
Jana Holubová- Ph.D.
- The Czech Academy of Sciences
Jana Holubová
- Ph.D.
- The Czech Academy of Sciences
About
35
Publications
3,711
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
884
Citations
Publications
Publications (35)
The adenylate cyclase toxin (ACT, AC-Hly, or CyaA) plays a key role in airway infections by Bordetella pertussis and ablates the oxidative burst and opsonophagocytic capacity of sentinel phagocytes. CyaA fragments eliciting toxin-neutralizing antibodies are considered prime antigen candidates for improved acellular pertussis (aP) vaccines but their...
Pertussis resurged over the last decade in most countries that replaced the traditional whole-cell pertussis vaccines (wP) by the less reactogenic acellular pertussis vaccines (aP). The aP vaccines induce a Th2-polarized immune response and by a yet unknown mechanism hamper the clearance of Bordetella pertussis from infected nasopharyngeal mucosa....
Bacterial transcription regulation is critical for adaptation and survival. CarD is an essential transcription factor in mycobacteria involved in regulation of gene expression. We searched for CarD interaction partners in the model organism Mycobacterium smegmatis and identified two proteins: ApeB (MSMEG_5828) and an uncharacterized protein, which...
HelD protein, also named HelR (encoded by MSMEG_2174 in Mycobacterium smegmatis), interacts with mycobacterial RNA polymerase (RNAP) and affects rifampicin resistance in Mycobacterium abscessus. Here, we provide data on rifampicin resistance and helD presence in the genomes of other clinically relevant nontuberculous mycobacteria.
We show that helD...
Bordetella pertussis (Bp), the causative agent of pertussis, continues to circulate despite widespread vaccination programs. An important question is whether and how (sub)clinical infections shape immune memory to Bp, particularly in populations primed with acellular pertussis vaccines (aP). Here, we examine the prevalence of mucosal antibodies aga...
The adenylate cyclase (ACT) and the pertussis (PT) toxins of Bordetella pertussis exert potent immunomodulatory activities that synergize to suppress host defense in the course of whooping cough pathogenesis. We compared the mouse lung infection capacities of B. pertussis (Bp) mutants (Bp AC⁻ or Bp PT–) producing enzymatically inactive toxoids and...
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately repro...
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) that catalyzes the conversion of intracellular ATP to cAMP and through its signaling annihilates the bactericidal activities of host sentinel phagocytes. In parallel, CyaA permeabilizes host cells by the formation of cation-selective...
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin–hemolysin (CyaA, ACT, or AC-Hly) that catalyzes the conversion of intracellular ATP to cAMP and through its signaling annihilates the bactericidal activities of host sentinel phagocytes. In parallel, CyaA permeabilizes host cells by the formation of cation-selective...
Pore-forming repeats in toxins (RTX) are key virulence factors of many Gram-negative pathogens. We have recently shown that the aromatic side chain of the conserved tyrosine residue 940 within the acylated segment of the RTX adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) plays a key role in target cell membrane interaction of the toxin. Th...
The mucus layer protects airway epithelia from damage by noxious agents. Intriguingly, Bordetella pertussis bacteria provoke massive mucus production by nasopharyngeal epithelia during the initial coryza-like catarrhal stage of human pertussis and the pathogen transmits in mucus-containing aerosol droplets expelled by sneezing and post-nasal drip-t...
The whooping cough agent Bordetella pertussis secretes an adenylate cyclase toxin (CyaA) that through its large carboxy-proximal Repeat-in-ToXin (RTX) domain binds the complement receptor 3 (CR3). The RTX domain consists of five blocks (I to V) of characteristic glycine and aspartate-rich nonapeptides that fold into five Ca²⁺-loaded parallel β-roll...
The BvgS/BvgA two-component system controls expression of ∼550 genes of Bordetella pertussis, of which, ∼245 virulence-related genes are positively regulated by the BvgS-phosphorylated transcriptional regulator protein BvgA (BvgA∼P). We found that a single G-to-T nucleotide transversion in the 5′-untranslated region (5′-UTR) of the rplN gene enhanc...
Bordetella pertussis whole-cell vaccines (wP) caused a spectacular drop of global pertussis incidence, but since the replacement of wP with acellular pertussis vaccines (aP), pertussis has resurged in developed countries within 7 to 12 years of the change from wP to aP. In the mouse infection model, we examined whether addition of further protectiv...
Pathogenic Bordetella bacteria release a neurotropic dermonecrotic toxin (DNT) that is endocytosed into animal cells and permanently activates the Rho family GTPases by polyamination or deamidation of the glutamine residues in their switch II regions (e.g., Gln63 of RhoA). DNT was found to enable high level colonization of the nasal cavity of pigs...
Bordetella bronchiseptica and Bordetella pertussis are closely related respiratory pathogens that evolved from a common bacterial ancestor. While B. bronchiseptica has an environmental reservoir and mostly establishes chronic infections in a broad range of mammals, B. pertussis is a human-specific pathogen causing acute pulmonary pertussis in infan...
Post-translational modifications of proteins enable swift physiological adaptation of cells to altered growth conditions and stress. Aside from protein phosphorylation, acetylation on ε-amino groups of lysine residues (N-ε-lysine acetylation) represents another important post-translational modification of proteins. For many bacterial pathogens, inc...
In a wide range of organisms, from bacteria to humans, numerous proteins have to be posttranslationally acylated to become biologically active. Bacterial Repeats in ToXin (RTX) cytolysins form a prominent group of proteins that are synthesized as inactive protoxins and undergo posttranslational acylation on ε-amino groups of two internal conserved...
Bordetella bronchiseptica and Bordetella pertussis are closely related respiratory pathogens that evolved from a common bacterial ancestor. While B. bronchiseptica has an environmental reservoir and mostly establishes chronic infections in a broad range of mammals, B. pertussis is a human-specific pathogen causing acute pulmonary pertussis in infan...
Two distinct conformers of the adenylate cyclase toxin (CyaA) appear to accomplish its two parallel activities within target cell membrane. The translocating conformer would deliver the N-terminal adenylyl cyclase (AC) enzyme domain across plasma membrane into cytosol of cells, while the pore precursor conformer would assemble into oligomeric catio...
Macrophages are key sentinel cells of the immune system, and, as such, they are targeted by the toxins produced by the pertussis agent Bordetella pertussis . The adenylate cyclase toxin (CyaA) mediates immune evasion of B. pertussis by suspending the bactericidal activities of myeloid phagocytes. We reveal a novel mechanism of potential subversion...
Bordetella pertussis is a strictly human pathogen causing the respiratory infectious disease called whooping cough or pertussis. B. pertussis adaptation to acellular pertussis vaccine pressure has been repeatedly highlighted, but recent data indicate that adaptation of circulating strains started already in the era of the whole cell pertussis vacci...
Unlabelled:
Previous studies have shown that B. pertussis survives inside human macrophages in non-acidic compartments with characteristics of early endosomes. In order to gain new insight into the biology of B. pertussis survival in host cells, we have analyzed the adaptation of the bacterial proteome during intracellular infection. The proteome...
Filamentous hemagglutinin (FHA) is an important adhesin of the whooping cough agent Bordetella pertussis and is contained in most acellular pertussis vaccines. Recently, FHA was proposed to exert an immunomodulatory activity through induction of tolerogenic IL-10 secretion from dendritic cells. We have re-evaluated the cytokine-inducing activity of...
The Bordetella adenylate cyclase toxin-hemolysin (CyaA; also called ACT or AC-Hly) targets CD11b-expressing phagocytes and translocates into their cytosol an adenylyl cyclase (AC) that hijacks cellular signaling by conversion of ATP to cyclic AMP (cAMP). Intriguingly, insertion of large passenger peptides removes the enzymatic activity but not the...
Bacterial toxins share the ability to enter host cells to target various intracellular proteins and to modulate host immune responses. Over the last 20 years, toxins and their mutated variants, as well as live attenuated bacteria, have been exploited for vaccination and immunotherapy of various infectious, malignant and autoimmune diseases. The abi...
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca(2+) i...
Escherichia coli A0 34/86 (O83:K24:H31) is a commensal strain that has been used for prophylactic and therapeutic colonization of the intestine of newborn infants. To identify traits specific for E. coli A0 34/86, we used a minimal tiling set of 148 BAC clones of A0 34/86 genomic DNA, to construct restriction-digested BAC arrays. Hybridization with...
Escherichia coli A0 34/86 (O83:K24:H31) has been successfully used for prophylactic and therapeutic intestinal colonization of premature and newborn infants, with the aim of preventing nosocomial infections. Although E. coli A0 34/86 was described as a nonpathogenic commensal, partial sequencing revealed that its genome harbours gene clusters highl...
Colonization by the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31) has proved to be safe and efficient in the prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants in Czech paediatric clinics over the past three decades. In searching for traits contributing to this beneficial effect related to...