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Abstract

Feature pre-processing is an essential step for most machine learning algorithms. Pre-processing
usually involves transforming the input data to a form that is more suitable for the learning algorithm.
Various techniques can be used for pre-processing, such as feature scaling, feature extraction, and feature
selection which help to improve the performance of the learning algorithm. This study develops novel pre-
processing methods through a genetic programming approach. Genetic Algorithms were used to search
for a combination of pre-processing operations that produced the best results of Multilayer Perceptrons
on a set of binary classification datasets. The search findings show that these discovered methods,
when combined with existing methods, statistically outperform existing methods by themselves on new
datasets. Visualization of the effects its on synthetic data show that these discovered methods extend the
range of the data and direct values away from the center of the data. This study provides practitioners
with new methods that can be used as pre-processing techniques for machine learning algorithms.

1 Introduction

In machine learning, data is often pre-processed in order to improve the performance of a model or a
learning algorithm. One of these pre-processing methods is feature scaling, a method used to scale the
values of features in a dataset. Scaling is done because different features range differently, and the relative
differences between each datapoint in a dataset may be affected by this, thus affecting a model’s performance
(Bollegala, 2017). Feature scaling also ensures that features with extreme high or low values do not have
extreme or almost no effects on the outputs, respectively.

Features scaling also often increases the rate of convergence of gradient descent to a minimum in the loss
function of neural networks (Wan, 2019). This is significant especially in larger tasks with more complex
neural networks such as convolutional neural networks (CNNs) (Tan and Le, 2019, He et al., 2016), object
detection (Zhang et al., 2018, Long et al., 2020) and Generative Adversarial Networks (Park et al., 2019,
Yuan et al., 2018) which are trained on extremely large datasets (Deng et al., 2009, Lin et al., 2014).

For distance-based learning algorithms (e.g. Support Vector Machines, k-Nearest Neighbors, K Means
Clustering), higher numerical values affect distances between data by dominating lower numerical values
(Alshaher, 2021). Since such features in data as ”cell size” or ”year” may not always occupy the same range
of values, higher or lower numerical values in data may not always mean larger or smaller effects. As such,
feature scaling plays a significant role in the performance of the classifier.

Another pre-processing technique in machine learning is the transformation of features such that their
probability distribution follows a Gaussian/Normal distribution. This is because features often have a skewed
or unknown distribution. Although data following a Gaussian/Normal distribution does not always improve
performance, it may give learning algorithms an easier fit to the data (Raymaekers and Rousseeuw, 2021).

Having established the importance of feature pre-processing in machine learning, an genetic programming
approach is conducted to improve existing pre-processing methods or techniques by developing novel methods.
This paper approaches this using genetic algorithms (GA) as a search method to discover pre-processing
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operations that can improve existing methods. Genetic algorithms, a class of evolutionary algorithms, have
long been used as an optimization method for a variety of technical problems, including feature pre-processing
and selection (Tan et al., 2014, Babatunde et al., 2014, Prathama et al., 2017b). In the context of this study,
a genetic algorithm will be employed to search for a number of candidates of pre-processing operations
that can be used to improve the performance of a machine learning algorithm. These operations that are
discovered are evaluated and tested on multilayer perceptrons (MLPs) across a variety of binary classification
datasets.

MLPs, also often referred to as fully-connected networks in many different neural network architectures,
are widely used in the area of machine learning such as computer vision and natural language processing
(NLP) as an essential part in their architectures. For example, fully-connected networks are employed after
convolutional and pooling blocks in CNNs for image recognition (He et al., 2016), and in transformers for
NLP as part of their encoder and decoder blocks (Vaswani et al., 2017). As such, this study will focus on
MLPs and improving their performance through discovering novel pre-processing methods using GAs.

2 Background

2.1 Commonly used feature scaling and transformation methods

This section describes commonly used techniques to pre-process features in machine learning algorithms.
These include methods of standardization, normalization, and techniques of transformation of data into a
Gaussian distribution. The descriptions also describe Scikit-learn’s (Pedregosa et al., 2011) implementations
of these methods, if applicable, as Scikit-learn’s implementations are used in this study’s methods.

2.1.1 Z - Score Normalization

Z - score normalization, also referred to as Standard Scaling, scales a feature x using the mean and standard
deviation of all of the features. The scaled feature x′ is given as x′ = x− µ/σ where µ and σ are the mean
and standard deviation of the features, respectively.

2.1.2 Min - Max normalization

In Min - Max normalization, features are scaled to conform to a particular range of values, typically from
0 to 1. The scaled feature x′ is given as x′ = x−min/max−min where the original unscaled feature is x,
while min and max denote the minimum and maximum values that the features will range in, respectively.

2.1.3 Scaling to unit length

This method is purely normalization of a vector in the context of linear algebra. The transformed feature
vector X ′ from the original feature vector X is given as X ′ = X/||X||.

2.1.4 Maximum Absolute scaling

As given by the name, Maximum absolute scaling scales a feature x by dividing it by the maximum absolute
value of the feature column. Given a feature column Fx, the scaled feature x′ is given as x′ = x/Max(|Fx|).

2.1.5 Robust Scaling

This scaling method scales data using their interquartile range (IQR), given as the difference between the
3rd and 1st quartiles. A scaled feature x′ from an unscaled feature x is given as x′ = x− x̃/IQR, where
x̃ denotes the median of the features. As suggested by the name, Robust scaling is robust to outliers in
datasets since it uses percentiles to scale the features.
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2.1.6 Yeo-Johnson Transformation

Yeo and Johnson (2000) developed a transformation that transforms data to conform to a Gaussian distri-
bution dependent on a parameter λ. Given a feature x, the transformed feature x′ is given by:

x′ =


((1+x)λ−1)

λ if λ ̸= 0 and x ≥ 0

log(1 + x) if λ = 0 and x ≥ 0

− ((1−x)2−λ−1)
2−λ if λ ̸= 2 and x < 0

− log(1− x) if λ = 2 and x < 0

The parameter lambda is chosen as the one the best fits the data, through maximum likelihood.

2.1.7 Quantile Normalization

Originally used in the anlayses of microarrays, Quantile Normalization attempts to make two distributions
similar to each other (Bolstad et al., 2003). Quantile normalization can be used to transform data with
respect to a reference distribution. In the case of machine learning, the reference distribution can be the
Gaussian distribution. To transform data, Scikit-learn’s implementation first computes quantiles of the data
given n number of quantiles. Then, interpolants are created at points [nth quantile value, nth quantile]
evaluated at each feature in the feature column. Finally, using the inverse Cumulative distribution function,
the result is profiled to a normal distribution.

2.2 Genetic Algorithms

A Genetic Algorithm is a heuristic search process developed from the inspiration of natural selection. It was
developed by Holland (1975) originally to study adaptation in nature. The process starts with an initial
population of chromosomes consisting of genes. Genes can represent elements of a possible solution to a
optimization problem encoded by alleles (e.g. 0 or 1, letters a-z, etc.). GA searches the best performing
chromosome through applying operators which makes the next generation (population) (Mitchell, 1998).
This is done iteratively over each new generation until convergence or until a specified number of iterations.

There are typically three main operators used in GAs, although there may be more. The selection operator
selects fractions of the population based on the chromosome’s fitness score to be used in generating the next
generation. The chromosome’s fitness score is computed through a function based on the optimization
problem. Chromosomes with higher fitness tend to be selected more often. The mutation operator involves
changing an allele to another random allele in a chromosome from the search space. Crossover combines
characteristics of two (or more) selected parent chromosomes from the selection operator. This done by
simply exchanging sections or fractions of the chromosome between parents. The resulting new chromosome
then becomes part of the new generation.

3 Related Work

Prior studies have also employed evolutionary algorithms in the pre-processing of data, such as feature
selection and feature importance scaling. The aim of these methods is to improve the performance of the
learning algorithm by removing irrelevant or noisy features from the data, and by adjusting the feature
importances so that the most important features are given more weight. These studies have shown that
evolutionary algorithms are able to improve performance of the models that are subsequently trained on the
pre-processed data. In addition, this studies show evaluation on a wide variety of tasks, exhibiting the GAs
are exceptionally efficient for as a pre-processing method, and improving other pre-processing methods.

3.1 GAs in Feature selection

Feature selection is the process of selecting a feature subset from a dataset, usually with the objective of
improving accuracy by selecting only the best and least amount of features. Various methods of feature
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Figure 1: The process of GAs in a flowchart

selection include Particle swarm optimization (Zhang et al., 2014), Variable neighborhood search (Garćıa-
Torres et al., 2016), Scatter search (Garćıa-Torres et al., 2021) and GAs (Soufan et al., 2015).

Tan et al. (2014) proposed a multi-objective genetic algorithm called Modified micro Genetic Algorithm
whose objectives were to improve neural network accuracy and choose a small number of input features.
They compared their approach with other methods on several benchmarks. Evaluating their proposed
method, results show that improved performance on classification.

Sayed et al. (2019) used a nested GA for identifying genes that were significant to a cancer disease. Their
nested GA was ran on two types of datasets, Microarray gene experssion datasets and DNA Methylation
datasets, in order to get the most favorable feature subset from combining both. Comparing the nested GA
to other feature selection algorithms that also utilized both types of datasets, their approach was found to
perform the best on classification.

A binary GA was adapted by Babatunde et al. (2014) using a novel function to calculate the fitness from
a k-Nearest Neighbors based error. Their approach was applied on the Flavia dataset (Wu et al., 2007), a
leaf dataset for classification. Extracting a numerous features from the images, Babatunde et al. achieved
better results than other feature selection algorithms, specifically those from the WEKA software (Hall et al.,
2008).

Desale and Ade (2015) used a GA for feature selection in a Näıve Bayes classifier and WEKA’s J48
classifier in two datasets (Ikonomovska, 2009, Canadian Institute for Cybersecurity, 2009). Their results
show improvements in accuracy and time complexity in both datasets, however no improvements were shown
for the J48 classifier.

3.2 GAs in scaling importance of features

Feature importance scaling can be considered a type of feature selection, where the each feature’s importance
is given a scale based by an algorithm. These algorithms typically assign importance to be either 0 or 1, or
ranging from 0 to 1, with 0 being of least importance and 1 being of high importance.

In their study, Prathama et al. (2017a) used GAs along with a classifier to scale features’ importances in the
Common Spatial Pattern (CSP) algorithm. CSP is a method of filtering information from Electroencephalography-
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based Brain-Computer Interface (Lu et al., 2009). While there are many processes of improving CSP,
Prathama et al. utilized GAs for frequency band selection by scaling the importance of each band from 0 to
1, with 1 conveying most importance. In comparison with feature selection and vanilla CSP, their approach
showed better results.

Yu et al. (2005) demonstrated that GAs improve performance in SVMs, particularly in recognition tasks
compared to normal SVMs. Their method drops out features scaled to zero by the GA, as well as using the
least amount of features.

4 Methods

4.1 Experimental Framework

The experiment will focus on binary classification performance of MLPs, and using GAs as a search method
to discover pre-processing operations aimed at increasing the performance of MLPs, in terms of accuracy
on several datasets. These will be evaluated on different datasets and statistically compared to the existing
techniques described in section 2.1. Scikit-learn’s (Pedregosa et al., 2011) implementations of these existing
techniques are used if available.

4.2 Genetic Algorithm Framework

4.2.1 Defining and Representing pre-processing operations as Chromosomes

A pre-processing operation that a chromosome represents will be defined in this study as a simple composite
function of n functions. As such, the terms chromosome, pre-processing operation/operation, and chromosome
will refer to the same thing and will be used interchangeably in this paper. An pre-processing operation in
the GA is defined as:

P (x) = (f1 ◦ f2 ◦ · · · ◦ fn)(x) (1)

with n being the maximum number of compositions. Technically, this composite function is a point in
the GA search space, and each function fi where i = 1, 2, 3, . . . n is considered an allele. A function part of
the composite function fn can take various domains, and is applied element-wise to an input vector. This
ensures that the original dimensions or shape of the data is preserved in pre-processing.

A composite function will be have a maximum of six compositions. Flexibility of the number of functions
in the composite chosen by the GA is incorporated through the addition of the identity function, as identity
functions can be cancelled out. This in essence allows for a composite function to consist of n ≤ 6 functions
when simplified.

4.2.2 Objective, Fitness function, and Process of the Genetic Algorithm

Since the objective of the GA is to find operations that improve performance on binary classification, the
output of the fitness function is simply the validation accuracy of an MLP model on a dataset.

To incorporate generalization of the GA results, the mean accuracy of an MLP trained on 5 binary
classification datasets (Dua and Graff, 2017, Praveen, 2020, Islam et al., 2019, Eschlbeck, 2021, Issadeen,
2020) were used as the fitness score of the composite function. To further increase generalization, the MLP
that will be trained is to have randomly set hyperparameters (various number of layers, different activation
functions, random number of dropout regularization layers, and random number of units in each layer) every
time a fitness score of a chromosome was calculated. This ensures that composite functions that only perform
well on a certain structure of MLP will be discarded. Figure 2 shows the process of the genetic algorithm
used in this study.

4.2.3 Genetic Algorithm Configurations

The length of a chromosome in a population is defined as the number of functions that comprises the pre-
processing operation represented by the chromosome. This will range from 1 to 6, mentioned in section 4.2.1.
The initial population size P was set to 16 chromosomes. The GA was ran for 200 iterations.
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Figure 2: Process of the GA

A chromosome is represented by a bitstring f1f2f3 . . . fn when undergoing selection, crossover, and mu-
tation operations. Each allele in the chromosome bitstring represents a corresponding function.

The GA first runs selection operations in the population. This is done through tournament selection.
Tournament selection picks k chromosomes from the population, then choosing the chromosome with the
best fitness from these k chromosomes. This chosen chromosome is then processed further (Shukla et al.,
2015). In this study, k = 5 and is done for P times resulting in P selected chromosomes. Note that this
means that there are duplicate chromosomes selected.

Then, the selected chromosomes are paired. Given a chromosome Ci where i = 1, 2, 3, . . . P , a pair is
plainly Ci, Ci+1 where P is even for simplicity. Crossover is applied to these pairs by choosing a random
slice point in the chromosome bitstring and exchanging alleles at the slice point. A crossover rate of 85% is
used.

Finally, mutation is applied to the chromosomes. This study uses a modified implementation of vanilla
mutation and the regenerate operation. The regenerate operation is applied from the work of Bingham and
Miikkulainen (2020) which, in the context of this study, replaces each allele in a chromosome with a random
allele. In essence, the regenerate function replaces a chromosome with a random point (random chromosome)
in the GA search space. This is done to increase exploration. Vanilla mutation replaces each allele in the
chromosome with a new random allele with a certain probability. A probability of 10% was used. Both
vanilla mutation and regenerate operations are implemented as a single mutation operation. If mutation
is applied to a chromosome, regeneration has a 0.1% chance of happening, and vanilla mutation having a
99.9% chance. These percentages were based on preliminary tests described in Appendix A.

4.3 Statistical Testing for Evaluation of GA results

Pre-processing operations discovered by the GA will be tested on 400 random configurations of an MLP for
its mean validation accuracy on 5 different datasets (Wolberg et al., 1995, Bootwala, 2017, Dedhia, 2020,
Hannousse and Yahiouche, 2021, Naranjo et al., 2016). A discovered pre-processing operation is combined
with commonly used existing pre-processing techniques to form the final pre-processing method. Each of
these methods are compared and tested against existing techniques listed in section 2.1 using Wilcoxon
Signed Rank Tests on each discovered method. These methods are applied to evaluation datasets, and 400
randomized MLPs are trained on these pre-processed datasets whose mean accuracy is recorded. The null
hypothesis is H0 : x̃1 ≤ x̃2 and the alternative hypothesis is HA : x̃1 > x̃2 where x̃1 is the median of the mean
accuracy on the discovered methods, and x̃2 are is the median of the mean accuracy on existing methods.
An α = 0.01 level of significance is used.
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4.4 Datasets used

This section describes each dataset used in running the GA and the evaluation of results. Datasets that
were collected vary in characteristics; the number of samples range from 250 to 11000 samples, the number
features range from 2 to 87, which include low to extremely high values. The labels in each dataset were
balanced, and any sample that had missing values were omitted. Categorical features were integer encoded.
Each dataset was split in 70% training data and 30% validation data. Model performance on the validation
data was used in the computation of the fitness score.

4.4.1 Datasets used in fitness calculation

• Cleveland UCI Heart Disease Dataset: This dataset is composed of 303 instances of patients with
and without heart disease of 13 features each. Features are categorical and positive. The dataset was
sourced from UCI machine learning repository (Dua and Graff, 2017). This dataset was scaled with
standard scaling before being used to ensure that the GA finds operations that do not disrupt already
pre-processed data.

• Credit Risk Classification Dataset: This dataset describes instances of credit risk among customers,
labeling each as risky or not. Each sample in the dataset contains 11 features, containing negative and
positive values. Labels were balanced to contain 376 samples (Praveen, 2020).

• Early Diabetes Classification Dataset: This dataset contains samples of patients and their characteris-
tics, amounting to 520 instances each with 17 features (Islam et al., 2019). Labels describe the patient’s
diagnosis, either having diabetes or not. Values in the dataset are comprised of categorical and integer
(mostly 0 and 1) values.

• Beginner’s Classification Dataset: This dataset is comprised of 297 samples each containing only 2
features. The dataset labels each sample as “successful” or not in the context of sports. The dataset
includes both positive and negative values (Eschlbeck, 2021).

• Gender Classification Dataset: Comprised of 5001 samples containing 7 facial features, this synthetic
dataset labels each sample as either male or female (Issadeen, 2020). Values in the dataset are positive.

4.4.2 Datasets used for evaluation of search results

• Breast Cancer Wisconsin Data Set: Using images of fine needle aspiration (a type of diagnostic proce-
dure) of breast mass, 32 characteristics (features) were computed for the dataset (Wolberg et al., 1995,
Dua and Graff, 2017). The features are composed of categorical and positive values. This dataset
consists of 569 instances labeled either as malignant or benign.

• Titanic Dataset: This dataset uses a cleaned version of the data (Bootwala, 2017) from a Kaggle
competition (Kaggle, n.d.) composed of 792 samples (684 when balanced) of 14 features of passengers,
labeling each as “survived” or not. The cleaned version contains values ranging from 0 to 1.

• Bike Buyers 1000 Dataset: This dataset describes 1000 customers’ backgrounds (11 features) and label
each as having purchased a bike or not (Dedhia, 2020). Values are all positive.

• Webpage Phishing Detection Dataset: Containing 87 extracted features from 11430 URLs, this dataset
labels each sample as either “legitimate” or “phishing” (Hannousse and Yahiouche, 2021).

• Bank Marketing Data Set: Associated with marketing campaigns of a bank institute, this dataset
contains attributes of clients and whether or not they subscribed a term deposit. Originally containing
20 features, the features recording the month and day of the week were removed before being used.
Both positve and negative values are present in the dataset, and was balanced to have 902 instances.
This dataset was collected from the UCI Machine Learning repository (Dua and Graff, 2017) and was
created and used in the work of Moro et al. (2014).
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Figure 3: Best validation accuracy on the evaluation datasets obtained by a chromosome (operation) with
respect to the number of generations (iterations) in the GA.

5 Results and Discussion

5.1 Operations discovered

Not all discovered operations that achieved high mean accuracies during the running of the GA also achieved
high mean accuracies in the evaluation datasets. This means that some operations did not succeed in
generalizing well to other data. Out of a number discovered operations that were tested, two were found
to generalize well in terms of accuracy. These operations will be described. For easier description of the
operations, variables µ and s that have a subscript will be defined as the mean and variance of its subscript
values, respectively.

The first well-performing operation was found to utilize the same functions in Z-Score normalization in
addition to other functions. This was found to be:

P (x) = (DivideVar ◦ SubtractMean ◦ softsign ◦ swish ◦ SubtractMean ◦ softsign)(x) (2)

where DivideVar(x) = x
sx

and SubtractMean(x) = x − µx, softplus, swish, and softsign are recently
developed activation functions with the same name (Dugas et al., 2001, Ramachandran et al., 2017, Glorot
and Bengio, 2010). In another form, equation 2 is:

P (x) =
p(x)− µp(x)

sp(x)−µp(x)

where p(x) = softsign(swish(softsign(x)− µsoftsign(x))) (3)

The second operation that performs equally well on the evaluation datasets was found to be:

P (x) = (DivideVar ◦ SubtractMean ◦ softplus ◦ tanh−1 ◦Negative ◦ softsign)(x) (4)

where Negative(x) = −x. For a more compact form:

P (x) =
p(x)− µp(x)

sp(x)−µp(x)

where p(x) = softplus(tanh−1(−softsign(x))) (5)

To simplify the referencing of these operations, the first operation at equation 2 will be called P1, and
the second operation at equation 4 P2.

A common trait of high performing operations that were searched was the frequent use of softsign(x),SubtractMean(x)
and DivideVar(x). Often softsign(x) is applied as the first function in the composite function, while
SubtractMean(x) and DivideVar(x) are applied last. Figure 4 shows the top 10 most frequently used func-
tions among operations that achieved mean accuracies of more than 80%.
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Figure 4: Top 10 most frequently used functions in the best performing operations

5.2 Statistical Analysis

It is important that the search findings generalize well to other datasets and in various MLP hyperparameters.
The mean accuracies of 400 MLP samples with random hyperparameters (same random generation in section
4.2.2) on the evaluation datasets pre-processed using existing techniques (section 2.1) and P1 and P2 pre-
processing were recorded. Mean accuracies of a combination of Z-score normalization and P1 or P2 pre-
processing were also recorded (Z-score normalization was chosen to be combined with P1 or P2 based on
preliminary tests showing the best performance). Shapiro-Wilks tests on the recorded mean accuracies show
that the data is extremely non-normal, thus Wilcoxon Signed-Rank Tests are conducted.

Wilcoxon Signed-Rank Tests on P1, P2, Z-score normalization + P1 and Z-score normalization + P2
compared to each existing technique (from a 0.01 significance level) reports that medians of P1 and P2
pre-processing alone showed that these achieve better performance than existing techniques except for the
Yeo-Johnson Transformation, Z-score normalization, and Quantile Transformer. However, when Z-score
normalization is applied first to the data, then pre-processed using P1 or P2, this statistically shows higher
performance than all of the listed existing techniques. P-values of the test are displayed in Table 1 and
medians are presented in Table 2.

5.3 Visual Comparison

Further comparison is conducted between the discovered operations by plotting the distributions of the mean
accuracies of each pre-processing method. Histograms and Kernel Density Estimations (KDE) show that
the better-performing pre-processing methods are extremely left-skewed. The distributions of all the mean
accuracies of pre-processing methods are illustrated in a histogram at Figure 6a and in a KDE plot at Figure
6b. For visual clarity, distributions of P1, P2, Z-score normalization + P1, and Z-score normalization + P2
are shaded in Figures 7 and 8.

Visual comparison of data before and after pre-processing by P1, P2, Z-score normalization + P1, and
Z-score normalization + P2 to other methods is presented. Pre-processing methods were applied to a linearly-
separable, synthetic binary classification dataset. This dataset consists of both negative and positive values.
Scatterplots of the data were plotted, showing the effects of each pre-processing method illustrated in Figure
9. Inspection of the plots show that P1 and Z-score normalization + P1 extend the range of the data. This
also displays that these direct points away from the center of the plot resulting in less density in the center
and more density around the edges to a degree. This holds true but is less apparent in P2 and Z-score
normalization + P2.

5.4 Implications and Further Applications

The results of this study suggest that the pre-processing techniques of Z-score normalization + P1 or P2
may be used to improve the performance of MLPs. This potentially has important implications for the field
of machine learning, as MLPs are used in various applications such as in medical aid (Mossa et al., 2019,
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(a) Average of the mean accuracy of MLPs on evaluation datasets of different
pre-processing techniques and the discovered pre-processing operations

(b) Median accuracies of MLPs on evaluation datasets of different pre-processing
techniques and the discovered pre-processing operations

Figure 5: Average and median accuracies of each pre-processing method.
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Table 1: Wilcoxon Signed-Rank Tests on P1, P2, Z-score normalization + P1 and Z-score normalization +
P2. The level of significance is set at α = 0.01.

P1

vs p-value Inference

Robust Scaling 3.60E-17 Reject H0

Z-Score Normalization 0.011844 Do not Reject H0

Min-Max Scaling 1.04E-60 Reject H0

Maximum Absolute Scaling 1.98E-60 Reject H0

Yeo-Johnson Transform 0.081415 Do not Reject H0

Scaling to unit length 3.09E-67 Reject H0

Quantile Transformer 0.999892 Do not Reject H0

No pre-processing 2.03E-65 Reject H0

P2

vs p-value Inference

Robust Scaling 3.71E-17 Reject H0

Z-Score Normalization 0.027059 Do not Reject H0

Min-Max Scaling 4.17E-60 Reject H0

Maximum Absolute Scaling 7.10E-59 Reject H0

Yeo-Johnson Transform 0.247079 Do not Reject H0

Scaling to unit length 8.42E-67 Reject H0

Quantile Transformer 0.999897 Do not Reject H0

No pre-processing 1.92E-64 Reject H0

Z-score norm. + P1

vs p-value Inference

Robust Scaling 1.38E-52 Reject H0

Z-Score Normalization 3.92E-42 Reject H0

Min-Max Scaling 1.79E-66 Reject H0

Maximum Absolute Scaling 5.38E-67 Reject H0

Yeo-Johnson Transform 1.64E-42 Reject H0

Scaling to unit length 1.74E-67 Reject H0

Quantile Transformer 2.87E-47 Reject H0

No pre-processing 1.49E-66 Reject H0

Z-score norm. + P2

vs p-value Inference

Robust Scaling 9.19E-59 Reject H0

Z-Score Normalization 7.90E-51 Reject H0

Min-Max Scaling 4.64E-67 Reject H0

Maximum Absolute Scaling 4.45E-67 Reject H0

Yeo-Johnson Transform 6.41E-48 Reject H0

Scaling to unit length 1.76E-67 Reject H0

Quantile Transformer 4.83E-48 Reject H0

No pre-processing 1.33E-66 Reject H0
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Table 2: Comparison of the Average Accuracy ± SD and Median of discovered methods and existing methods

Method Average Accuracy Median
Scaling to unit length 56.785 ± 5.328 56.471

No pre-processing 58.583 ± 5.999 56.541
Min-Max Scaling 66.282 ± 8.677 67.307

Maximum Absolute Scaling 66.317 ± 9.127 67.679
Robust Scaling 71.765 ± 9.956 75.584

Z-Score Normalization 73.209 ± 10.048 77.607
Yeo-Johnson Transform 73.426 ± 9.951 77.669

P2 73.536 ± 9.506 78.249
P1 73.671 ± 9.157 78.413

Quantile Transformer 73.978 ± 9.402 78.652
Z-score Normalization + P1 76.449 ± 9.454 80.927
Z-score Normalization + P2 76.596 ± 9.552 81

(a) Histogram of the mean accuracies of each pre-processing method.

(b) Kernel Density Estimate plot of the mean accuracies of each pre-processing
method.

Figure 6: Distributions of the mean accuracies of each pre-processing method visualized.
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Figure 7: Histogram of the mean accuracies of each pre-processing method with emphasis on P1, P2, Z-score
normalization + P1, and Z-score normalization + P2.

Figure 8: Kernel Density estimate plots of the mean accuracies of each pre-processing method with emphasis
on P1, P2, Z-score normalization + P1, and Z-score normalization + P2.
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Figure 9: Scatterplots of data pre-processed by various methods, including P1, P2, Z-score normalization
+ P1, and Z-score normalization + P2. Orange and blue values indicate positive and negative labels,
respectively. Transparent, gray points indicate the original data before pre-processing.
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Akinnuwesi et al., 2021, Desai and Shah, 2021), software analysis (Qiao et al., 2020, Iqbal and Aftab, 2020),
and even in computer vision by modern MLP models (Touvron et al., 2021, Tolstikhin et al., 2021).The
results of this study may help to improve the performance of MLPs in these areas.

5.5 Future Work

There are several possible directions for future work in this area. One possibility is to widen the search space
of this study’s GA approach and methods. This involves using larger and more datasets, more varieties of
MLPs (and hyperparameters), and increasing the number of iterations of the GA.

In addition to scaling this study’s methods and approaches, future work is suggested to test the discovered
operations on fully-connected blocks or linear layers in other neural network architecture which are similar (if
not the same) in structure to MLPs, especially in convolutional neural networks. Also, more insight should
be gained from testing other novel pre-processing methods in comparison to this study’s findings.

6 Conclusions

In this paper, novel pre-processing operations for multilayer perceptrons are developed using genetic algo-
rithms are presented. The operations are based on a composition of functions wherein data are processed
initially before training. A genetic algorithm was used to evolve operations to maximize validation accuracy
on a number of datasets. Some pre-processing methods discovered in this study yielded statistically higher
performance on several new datasets than existing commonly used data pre-processing techniques. These
findings suggest that the discovered pre-processing operations may be capable of improving MLP models.
Future work is suggested to conduct analysis of the impact of the discovered operations on MLP blocks of
convolutional neural networks and transformer architectures.
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Noguera, and Julio C Mello Román. Scatter search for high-dimensional feature selection using feature
grouping. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages
149–150, 2021.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249–
256. JMLR Workshop and Conference Proceedings, 2010.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian Witten. The
weka data mining software: An update. SIGKDD Explor. Newsl., 11:10–18, 11 2008.

Abdelhakim Hannousse and Salima Yahiouche. Web page phishing detection, 2021. Mendeley Data, V3.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

John Holland. Adaptation in natural and artificial systems: An introductory analysis with applications to
biology, control, and artificial intelligence. U Michigan Press, 1975.

Elena Ikonomovska. Airlines dataset, 2009. URL https://moa.cms.waikato.ac.nz/datasets.

Ahmed Iqbal and Shabib Aftab. A classification framework for software defect prediction using multi-filter
feature selection technique and mlp. International Journal of Modern Education & Computer Science, 12
(1), 2020.

M. M. Islam, Rahatara Ferdousi, Sadikur Rahman, and Humayra Yasmin Bushra. Likelihood prediction
of diabetes at early stage using data mining techniques. Computer Vision and Machine Intelligence in
Medical Image Analysis, page 113–125, 2019. doi: 10.1007/978-981-13-8798-2 12.

16

https://www.kaggle.com/heeraldedhia/bike-buyers?select=bike_buyers_clean.csv
https://www.kaggle.com/heeraldedhia/bike-buyers?select=bike_buyers_clean.csv
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://proceedings.neurips.cc/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf
https://www.kaggle.com/sveneschlbeck/beginners-classification-dataset
https://www.kaggle.com/sveneschlbeck/beginners-classification-dataset
https://moa.cms.waikato.ac.nz/datasets


Jifry Issadeen. Gender classification dataset, 2020. Kaggle, V1. Retrieved from https://www.kaggle.com/

elakiricoder/gender-classification-dataset/.

Kaggle. Titanic - machine learning from disastert. https://www.kaggle.com/c/titanic/data, n.d.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang, Qingqing Dang, Yuan Gao, Hui Shen, Jianguo
Ren, Shumin Han, Errui Ding, et al. Pp-yolo: An effective and efficient implementation of object detector.
arXiv preprint arXiv:2007.12099, 2020.

Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos. Regularized common spatial
patterns with generic learning for eeg signal classification. In 2009 Annual International Conference of
the IEEE Engineering in medicine and biology society, pages 6599–6602. IEEE, 2009.

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank telemar-
keting. Decision Support Systems, 62:22–31, 2014. ISSN 0167-9236. doi: https://doi.org/10.1016/j.dss.
2014.03.001. URL https://www.sciencedirect.com/science/article/pii/S016792361400061X.

Abdela Ahmed Mossa, Abdulkerim Mohammed Yibre, and Ulus Çevik. Multi-view cnn with mlp for diag-
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Figure 10: Comparison of the evolution of chromosome accuracy for each regenerate rate
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Appendices

A Preliminary Tests

Preliminary Tests were conducted to tune the rate of the regenerate operator in section 4.2.3. Tests were
ran on the GA running for 100 iterations experimenting 0%, 0.01% and 5% rates. Plotting the best achieved
accuracy on a random MLP with respect to the number of generations shown in Figure 10, it was found
that not using the regenerate operation at all in fact produces better results. However, since the regenerate
operator increases exploration in the search space, the GA in this study used a 0.01% rate and was ran for
an additional 100 iterations to account for the lesser performance in addition to increased exploration.

B Generation of an MLP with random hyperparameters

This appendix describes the randomization process of MLP hyperparameters used in the methods and
evaluation of the study’s results. An MLP with randomly set hyperparameters can have 2 - 4 densely
connected layers, and the number of units in each layer ranges from 16 to 50, different in each layer. A
dropout layer with 10% dropout rate has a 33% chance of being added after each densely connected layer.
Regarding the activation function used in for the hidden layers, this can either be Swish (Ramachandran
et al., 2017), ReLU, sigmoid, or tanh. All MLPs had the sigmoid activation at the output layer.

C Supplementary Figures

A heatmap is shown in Figure 11 showing the individual mean accuracies achieved by randomized MLPs
on evaluation datasets pre-processed by the commonly used existing methods and including the discovered
methods.

Scatterplots for non-linearly separable synthetic datasets are also plotted in Figure 12.
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Figure 11: Heatmap of mean accuracies acheived by randomized MLPs on datasets pre-processed by the
commonly used existing methods and including the discovered methods. Brighter vertical bands indicate
higher accuracies.

Figure 12: Scatterplots of a non-linearly separable synthetic binary class dataset pre-processed by exist-
ing methods and the discovered methods. Transparent, gray points indicate original data without pre-
processsing.
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