Jari Willing

Jari Willing
Bowling Green State University | BGSU · Department of Psychology

PhD

About

20
Publications
2,246
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
736
Citations
Citations since 2017
12 Research Items
696 Citations
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
Additional affiliations
August 2007 - August 2013
University at Albany, The State University of New York
Position
  • PhD Student

Publications

Publications (20)
Article
Phthalates are a class of endocrine disruptors found in a variety of consumer goods, and offspring can be exposed to these compounds during gestation and lactation. Our laboratory has found that perinatal exposure to an environmentally relevant mixture of phthalates resulted in a decrease in cognitive flexibility and in neuron number in the adult r...
Article
Full-text available
Apoptosis, programmed cell death, is a critical component of neurodevelopment occurring in temporal, spatial, and at times, sex-specific, patterns across the cortex during the early postnatal period. During this time, the brain is particularly susceptible to environmental influences that are often used in animal models of neurodevelopmental disorde...
Article
Exposure to stress during adolescence is a risk factor for developing several psychiatric disorders, many of which involve prefrontal cortex (PFC) dysfunction. The human PFC and analogous rodent medial prefrontal cortex (mPFC) continue to mature functionally and anatomically during adolescence, and some of these maturational events coincide with pu...
Article
Full-text available
The prefrontal cortex (PFC) is a late developing region of the cortex, and its protracted maturation during adolescence may confer a period of plasticity. Closure of critical, or sensitive, periods in sensory cortices coincides with perineuronal net (PNN) expression, leading to enhanced inhibitory function and synaptic stabilization. PNN density ha...
Preprint
Full-text available
The prefrontal cortex (PFC) is a late developing region of the cortex, and its protracted maturation during adolescence may confer a period of plasticity. Closure of critical, or sensitive, periods in sensory cortices coincides with perineuronal net (PNN) expression, leading to enhanced inhibitory function and synaptic stabilization. PNN density is...
Article
Phthalates are industrial plasticizers and stabilizers commonly found in polyvinyl chloride plastic and consumer products, including food packaging, cosmetics, medical devices, and children’s toys. Di-(2-ethylhexyl) phthalate (DEHP), one of the most commonly used phthalates, exhibits endocrine-disrupting characteristics and direct exposure leads to...
Article
The cover image is based on the Research Article Progesterone receptor expression in cajal‐retzius cells of the developing rat dentate gyrus: Potential role in hippocampus‐dependent memory by Andrew J. Newell et al., DOI: 10.1002/cne.24485.
Article
Full-text available
The development of medial temporal lobe circuits is critical for subsequent learning and memory functions later in life. The present study reports the expression of progesterone receptor (PR), a powerful transcription factor of the nuclear steroid receptor superfamily, in Cajal‐Retzius cells of the molecular layer of the dentate gyrus of rats. PR w...
Article
The growth and organization of the developing brain are known to be influenced by hormones, but little is known about whether disruption of hormones affects cortical regions, such as mPFC. This region is particularly important given its involvement in executive functions and implication in the pathology of many neuropsychiatric disorders. Here, we...
Article
Adolescents and females experience worse outcomes of drug use compared to adults and males. This could result from age- and sex-specific consequences of drug exposure on brain function and cognitive behavior. In the current study, we examined whether a history of intravenous methamphetamine (METH) self-administration impacted cognitive flexibility...
Article
Adolescence is a time of significant neural and behavioral change with remarkable development in social, emotional, and cognitive skills. It is also a time of increased exploration and risk-taking (e.g., drug use). Many of these changes are thought to be the result of increased reward-value coupled with an underdeveloped inhibitory control, and thu...
Article
Adolescence is associated with continued maturation of the cerebral cortex, particularly the medial prefrontal cortex (mPFC). We have previously documented pruning in the number of neurons, dendrites, and synapses in the rat mPFC from preadolescence to adulthood, with the period of pubertal onset being particularly important. We hypothesized that d...
Article
Adolescence is a unique period of development, marked by maturation of the prefrontal cortex (PFC), a region important for executive functioning. During this time, the human PFC decreases in overall volume and thickness. Likewise in adolescent rodents, losses of neurons, dendrites, dendritic spines and neurotransmitter receptors have been documente...
Article
Adolescence is characterized by neuroanatomical changes that coincide with increased cognitive performance. This developmental period is particularly important for the medial prefrontal cortex (mPFC), which mediates higher-order cognitive functioning. The authors' laboratory has shown that puberty is associated with sex-specific changes in neuron n...
Article
Adolescence, broadly defined as the period between childhood and adulthood, is characterized by a variety of neuroanatomical and behavioral changes. In human adolescents, the cerebral cortex, especially the prefrontal cortex, decreases in size while the cortical white matter increases. Puberty appears to be an important factor in both of these chan...
Article
Bisphenol A (BPA), an endocrine disruptor used in a variety of consumer products, has been found to alter the number of neurons in multiple brain areas in rats following exposure in perinatal development. Both the number of neurons and glia also change in the medial prefrontal cortex (mPFC) during adolescence, and this process is known to be influe...
Article
The synthetic progestin, 17α-hydroxyprogesterone caproate (17-OHPC) is increasingly used for the prevention of premature birth in at-risk women, despite little understanding of the potential effects on the developing brain. Rodent models suggest that many regions of the developing brain are sensitive to progestins, including the mesocortical dopami...
Article
Numerous psychiatric and behavioral disorders such as Autism, Attention Deficit Disorder and Schizophrenia may involve disruptions in the development of the mesocortical dopamine pathway, consisting of dopaminergic projections from the midbrain ventral tegmental area (VTA) to the medial prefrontal cortex (mPFC). Nuclear steroid hormone receptors ar...
Article
Adolescence is a critical period for brain maturation characterized by the reorganization of interacting neural networks. In particular the prefrontal cortex, a region involved in executive function, undergoes synaptic and neuronal pruning during this time in both humans and rats. Our laboratory has previously shown that rats lose neurons in the me...
Article
Early exposure to steroid hormones can permanently and dramatically alter neural development. This is best understood in the organizational effects of hormones during development of brain regions involved in reproductive behaviors or neuroendocrine function. However, recent evidence strongly suggests that steroid hormones play a vital role in shapi...

Network

Cited By

Projects

Project (1)
Archived project
The aim of this project is to identify modulations to behavior and brain gene expression following transgenerational DEHP exposure.