About
114
Publications
36,959
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,597
Citations
Introduction
I am interested in research leading to finding life on exoplanets. So far Earth is the only known inhabited planet. Yet it is known that the laws of physics and chemistry are universal and the same in every “corner” of the observable Universe. Can we say the same about biology? Can we identify any universal laws of biology? I study these questions using cheminformatics computer simulations as an aid in designing future laboratory experiments. More info here: https://www.januszpetkowski.com/
Current institution
Additional affiliations
February 2013 - August 2015
Education
August 2006 - October 2012
October 2004 - July 2006
October 2001 - June 2004
Publications
Publications (114)
Significance
This research provides a transformative hypothesis for the chemistry of the atmospheric cloud layers of Venus while reconciling decades-long atmosphere anomalies. Our model predicts that the clouds are not entirely made of sulfuric acid, but are partially composed of ammonium salt slurries, which may be the result of biological product...
Regular, low-cost Decadal-class science missions to planetary destinations will be enabled by high-ΔV small spacecraft, such as the high-energy Photon, and small launch vehicles, such as Electron, to support expanding opportunities for scientists and to increase the rate of science return. The Rocket Lab mission to Venus is a small direct entry pro...
What constitutes a habitable planet is a frontier to be explored and requires pushing the boundaries of our terracentric viewpoint for what we deem to be a habitable environment. Despite Venus' 700 K surface temperature being too hot for any plausible solvent and most organic covalent chemistry, Venus' cloud-filled atmosphere layers at 48 to 60 km...
Venus is Earth's sister planet, with similar mass and density but an uninhabitably hot surface, an atmosphere with a water activity 50-100 times lower than anywhere on Earths' surface, and clouds believed to be made of concentrated sulfuric acid. These features have been taken to imply that the chances of finding life on Venus are vanishingly small...
At visible wavelengths, Venus appears serene and pale-yellow, but since the 1920s, observers have noted high-contrast features in the ultraviolet. These features track the about 4-day superrotation of the upper cloud deck and vary widely over time and space. The identity of the UV absorber(s)-active between at least 280 and 500 nm-remains unknown,...
The search for signs of life in the Universe has entered a new phase with the advent of the James Webb Space Telescope (JWST). Detecting biosignature gases via exoplanet atmosphere transmission spectroscopy is in principle within JWST's reach. We reflect on JWST's early results in the context of the potential search for biological activity on exopl...
Recent renewed interest regarding the possibility of life in the Venusian clouds has led to new studies on organic chemistry in concentrated sulfuric acid. However, life requires complex genetic polymers for biological function. Therefore, finding suitable candidates for genetic polymers stable in concentrated sulfuric acid is a necessary first ste...
We propose a mechanism for the solvolysis of the peptide bond in 98% (w/w) concentrated sulfuric acid based on the assessment of reactivity of four dipeptides at room temperature: l-alanyl-l-alanine (1), glycylglycine (2), glycyl-l-alanine (3), and l-alanylglycine (4). We find that dipeptides (2) and (4) are stable for at least two months in 98% w/...
We report on the proof-of-concept of a low-mass, low-power method for collecting micron-sized sulfuric acid aerosols in bulk from the atmosphere of Venus. The collection method uses four wired meshes in a sandwich structure with a deposition area of 225 cm². It operates in two modes: passive and electrostatic. During passive operation, aerosols are...
Life is a complex, dynamic chemical system that requires a dense fluid solvent in which to take place. A common assumption is that the most likely solvent for life is liquid water, and some researchers argue that water is the only plausible solvent. However, a persistent theme in astrobiological research postulates that other liquids might be cosmi...
We report on the proof-of-concept of a low-mass, low-power method for collecting micron-sized sulfuric acid aerosols in bulk from the atmosphere of Venus. The collection method uses four wired meshes in a sandwich structure with a deposition area of 225 cm2. It operates in two modes: passive and electrostatic. During passive operation, aerosols are...
Venus has become a target of astrobiological interest because it is physically accessible to direct exploration, unlike exoplanets. So far this interest has been motivated not by the explicit expectation of finding life, but rather a desire to understand the limits of biology. The Venusian surface is sterilizing, but the cloud deck includes regions...
Recent renewed interest in the possibility of life in the acidic clouds of Venus has led to new studies on organic chemistry in concentrated sulfuric acid. We have previously found that the majority of amino acids are stable in the range of Venus’ cloud sulfuric acid concentrations (81% and 98% w/w, the rest being water). The natural next question...
Life on Earth is known to rarely make fluorinated carbon compounds, as compared to other halocarbons. We quantify this rarity, based on our exhaustive natural products database curated from available literature. We build on explanations for the scarcity of fluorine chemistry in life on Earth, namely that the exclusion of the C–F bond stems from the...
Exoplanet atmospheres are expected to vary significantly in thickness and chemical composition, leading to a continuum of differences in surface pressure and atmospheric density. This variability is exemplified within our Solar System, where the four rocky planets exhibit surface pressures ranging from 1 nPa on Mercury to 9.2 MPa on Venus. The dire...
We show that the nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine, and the “core” nucleic acid bases purine and pyrimidine, are stable for more than one year in concentrated sulfuric acid at room temperature and at acid concentrations relevant for Venus clouds (81% w/w to 98% w/w acid, the rest water)...
The tentative detection of ppb levels of phosphine (PH 3 ) in the clouds of Venus was extremely surprising, as this reduced gas was not expected to be a component of Venus’ oxidized atmosphere. Despite potential confirmation in legacy Pioneer Venus mass spectrometry data, the detection remains controversial. Here we review the potential production...
Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfu...
Long-standing unexplained Venus atmosphere observations and chemical anomalies point to unknown chemistry but also leave room for the possibility of life. The unexplained observations include several gases out of thermodynamic equilibrium (e.g., tens of ppm O2, the possible presence of PH3 and NH3, SO2 and H2O vertical abundance profiles), an unkno...
Ammonia is an unexpected gas on Venus. However, reduced nitrogen could be delivered with organic matter in cometary dust (~300 kg N/day). An alteration of cosmic organic matter could be a source of ammoniated compounds in clouds and NH3 below clouds.
Isotopologue ratios are anticipated to be one of the most promising signs of life that can be observed remotely. On Earth, carbon isotopes have been used for decades as evidence of modern and early metabolic processes. In fact, carbon isotopes may be the oldest evidence for life on Earth, though there are alternative geological processes that can l...
Searches for phosphine in Venus' atmosphere have sparked a debate. Cordiner et al. (2022, https://doi.org/10.1029/2022gl101055) analyze spectra from the Stratospheric Observatory For Infrared Astronomy (SOFIA) and infer <0.8 ppb of PH3. We noticed that some spectral artifacts arose from non‐essential calibration‐load signals. By‐passing these signa...
Waste gas products from technological civilizations may accumulate in an exoplanet atmosphere to detectable levels. We propose nitrogen trifluoride (NF3) and sulfur hexafluoride (SF6) as ideal technosignature gases. Earth life avoids producing or using any N-F or S-F bond-containing molecules and makes no fully fluorinated molecules with any elemen...
Waste gas products from technological civilizations may accumulate in an exoplanet atmosphere to detectable levels. We propose nitrogen trifluoride (NF3) and sulfur hexafluoride (SF6) as ideal technosignature gases. Earth life avoids producing or using any N–F or S–F bond-containing molecules and makes no fully fluorinated molecules with any elemen...
What constitutes a habitable planet is a frontier to be explored and requires pushing the boundaries of our terracentric viewpoint for what we deem to be a habitable environment. Despite Venus' 700 K surface temperature being too hot for any plausible solvent and most organic covalent chemistry, Venus' cloud-filled atmosphere layers at 48 to 60 km...
Venus is Earth's sister planet, with similar mass and density but an uninhabitably hot surface, an atmosphere with a water activity 50-100 times lower than anywhere on Earths' surface, and clouds believed to be made of concentrated sulfuric acid. These features have been taken to imply that the chances of finding life on Venus are vanishingly small...
Phosphorus (III) oxide (P$_4$O$_6$) has been suggested to be a major component of the gas phase phosphorus chemistry in the atmospheres of gas giant planets and of Venus. However, P$_4$O$_6$'s proposed role is based on thermodynamic modeling, itself based on values for the free energy of formation of P$_4$O$_6$ estimated from limited experimental d...
Phosphorus (III) oxide (P4O6) has been suggested to be a major component of the gas phase phosphorus chemistry in the atmospheres of gas giant planets and of Venus. However, P4O6’s proposed role is based on thermodynamic modelling, itself based on values for the free energy of formation of P4O6 estimated from limited experimental data. Values of th...
Searches for phosphine in Venus’ atmosphere have sparked a debate. Cordiner et al. 2022 analyse spectra from the Stratospheric Observatory For Infrared Astronomy (SOFIA) and infer <0.8 ppb of PH3. We noticed that some spectral artefacts arose from non-essential calibration-load signals. By-passing these signals allows simpler post-processing and a...
In our previous paper we have modelled a dielectrophoretic force (DEP) and cell particle behavior in the microfluidic channel (Weber MU et al. 2022 Fluid-Screen Dielectrophoretic Microbial Capture, Separation and Detection I: Theoretical Study Nanotechnology submitted). Here we test and confirm the results of our modeling work by experimentally val...
We model the dielectrophoretic response of E. coli bacterial cells and red blood cells, upon exposure to an electric field. We model the separation, capture, and release mechanisms under flow conditions in a microfluidic channel and show under which conditions efficient separation of different cell types occur. The modelling work is aimed to guide...
For over half a century, scientists have contemplated the potential existence of life within the clouds of Venus. Unknown chemistry leaves open the possibility that certain regions of the Venusian atmosphere are habitable. In situ atmospheric measurements with a suite of modern instruments can determine whether the cloud decks possess the character...
For over half a century, scientists have contemplated the potential existence of life within the clouds of Venus. Unknown chemistry leaves open the possibility that certain regions of the Venusian atmosphere are habitable. In situ atmospheric measurements with a suite of modern instruments can determine whether the cloud decks possess the character...
Searches for phosphine in Venus' atmosphere have sparked a debate. Cordiner et al. 2022 analyse spectra from the Stratospheric Observatory For Infrared Astronomy (SOFIA) and infer <0.8 ppb of PH3. We noticed that spectral artefacts arose mainly from inessential calibration-load signals. By-passing these signals allows simpler post-processing, and 6...
Evidence of chemical disequilibria and other anomalous observations in the Venusian atmosphere motivate the search for life within the planet's temperate clouds. To find signs of a Venusian aerial biosphere, a dedicated astrobiological space mission is required. Venus Life Finder (VLF) missions encompass unique mission concepts with specialized ins...
Evidence of chemical disequilibria and other anomalous observations in the Venusian atmosphere motivate the search for life within the planet’s temperate clouds. To find signs of a Venusian aerial biosphere, a dedicated astrobiological space mission is required. Venus Life Finder (VLF) missions encompass unique mission concepts with specialized ins...
Exploring how life is distributed in the universe is an extraordinary interdisciplinary challenge, but increasingly subject to testable hypotheses. Biology has emerged and flourished on at least one planet, and that renders the search for life elsewhere a scientific question. We cannot hope to travel to exoplanets in pursuit of other life even if w...
The composition, sizes and shapes of particles in the clouds of Venus have previously been studied with a variety of in situ and remote sensor measurements. A number of major questions remain unresolved, however, motivating the development of an exploratory mission that will drop a small probe, instrumented with a single-particle autofluorescence n...
The composition, sizes and shapes of particles in the clouds of Venus have previously been studied with a variety of in situ and remote sensor measurements. A number of major questions remain unresolved, however, motivating the development of an exploratory mission that will drop a small probe, instrumented with a single-particle autofluorescence n...
Regular, low-cost Decadal-class science missions to planetary destinations will be enabled by high-{\Delta}V small spacecraft, such as the high-energy Photon, and small launch vehicles, such as Electron, to support expanding opportunities for scientists and to increase the rate of science return. The Rocket Lab mission to Venus is a small direct en...
Mounting evidence of chemical disequilibria in the Venusian atmosphere has heightened interest in the search for life within the planet's cloud decks. Balloon systems are currently considered to be the superior class of aerial platform for extended atmospheric sampling within the clouds, providing the highest ratio of science return to risk. Balloo...
Finding evidence of extraterrestrial life would be one of the most profound scientific discoveries ever made, advancing humanity into a new epoch of cosmic awareness. The Venus Life Finder (VLF) missions feature a series of three direct atmospheric probes designed to assess the habitability of the Venusian clouds and search for signs of life and li...
Venus is known for its extreme surface temperature and its sulfuric acid clouds. But the cloud layers on Venus have similar temperature and pressure conditions to those on the surface of Earth and are conjectured to be a possible habitat for microscopic life forms. We propose a mission concept to explore the clouds of Venus for up to 30 days to eva...
The stratosphere contains haze rich in sulfuric acid, which plays a significant role in stratospheric chemistry and in global climate. Commercial aircraft deposit significant amounts of incomplete combustion products into the lower stratosphere. We have studied the stability of these incomplete combustion products to reaction with sulfuric acid, us...
Finding evidence of extraterrestrial life would be one of the most profound scientific discoveries ever made, advancing humanity into a new epoch of cosmic awareness. The Venus Life Finder (VLF) missions feature a series of three direct atmospheric probes designed to assess the habitability of the Venusian clouds and search for signs of life and li...
Mounting evidence of chemical disequilibria in the Venusian atmosphere has heightened interest in the search for life within the planet’s cloud decks. Balloon systems are currently considered to be the superior class of aerial platform for extended atmospheric sampling within the clouds, providing the highest ratio of science return to risk. Balloo...
Venus is known for its extreme surface temperature and its sulfuric acid clouds. But the cloud layers on Venus have similar temperature and pressure conditions to those on the surface of Earth and are conjectured to be a possible habitat for microscopic life forms. We propose a mission concept to explore the clouds of Venus for up to 30 days to eva...
Biosignature gas research has been growing in recent years thanks to next-generation space-and ground-based telescopes. Methanol (CH 3 OH) has many advantages as a biosignature gas candidate. First, CH 3 OH's hydroxyl group (OH) has a unique spectral feature not present in other anticipated gases in the atmospheres of rocky exoplanets. Second, ther...
New analysis is presented of the 1.1 mm wavelength absorption lines in Venus’ atmosphere that suggested the presence of phosphine. We retrieve a sulphur dioxide observation from the JCMT archive that was simultaneous within a few days of the PH3 1-0 spectrum obtained in June 2017, and demonstrate via a radiative transfer calculation that contaminat...
The search for signs of life on other worlds has largely focused on terrestrial planets. Recent work, however, argues that life could exist in the atmospheres of temperate sub-Neptunes. Here, we evaluate the usefulness of carbon dioxide isotopologues as evidence of aerial life. Carbon isotopes are of particular interest as metabolic processes prefe...
The search for signs of life on other worlds has largely focused on terrestrial planets. Recent work, however, argues that life could exist in the atmospheres of temperate sub-Neptunes. Here we evaluate the usefulness of carbon dioxide isotopologues as evidence of aerial life. Carbon isotopes are of particular interest, as metabolic processes prefe...
The search for signs of life beyond Earth is a crucial driving motivation of exoplanet science, fueling new work on biosignature gases in habitable exoplanet atmospheres. We study carbonyls, a category of molecules containing the C=O double bond, following our proposal to systematically identify plausible biosignature gas candidates from a list of...
About 2.5 billion years ago, microbes learned to harness plentiful solar energy to reduce CO 2 with H 2 O, extracting energy and producing O 2 as waste. O 2 production from this metabolic process was so vigorous that it saturated its photochemical sinks, permitting it to reach “runaway” conditions and rapidly accumulate in the atmosphere despite it...
The thermodynamic properties of a substance are key to predicting its behavior in physical and chemical systems. Specifically, the enthalpy of formation and entropy of a substance can be used to predict whether reactions involving that substance will proceed spontaneously under conditions of constant temperature and pressure, and if they do, what t...
Ammonia (NH3) in a terrestrial planet atmosphere is generally a good biosignature gas, primarily because terrestrial planets have no significant known abiotic NH3 source. The conditions required for NH3 to accumulate in the atmosphere are, however, stringent. NH3's high water solubility and high biousability likely prevent NH3 from accumulating in...
About 2.5 billion years ago, microbes learned to harness plentiful Solar energy to reduce CO$_2$ with H$_2$O, extracting energy and producing O$_2$ as waste. O$_2$ production from this metabolic process was so vigorous that it saturated its photochemical sinks, permitting it to reach "runaway" conditions and rapidly accumulate in the atmosphere des...
The initial reports of the presence of phosphine in the cloud decks of Venus have led to the suggestion that volcanism is the source of phosphine, through volcanic phosphides ejected into the clouds. Here, we examine the idea that mantle plume volcanism, bringing material from the deep mantle to the surface, could generate observed amounts of phosp...
The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include: the unexpected presence of ~10 ppm O2 in the cloud layers; an unknown composition of large particles in the lower cloud layers; and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a new hypothesis for the chemistry in...
The Venus Life Finder Missions are a series of focused astrobiology mission concepts to search for habitability, signs of life, and life itself in the Venus atmosphere. While people have speculated on life in the Venus clouds for decades, we are now able to act with cost-effective and highly-focused missions. A major motivation are unexplained atmo...
The initial reports of the presence of phosphine in the cloud decks of Venus has led to the suggestion that volcanism was the source of phosphine, through volcanic phosphides ejected into the clouds. Here we examine the idea that mantle plume volcanism, bringing material from the deep mantle to the surface, could generate observed amounts of phosph...
Bacterial culture methods, e.g. Plate Counting Method (PCM), are a gold standard in the assessment of microbial contamination in multitude of human industries. They are however slow, labor intensive, and prone to manual errors. Dielectrophoresis (DEP) has shown great promise for particle separation for decades; however, it has not yet been widely a...
The potential detection of ppb levels phosphine (PH3) in the clouds of Venus through millimeter-wavelength astronomical observations is extremely surprising as PH3 is an unexpected component of an oxidized environment of Venus. A thorough analysis of potential sources suggests that no known process in the consensus model of Venus' atmosphere or geo...
The potential detection of ppb levels phosphine (PH3) in the clouds of Venus through millimeter-wavelength astronomical observations is extremely surprising as PH3 is an unexpected component of an oxidized environment of Venus. A thorough analysis of potential sources suggests that no known process in the consensus model of Venus’ atmosphere or geo...
New analysis is presented of the 1.1 mm wavelength absorption lines in Venus' atmosphere that suggested the presence of phosphine. We confirm that ALMA detected absorption at the PH3 1-0 wavelength in 2019, from an optimised spectrum covering half of the planetary disc. Sulphur dioxide line-contamination was then <10%, from modelling of a simultane...
Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cel...
Ammonia (NH3) in a terrestrial planet atmosphere is generally a good biosignature gas, primarily because terrestrial planets have no significant known abiotic NH3 source. The conditions required for NH3 to accumulate in the atmosphere are, however, stringent. NH3's high water solubility and high bio-useability likely prevent NH3 from accumulating i...
The recent candidate detection of ∼1 ppb of phosphine in the middle atmosphere of Venus is so unexpected that it requires an exhaustive search for explanations of its origin. Phosphorus-containing species have not been modeled for Venus' atmosphere before, and our work represents the first attempt to model phosphorus species in the venusian atmosph...
Measurements of trace gases in planetary atmospheres help us explore chemical conditions different to those on Earth. Our nearest neighbour, Venus, has cloud decks that are temperate but hyperacidic. Here we report the apparent presence of phosphine (PH3) gas in Venus’s atmosphere, where any phosphorus should be in oxidized forms. Single-line milli...
The search for biosignatures is likely to generate controversial results, with no single biosignature being clear proof of the presence of life. Bayesian statistical frameworks have been suggested as a tool for testing the effect that a new observation has on our belief in the presence of life on another planet. We test this approach here using the...
The search for signs of life through the detection of exoplanet atmosphere biosignature gases is gaining momentum. Yet, only a handful of rocky exoplanet atmospheres are suitable for observation with planned next-generation telescopes. To broaden prospects, we describe the possibilities for an aerial, liquid water cloud-based biosphere in the atmos...
The search for signs of life through the detection of exoplanet atmosphere biosignature gases is gaining momentum. Yet, only a handful of rocky exoplanet atmospheres are suitable for observation with planned next-generation telescopes. To broaden prospects, we describe the possibilities for an aerial, liquid water cloud-based biosphere in the atmos...
The chemistry of life requires a solvent, which for life on Earth is water. Several alternative solvents have been suggested, but there is little quantitative analysis of their suitability as solvents for life. To support a novel (non-terrestrial) biochemistry, a solvent must be able to form a stable solution of a diverse set of small molecules and...
We recover PH3 in the atmosphere of Venus in data taken with ALMA, using three different calibration methods. The whole-planet signal is recovered with 5.4{\sigma} confidence using Venus bandpass self-calibration, and two simpler approaches are shown to yield example 4.5-4.8{\sigma} detections of the equatorial belt. Non-recovery by Villanueva et a...
Research for possible biosignature gases on habitable exoplanet atmosphere is accelerating. We add isoprene, C5H8, to the roster of biosignature gases. We found that formation of isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methan...
Research for possible biosignature gases on habitable exoplanet atmosphere is accelerating. We add isoprene, C5H8, to the roster of biosignature gases. We found that formation of isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methan...
We describe a dataset of the quantitative reactivity of organic chemicals with concentrated sulfuric acid. As well as being a key industrial chemical, sulfuric acid is of environmental and planetary importance. In the absence of measured reaction kinetics, the reaction rate of a chemical with sulfuric acid can be estimated from the reaction rate of...
Dielectrophoresis (DEP) has shown great promise for particle separation for decades; however, it has not yet been widely applied in routine laboratory setting. This paper provides an overview of a new DEP microbial capture and separation method called Fluid-Screen (FS), that achieves an efficient, reliable and repeatable capture and separation of m...
We published spectra of phosphine molecules in Venus' clouds, following open-science principles in releasing data and scripts (with community input leading to ALMA re-processing, now benefiting multiple projects). Some misconceptions about de-trending of spectral baselines have also emerged, which we address here. Using the JCMT PH3-discovery data,...
We first respond to two points raised by Villanueva et al. We show the JCMT discovery spectrum of PH3 can not be re-attributed to SO2, as the line width is larger than observed for SO2 features, and the required abundance would be an extreme outlier. The JCMT spectrum is also consistent with our simple model, constant PH3-abundance with altitude, w...
The recent candidate detection of 20 ppb of phosphine in the middle atmosphere of Venus is so unexpected that it requires an exhaustive search for explanations of its origin. Phosphorus-containing species have not been modelled for Venusian atmosphere before and our work represents the first attempt to model phosphorus species in Venusian atmospher...
We revisit the hypothesis that there is life in the Venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the Venus atmosphere temperate layers never address whether the life-small microbial-type particles-is free fl...
Measurements of trace-gases in planetary atmospheres help us explore chemical conditions different to those on Earth. Our nearest neighbor, Venus, has cloud decks that are temperate but hyper-acidic. We report the apparent presence of phosphine (PH3) gas in Venusian atmosphere, where any phosphorus should be in oxidized forms. Single-line millimete...
We revisit the hypothesis that there is life in the Venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the Venus atmosphere temperate layers never address whether the life-small microbial-type particles-is free fl...
Theory and observation for the search for life on exoplanets via atmospheric ‘biosignature gases’ is accelerating, motivated by the capabilities of the next generation of space- and ground-based telescopes. The most observationally accessible rocky planet atmospheres are those dominated by molecular hydrogen gas, because the low density of H2 gas l...
Despite more than one hundred years of work on organosilicon chemistry, the basis for the plausibility of silicon-based life has never been systematically addressed nor objectively reviewed. We provide a comprehensive assessment of the possibility of silicon-based biochemistry, based on a review of what is known and what has been modeled, even incl...
Theory and observation for the search for life on exoplanets via atmospheric "biosignature gases" is accelerating, motivated by the capabilities of the next generation of space- and ground-based telescopes. The most observationally accessible rocky planet atmospheres are those dominated by molecular hydrogen gas, because the low density of H$_2$-ga...
A long-term goal of exoplanet studies is the identification and detection of biosignature gases. Beyond the most discussed biosignature gas O2, only a handful of gases have been considered in detail. In this study, we evaluate phosphine (PH3). On Earth, PH3 is associated with anaerobic ecosystems, and as such, it is a potential biosignature gas in...
Unambiguously identifying molecules in spectra is of fundamental importance for a variety of scientific and industrial uses. Interpreting atmospheric spectra for the remote detection of volatile compounds requires information about the spectrum of each relevant molecule. However, spectral data currently exist for a few hundred molecules and only a...
A long-term goal of exoplanet studies is the identification and detection of biosignature gases. Beyond the most discussed biosignature gas O$_2$, only a handful of gases have been considered in detail. Here we evaluate phosphine (PH$_3$). On Earth, PH$_3$ is associated with anaerobic ecosystems, and as such is a potential biosignature gas on anoxi...
Unambiguously identifying molecules in spectra is of fundamental importance for a variety of scientific and industrial uses. Interpreting atmospheric spectra for the remote detection of volatile compounds requires information about...
Phosphorus is an essential element for all life on Earth, yet trivalent phosphorus (e.g., in phosphines) appears to be almost completely absent from biology. Instead phosphorus is utilized by life almost exclusively as phosphate, apart from a small contingent of other pentavalent phosphorus compounds containing structurally similar chemical groups....
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P–N (phosphoramidate), P–S (phosphorothioate), and P–C (e.g., phosphonate and phosphinate)...
Questions
Questions (4)
Dear RG Community,
Do you know of any company that sells pipette tips that are resistant to 70%-98% concentrated sulfuric acid? I am familiar with Chemical Resistance Charts. Standard polypropylene tips cannot be used. Polyethylene tips (if they are even sold?) are only good for short exposure. (Note that I would like to have a pipette tip that is resistant to concentrated sulfuric acid and not a tip that has a filter that is resistant).
The alternative would be Disposable Glass Micropipettes (e.g. https://www.coleparmer.com/p/microcaps-disposable-glass-micropipettes/940 ) but I first would like to know if any true concentrated sulfuric acid-resistant pipette tips exist on the market. For example, are there glass pipette tips available?
Thanks for your help.
All the best,
JJ
Dear RG community,
I am looking at the limits of ACTIVE flight of various animals.
I am only interested in animals that are capable of active flight. Active flight (also called powered flight) is a type of animal flight that uses muscles to generate aerodynamic force that is sufficient to generate enough lift and thrust. So no flying fish, no frogs that jump from the treetops and use membranes between their fingers to controllably parachute and fall-down, and no flying squirrels etc. Such examples do not count as active flight under the above definition of active flight.
I am interested in limits of ACTIVE flight of the following animal groups:
a) insects
b) birds
c) reptiles (extinct, like pterosaurus)
d) mammals
I am particularly interested in the data on the following:
1). Maximum Altitude (km) a given flying animal was observed
2). Longest Travel Distance (km) - I intend it to be only continuous flight, from initial take off to landing (i.e. without landing and resuming flight afterwards for the second time), otherwise a lot of organisms essentially have no limit to distance.
3). Maximum Speed Observed (but it is less critical)
If any of you know papers or studies that show such limits for example organisms of insects, birds, extinct reptiles and mammals please let me know.
Thank you very much for your help, time and consideration.
JJ
Dear RG Users,
Does anybody have, or know where I can get, a csl citation style for Astrobiology Journal (https://home.liebertpub.com/publications/astrobiology/99), for Mendeley? The webpage https://csl.mendeley.com/about/ does not seem to have it, and I cannot find it anywhere online. I would like to avoid creating my own style as in my opinion the Mendeley citation style editor is unfortunately spectacularly user unfriendly...
Thank you very much for your help.
So far, I was able to collect the following: there are quite a few collagen cross-links of course, they are interesting as well but the most sought after are any cross-links that can form in "regular proteins, inside the cell".
- S-S disulfide bonds – obviously!
- Isopeptide bond - between Lys and Asp/Glu (or others like in Ub)
- di-Tyrosine crosslinks - between Tyr and Tyr
- Tyr-ether cross-link - between Tyr and Tyr
- Sulfilimine cross-link - between Lys and Cys in collagen
- lysyl aldehyde cross-links in collagen
- Histidino-hydroxylysinonorleucine - between His and Hyl and Leu in collagen
- thioether cross-links - Cys and alpha-carbon in amino acids
Natural protein-small molecule cross-links are not what I look for, so e.g. catechol oxidase induced quinone cross-links are a ‘NO’.
Thanks a lot!