particularly sensitive to winter warming events, which are short‐lived climatic events where temperatures are unusually high and often include rainfall. With climate c...
Arctic ecosystems are experiencing extreme climatic, biotic and physical disturbance events that can cause substantial loss of plant biomass and productivity, sometimes at scales of >1000 km². Collectively known as browning events, these are key contributors to the spatial and temporal complexity of Arctic greening and vegetation dynamics. If we ar...
The Arctic amplification affects the geology, cryosphere, and the total environment of high-latitude maritime influenced lands. This study synthesizes information on recent and future climatic changes within the Nordic boreo-arctic region. The study area includes Greenland, Iceland, and the central and northern parts of Finland, Norway (incl. Svalb...
Papaveraceae tribus Papavereae includes an American and a mainly Eurasian group of genera. The latter is proposed here to include eight genera. Amongst these, the recently described genus Oreomecon is phylogenetically a sister group to Meconopsis, a genus from Himalaya and central China, which is reviewed here as including 95 species and 21 subspec...
Arctic observations in 2023 provided clear evidence of rapid and pronounced climate and environmental change, shaped by past and ongoing human activities that release greenhouse gases into the atmosphere and push the broader Earth system into uncharted territory. This chapter provides a snapshot of 2023 and summarizes decades-long trends observed a...
The European Arctic is commonly thought of as a pristine and homogeneous area. In reality, it is a diverse region experiencing growth relying on natural resource extraction. Despite local communities being primarily affected by industry activities, most socioeconomic impact assessments are conducted at the macro level. This study addresses this gap...
Natural resource-based industries in the European Arctic operate in an increasingly competitive and globalized Arctic. Knowledge of key drivers and their industrial impacts provide industries, companies, communities, and decision-makers at multiple levels with information on how to plan, manage and collaborate for the future. In this study, we expl...
Reindeer (Rangifer tarandus) pastoralism utilizes vast boreo-arctic taiga and tundra as grazing land. Highly fluctuating population sizes pose major challenges to the economy and livelihood of indigenous herder communities. In this study we investigated the effect of population fluctuations on core provisioning and regulating ecosystem services in...
A hyperspectral field sensor (FloX) was installed in Ad�ventdalen (Svalbard, Norway) in 2019 as part of the
Svalbard Integrated Arctic Earth Observing System (SIOS)
for monitoring vegetation phenology and Sun-Induced
Chlorophyll Fluorescence (SIF) of high-Arctic tundra. This
northernmost hyperspectral sensor is located within the
footprint of a tow...
Frost is damaging to plants when air temperature drops below their tolerance threshold. The set of mechanisms used by cold‐tolerant plants to withstand freezing is called “hardening” and typically take place in autumn to protect against winter damage. The recent incorporation of a hardening scheme in the demographic vegetation model FATES opens up...
Vegetation has a profound impact on climate through complex interactions and feedback loops, where especially regulation of albedo, the ratio of reflected to incoming solar radiation, is important at high latitudes. How vegetation albedo varies along environmental gradients in tundra ecosystems is still not well understood, particularly for ecosyst...
Arctic ecosystems are increasingly exposed to extreme climatic events throughout the year, which can affect species performance. Cryptogams (bryophytes and lichens) provide important ecosystem services in polar ecosystems but may be physiologically affected or killed by extreme events. Through field and laboratory manipulations, we compared physiol...
Vegetation indices are corner stones in vegetation monitoring. However, previous field studies on lichens and NDVI have been based on passive sensors. Active handheld sensors, with their own light sources, enables high-precision monitoring under variable ambient conditions. We investigated the use of handheld sensor NDVI for monitoring pale lichen...
The circumpolar average peak tundra greenness value in 2022 declined from the record high values of the previous two years, but still represented the fourth highest value since 2000.
Tundra greenness in 2022 was high in most of the North American Arctic, but unusually low in northeastern Siberia, consistent with persistent summer sea-ice in the adj...
Although generally given little attention in vegetation studies, ground-dwelling (terricolous) lichens are major contributors to overall carbon and nitrogen cycling, albedo, biodiversity and biomass in many high-latitude ecosystems. Changes in biomass of mat-forming pale lichens have the potential to affect vegetation, fauna, climate and human acti...
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we...
The panel-based assessment of ecosystem condition (PAEC) is an evidence-based ap-proach to assess the condition of Norwegian ecosystems. The assessment is carried out by an expert panel with broad expertise in the ecosystems to be assessed and is inspired by approaches used in international assessments such as IPCC and IPBES. The assessment follows...
Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, p...
Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation,...
The global distribution of vegetation is largely determined by climatic conditions and feeds back into the climate system. To predict future vegetation changes in response to climate change, it is crucial to identify and understand key patterns and processes that couple vegetation and climate. Dynamic global vegetation models (DGVMs) have been wide...
https://arctic.noaa.gov/Report-Card/Report-Card-2021/ArtMID/8022/ArticleID/936/Tundra-Greenness
The Arctic is one chapter from the State of the Climate in 2020 annual report and is available from https://doi.org/10.1175/BAMS-D-21-0086.1. Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2020 is based on contributions from scientists from around the world. It provides a detailed update on global climate...
Large population increases of Arctic-breeding waterfowls over recent decades have intensified the conflict with agricultural interests in both Eurasia and North America. In the spring-staging region Vesterålen in sub-Arctic Norway, sheep, dairy and meat farmers have reported reduced agricultural grassland yields due to pink-footed geese Anser brach...
Research in environmental science relies heavily on global climatic grids derived from estimates of air temperature at around 2 meter above ground1-3. These climatic grids however fail to reflect conditions near and below the soil surface, where critical ecosystem functions such as soil carbon storage are controlled and most biodiversity resides4-8...
The Arctic is experiencing an increased frequency of extreme events which can cause landscape-scale vegetation damage. Extreme event-driven damage is an important driver of the decline in vegetation productivity (termed ‘Arctic browning’) which has become an increasingly important component of pan-Arctic vegetation change in recent years. A limited...
The long-term satellite record (1982-2018) indicates "greening" across most Arctic tundra regions, especially Alaska's North Slope, mainland Canada, and the Russian Far East, but trends are not homogeneous, and some regions instead exhibit no trend or "browning," such as the Canadian Archipelago, southwestern Alaska, and parts of northwestern Siber...
In this study, we focused on three species that have proven to be vulnerable to winter stress: Empetrum nigrum, Vaccinium vitis-idaea and Hylocomium splendens. Our objective was to determine plant traits suitable for monitoring plant stress as well as trait shifts during spring. To this end, we used a combination of active and passive handheld norm...
Rapid climate change in Arctic regions is resulting in more frequent extreme climatic events. These can cause large-scale vegetation damage, and are therefore among key drivers of declines in biomass and productivity (or “browning”) observed across Arctic regions in recent years.
Extreme events which cause browning are driven by multiple interactin...
As the Arctic warms, vegetation is responding, and satellite measures indicate widespread greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most important large-scale ecological responses to global climate change. However, a consensus is emerging that the underlying causes and future dynamics of so-called Arctic greenin...
The Arctic marine ecosystem and the communities that depend upon it continue to experience unprecedented changes as a result of warming air temperatures, declining sea ice, and warming waters. Arctic Report Card 2019 draws particular attention to the Bering Sea region, where declining winter sea ice exemplifies the potential for sudden and extreme...
Vegetation greenness has been increasing globally since at least 1981, when satellite technology enabled large-scale vegetation monitoring. The greening phenomenon, together with warming, sea-level rise and sea-ice decline, represents highly credible evidence of anthropogenic climate change. In this Review, we examine the detection of the greening...
Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum...
Eurasian forest cover at high northern latitudes (> 67°N) has increased in recent decades due to stimulatory effects of global warming, but other factors may be important. The objective of this study is to compare the importance of historical human exploitation and climate change. Periodic information on forest and tundra resources along with human...
The “greening of the Arctic” is among the world’s most significant large scale ecological responses to global climate change1. The Arctic has warmed at twice the rate of the rest of the planet on average in recent decades2 and satellite-derived vegetation indices have indicated widespread increases in productivity (termed “greening”) at high latitu...
Remote sensing, which is based on a reflected electromagnetic spectrum, offers a wide range of research methods. It allows for the identification of plant properties, e.g., chlorophyll, but a registered signal not only comes from green parts but also from dry shoots, soil, and other objects located next to the plants. It is, thus, important to iden...
Climate change-induced snow thaw and subsequent accumulation of ice on the ground is a potential, major threat to snow-dominated ecosystems. While impacts of ground-ice on arctic wildlife are well explored, the impacts on tundra vegetation is far from understood. We therefore tested the vulnerability of two high-arctic plants, the prostrate shrub S...
Climate change is one of many ongoing human-induced environmental changes, but few studies consider interactive effects between multiple anthropogenic disturbances. In coastal sub-arctic heathland, we quantified the impact of a factorial design simulating extreme winter warming (WW) events (7 days at 6–7°C) combined with episodic summer nitrogen (+...
Extreme climatic events are among the drivers of recent declines in plant biomass and productivity observed across Arctic ecosystems, known as “Arctic browning.” These events can cause landscape‐scale vegetation damage and so are likely to have major impacts on ecosystem CO2 balance. However, there is little understanding of the impacts on CO2 flux...
The ericoid shrub Vaccinium myrtillus is one of several deciduous boreal plants that respond to larval defoliation by compensatory production of a new set of leaves within the same growing season soon after defoliation. This new set is termed as ‘secondary leaves’. The physiological performance and longevity of secondary leaves is poorly understood...
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice cor...
In the years 2014–2016 biomonitoring studies were conducted in the forest areas of south and north-eastern Poland: the Karkonosze Mountains, the Beskidy Mountains, the Borecka Forest, the Knyszyńska Forest and the Białowieska Forest. This study used epigeic moss Pleurozium schreberi and epiphytic lichens Hypogymnia physodes. Samples were collected...
Extreme winter events that damage vegetation are considered an important climatic cause of arctic browning—a reversal of the greening trend of the region—and possibly reduce the carbon uptake of northern ecosystems. Confirmation of a reduction in CO2 uptake due to winter damage, however, remains elusive due to a lack of flux measurements from affec...
Main conclusion:
Evergreen plants are more vulnerable than grasses and birch to snow and temperature variability in the sub-Arctic. Most Arctic climate impact studies focus on single factors, such as summer warming, while ecosystems are exposed to changes in all seasons. Through a combination of field and laboratory manipulations, we compared phys...
Arctic shows no sign of returning to reliably frozen region of recent past decades Despite relatively cool summer temperatures, observations in 2017 continue to indicate that the Arctic environmental system has reached a 'new normal', characterized by long-term losses in the extent and thickness of the sea ice cover, the extent and duration of the...
Remote sensing is a suitable candidate for monitoring rapid changes in Polar regions, offering high-resolution spectral, spatial and radiometric data. This paper focuses on the spectral properties of dominant plant species acquired during the first week of August 2015. Twenty-eight plots were selected, which could easily be identified in the field...
The exact cause of population dieback in nature is often challenging to identify retrospectively. Plant research in northern regions has in recent decades been largely focussed on the opposite trend, namely increasing populations and higher productivity. However, a recent unexpected decline in remotely-sensed estimates of terrestrial Arctic primary...
Icy surfaces impose challenges for northern societies, wildlife and agriculture. However, there have been relatively few studies of the impacts of anoxic ground ice on non-agricultural plants. During the winter of 2009–2010, an extreme winter warming event led to thick ground-ice layer development in the world’s northernmost botanical garden in Tro...
Ch 7. Regional Climates: f. Europe and the Middle East
A large population increase of the Svalbard‐breeding pink‐footed goose Anser brachyrhynchus over recent decades has intensified the conflict with agriculture at the spring‐staging sites in Norway. Knowledge of the yield loss caused by goose grazing in these northern areas is lacking, and the motivation behind the study was to quantify a relationshi...
Many goose species feed on agricultural land, and with growing goose numbers, conflicts with agriculture are increasing. One possible solution is to designate refuge areas where farmers are paid to leave geese undisturbed. Here, we present a generic modelling tool that can be used to designate the best locations for refuges and to gauge the area ne...
Heavy metals and radioactive compounds are potentially hazardous substances for plants, animals and humans in the Arctic. A good knowledge of the spatial variation of these substances in soil and primary producers, and their sources, is therefore essential. In the samples of lichen Thamnolia vermicularis, Salix polaris and Cassiope tetragona, and t...
The duration and extent of snow cover is expected to change rapidly with climate change. Therefore, there is a need for improved monitoring of snow for the benefit of forecasting, impact assessments and the population at large. Remotely sensed techniques prove useful for remote areas where there are few field-based monitoring stations. This paper r...
In recent years extreme winter warming events have been reported in arctic areas. These events are characterized as extraordinarily warm weather episodes, occasionally combined with intense rainfall, causing ecological disturbance and challenges for arctic societies and infrastructure. Ground-ice formation due to winter rain or melting prevents ung...
Unmanaged wild reindeer populations tend to follow cyclical behaviour, and domesticated reindeer populations often show cyclical behaviour, too. In this contribution, we intend to use the long-term development of two areas in northern Scandinavia to explore how externally imposed policies and winter climate variability have influenced the reindeer...
Winter is a period of dormancy for plants of cold environments. However, winter climate is changing, leading to an increasing frequency of stochastic warm periods (winter warming events) and concomitant reductions in snow cover. These conditions can break dormancy for some plants and expose them to freeze‐and‐thaw stress. Mosses are a major compone...
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although...
We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxon...
Europe's and the World's northernmost agriculture is very vulnerable to harsh overwintering conditions. It is important from both an economic and societal standpoint to have accurate methods of predicting the severity and impact of the current snow season. Technology has advanced to enable such measurements to be regularly recorded but despite this...
We have compared historical changes in concentrations of the heavy metals Mn, Ni, Cu, Zn, Cd and Pb accumulated in samples from the Polish woodlands of Beskidy and Karkonosze (S, SE Poland) and the northeast regions of the country, versus the relatively little polluted areas of Spitsbergen of the Svalbard Archipelago. We have combined the results f...
Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to pr...
Northern peatlands hold large amounts of organic carbon (C) in their soils and are as such important in a climate change context. Blanket bogs, i.e. nutrient-poor peatlands restricted to maritime climates, may be extra vulnerable to global warming since they require a positive water balance to sustain their moss dominated vegetation and C sink func...
Use of Unmanned Aircraft Systems (UAS) gives the opportunity to carry out research with a re-duced environmental footprint. Unmanned aircraft, including both fixed wing and multi rotor types (helicopters) allow us to collect very high resolution image data for vegetation mapping without the need for any personnel walking into the site and thereby p...
The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32–39%) of the Arctic, but much of the Arctic shows stable (57–64%) or reduced productivity (browning, <4%). Summer drought and wildfires are the best-documented drivers causing browning of continental areas, but factors...
The parmelioid lichens is a speciose group in the Parmeliaceae family, and the biodiversity of this group is still far from completely understood in many regions of the world. One such region is southernmost South America, viz. the parts of Chile and Argentina south of 49 and 46° S, respectively, and the Falkland Islands. Based on examination of 36...
Populations of migratory geese overwintering in Europe have risen rapidly during recent decades, leading to increased pressure on available forage resources and more grazing on agricultural lands. Farmers throughout Europe have complained of yield losses due to goose grazing. In spring, the Svalbard-breeding population of pink-footed goose (Anser b...
Background: Arctic lichens and mosses are covered by snow for more than half the year and are generally considered as being dormant for most of this period. However, enhanced frequency of winter warming events due to climate change can cause increased disturbance of their protective subnivean environment.
Aim: To further understand cryptogamic resp...
The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth a...
Extreme winter warming events in the sub-Arctic have caused considerable vegetation damage due to rapid changes in temperature and loss of snow cover. The frequency of extreme weather is expected to increase due to climate change thereby increasing the potential for recurring vegetation damage in Arctic regions. Here we present data on vegetation r...
Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on p...
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unsea- sonably warm air (2–10 °C for 2–14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by th...
During the last 25 yr, Sami reindeer husbandry in parts of Finnmarksvidda in the Norwegian Arctic has been in a critical state because of overexploitation of lichen-dominated tundra, which serves as winter forage. To better understand the ecosystem's capabilities for recovery we investigated vegetation cover changes over a 7-yr period, starting in...
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the...
Extreme winter warming events in the sub-Arctic have caused considerable vegetation damage due to rapid changes in temperature and loss of snow cover. The frequency of extreme weather is expected to increase due to climate change thereby increasing the potential for recurring vegetation damage in Arctic regions. Here we present data on vegetation r...
1. Climate change in northern high latitudes is predicted to be greater in winter rather than summer, yet little is known about the effects of winter climate change on northern ecosystems. Among the unknowns are the effects of an increasing frequency of acute, short‐lasting winter warming events. Such events can damage higher plants exposed to warm...
While it has been widely proven that many lichens are extremely freeze-tolerant in the dry state, little is known about how moist lichens respond to freezing under oxic and anoxic conditions. In circumpolar areas where lichens are an important component of boreal and Arctic ecosystems, winter climate is changing, leading to increased frequency of w...
Scientific studies of challenges of climate change could be improved by including other sources of knowledge, such as traditional ecological knowledge (TEK), in this case relating to the Sámi. This study focuses on local variations in snow and ice conditions, effects of the first durable snow, and long term changes in snow and ice conditions as pre...
Evolution through time of NI values per municipalities averaged across
oceanic, coast and terrestrial major ecosystems.
(PDF)
Excel file. Detailed list of indicators collected for the NI project in
Norway.
(XLSX)