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Abstract: - This paper presents an assessment of vocal impairment for separating healthy persons from patients with 
Parkinson’s disease (PD). We have recently shown that deterioration of speech performances in PD speakers is notable 
from an early stage of the disease, even before starting pharmacotherapy. In this study, we present the potential of the 
simple Bayes rule to reveal changes in degradable speech performance in the course of PD-related dysarthria. The 
various speech data were recorded from 23 speakers with recently diagnosed PD and 23 healthy speakers. It has been 
found that 19 various acoustic measurements are able to differentiate PD significantly from healthy speakers. 
Subsequently, the Bayes theorem was applied to each of these measurements. As a result, the 21 PD patients and 21 
healthy people were correctly classified according to their group. The Bayes theorem thus confirms its feasibility for 
identifying the features of the impaired voice.   
 
Key-Words: Parkinson’s disease, Hypokinetic dysarthria, Speech and voice disorders, Acoustic analysis, Speech signal 
processing, Bayes theorem.  
 
1   Introduction 
Parkinson’s disease (PD) is a neurological illness 
characterized by progressive degeneration of 
dopaminergic neurons, primarily in the midbrain nucleus 
of the substantia nigra [1]. This progressive 
dopaminergic loss is associated with a variety of motor 
deficits and non-motor deficits such as disorders of 
mood, behaviour, thinking, sensation, and speech 
characterized as hypokinetic dysarthria. As the second 
most common neurodegenerative disorder after 
Alzheimer’s disease, PD affects a large part of 
worldwide population. PD is assumed primarily to affect 
persons over the age of 50; only approximately 10% of 
patients report symptoms before the age of 40 [2]. 
Moreover, PD affects 1.6 % of all persons after the age 
of 65 [3]. In addition, statistics of the number of persons 
with PD are expected to increase with the aging of the 
worldwide population in total [4]. Currently, there is no 
available causal cure, although medication offers 
alleviation of some symptoms, especially at early stages 
of the disease [5]. Thus, early diagnosis of PD has an 
important role in slowing down or even preventing the 
degenerative progress of this disease. Moreover, early 
diagnosis of PD will be crucial when treatment become 
feasible. 
     Several previous studies have shown that vocal 
impairment may be one of the earliest indicators of the 
disease [6, 7], and deficiencies in speech affect 

approximately 75 ̶ 90 % people with PD [8, 9]. In 
addition, the measurement of the voice is non-invasive, 
cheap and simple to administer. Therefore, development 
of tools capable of performing automatic vocal tests can 
be very useful for assisting in tracking of the progression 
of the disease, and thus can partially alleviate the 
inconvenience and cost of physical visits [10, 11]. 
     The most salient features of PD speech impairment 
include deficits in the production of vocal sounds 
(dysphonia), and problems with motor speech disorder 
(dysarthria) [9]. On the other hand, it has been 
demonstrated that people with PD may show individual 
deficits in various speech subsystems such as phonation, 
articulation, and prosody, starting from early stages of 
disease [12]. Furthermore, PD individuals may manifest 
abnormalities in all dimensions of speech including 
reduced melody, reduced loudness, imprecise 
articulation, reduced stress, variability of speech rate, 
speech disfluencies, and others [12, 13].  
     The deficits in speech related to PD are of a wide 
scope of interest; however, there is a lack of acoustic 
characterizations of the extent of vocal impairment in 
early stages of PD where the progression of symptoms of 
PD speech is not affected by medication. Thus, we 
investigated quantitative acoustic parameters to explore 
the signs of PD-related degradable speech symptoms 
[12]. In this study, we focus on the effectiveness of the 
Bayes theorem to assess the extent of vocal impairment 
in early untreated PD. 
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2   Methods 
 
2.1 Speech Data 
We used data from the original study Rusz et al., in 
which 23 subjects with recently diagnosed idiopathic PD 
were recruited [12]. None of these subjects received 
symptomatic pharmacotherapy or speech treatment. All 
PD patients were examined in the drug-naive state, 
before the treatment was started. As a healthy control 
(HC) group, 23 persons with no history of neurological 
disorders were matched for the respective age. Table 1 
summarizes the details of all participants. 
     Table 2 details the speech data used; the vocal tasks 
ranged from producing isolated vowels to reading short 
sentences and producing a spontaneous monolog on the 
given subjects. In each vocal task, the best speech 
performances for every subject were retained. 

 
2.2 Feature selection 
There are number of acoustic measures that can be 
applied to selected speech data. We have extracted the 
fundamental frequency of vocal chords using direct-time 
domain pitch estimation algorithm [14, 15]. Afterward, 
we calculated fundamental frequency variations (F0 SD) 
for sustained phonation (for demonstrating defects in 
phonation) and for text reading, monolog, stress 
pronouncement, and emotions (for demonstrating 
reduced melody of speech).    
     Using the speech analyzer PRAAT [16], we have 
extracted measures of shimmer, jitter, noise-to 
harmonics ratio (NHR), and harmonics-to-noise ratio 
(HNR) from the vocal task of sustained phonation. These 
were used to demonstrate deficits in voice functions.  

Table 2: Summary of speech data. 
Speech data 

 
Sustained phonation of /i/ on one breath at a comfortable pitch  

and loudness as constant and long as possible, at least 5-sec. 
 

Rapid steady /pa/-/ta/-/ka/ syllables repetition on one breath as  
constant and long as possible, repeated at least 5-times. 
 
Approximately 5-sec sustained vowels of /a/, /i/, /u/ on one breath  

at a comfortable pitch and loudness. 
 
Reading the same standard text of 136 word 
 
Monologue, at least approx. 90-sec. 
 
Reading the same text containing 8 variable sentences of 71 words  

with varied stress patterns on 10 indicated words. 
 
Reading 10 sentences according specific emotions in a comfortable 

voice in response to an emotionally neutral sentence. 
 
Rhythmically read text containing 8 rhymes of 34 words following  

the example set by the examinator. 

 

Table 1: Summary of the participants’ data. 
                          Subjects 

 PD  HC  

  (n = 23) (n = 23) 

  Age (year) 61.74 ± 12.60 58.08 ± 12.91 

  Male  n = 19 n = 16 

  Female n = 4 n = 7 

  Duration of PD (month) 30.22±22.21 n/a 

  H&Y stage 1-2 n/a 

  UPDRS III score 17.52 ± 7.26 n/a 
 

The values are given in the form mean ± standard 
deviation. Entries labeled “n/a” are not applicable for 
HC. 

Table 3: Overview of measurement methods used. 
Acoustic features description 

F0 SD - variations of fundamental frequency, vibration rate of  

vocal folds [15]. 

Jitter - the average absolute difference between a period and the 

average  of it and its four closest neighbours, divided by the  

average period [15]. 

Shimmer - average absolute difference between the amplitudes of  

consecutive periods, divided by the average amplitude [15]. 

NHR - Noise-to-Harmonics-Ratio, the amplitude of noise relative 

to tonal components [15]. 

HNR - Harmonics-to-Noise-Ratio, the amplitude of tonal relative 

to noise components [15]. 

Percent pause time - the percent change from the unedited sample  

length to the edited sample length [12]. 

Articulation rate - the number of syllables produced per second,  

after removing silence period exceeding 60 ms [12]. 

Number of pauses - the number of all pauses compared to total  

time duration, after removing silence period not lasting more  

than 60 ms [12]. 

Intensity SD - variations of average squared amplitude within a  

predefined time segment ("energy") after removing silence  

period exceeding 60 ms [12]. 

DDK rate - the number of /pa/-/ta/-/ka/  syllable vocalizations  

per second [12]. 

DDK regularity - the degree of /pa-/ta/-/ka/ syllable vocalizations 

rate variations in the period [12]. 

Vowel space area - quantitative measure which involves plotting 

the three corner vowels in F1/F2 plane [12]. 

Rhythm - measurement of ability to reproduce perceived rhythm 

through dynamic time warping [12].  

RIRV - Relative Intensity Range Variations, the variations of  

energy [12]. 

RRIS - Robust Relative Intensity Slope, the robust linear regression 

of energy [12]. 

SDCV - Spectral Distance Change Variations, the variations of 

spectral distance changes in signal spectrum [12]. 

RFPC - Robust Formant Periodicity Correlations, the first  

autocorrelation coefficient of F2 contour [12]. 
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     To assess variability of the speech rate, we calculated 
articulation rate, percent pause time, and number of 
pauses using vocal tasks of reading text and monolog.  
     Intensity of voice was computed from the signal 
energy contour with relative calibration to the reference 
0 dB. Subsequently, intensity variations (Intensity SD) 
were determined using the reading text, monolog, and 
stress patterns.  
     Diadochokinetic (DDK) rate and regularity [17] were 
determined from repetition of three-syllable items of 
/pa/-/ta/-/ka/. 
     The first (F1) and second (F2) formant frequency 
were obtained from sustained phonations using a robust 
formant tracker [18]. From the corner vowels of /a/, /i/, 
/u/, the vowel space area was calculating by plotting on 
an xy coordinate plane with F1 on the x-axis and F2 on 
the y-axis. 
     Ability to reproduce perceived rhythm was measured 
using a rhythmically read text, calculated as the 
similarity between subject performance and a template 
recording on the basis of dynamic time warping [19]. 

     Several novel acoustic measures of articulation were 
designed and performed using /pa/-/ta/-/ka/ syllable 
repetition. These include measurement of the sound 
pressure level decline calculated as a robust relative 
intensity slope (RRIS), measurement of relative intensity 
range variations (RIRV), spectral distance change 
variations (SDCV) calculated using the Bayesian 
autoregressive change-point detector [20], and robust 
formant periodicity correlation (RFPC) calculated as the 
self-similarity of F2 sequence.  
     Table 3 summarizes the measurements used; a 
detailed description of all measures can be found in [12]. 
     
2.3 Statistics 
As not all variables show normal distribution, the non-
parametric Wilcoxon signed rank-sum test was used for 
comparison between the PD and HC group.  
     For each measurement that obtains a statistically 
significant difference between the groups, the Bayes 
theorem is applied. The probability densities for each 
feature for both PD and HC groups P(measure|subject) 
are estimated by using the Gaussian kernel density 

Fig. 1: The probability values P(subject|measure) of the acoustic measures used as features for Bayes theorem 
classification. The dash-dot lines are for HC speakers, the solid lines for Parkinson’s speakers.   
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method. The number of samples for both groups for each 
measurement are of the same size, therefore we can 
consider the same probability of P(PD) =  P(HC) = 0.5. 
The probabilities that a person belongs to the PD group 
in dependence on given feature P(PD|measure) are then 
obtained using the Bayes theorem 
 

     
        .||

|
|

HCPHCmeasurePPDPPDmeasureP
PDPPDmeasurePmeasurePDP




  

 
For each subject, we calculated the average sum of 
points P(subject|overall) across all retained 
measurements. The higher value then predicts greater 
vocal impairment, while a value greater than 0.5 predicts 
PD speech performance and a value lower than 0.5 
predicts HC speech performance.  
 
3   Results 
Figure 1 shows probabilities for 19 acoustic 
measurements that were able significantly to separate PD 
from HC. These include F0 SD extracted from reading 
text, monolog, stress patterns, and emotions; jitter, 
shimmer, NHR, and HNR extracted from sustained 
phonation; Intensity SD extracted from reading text, 
monolog, and stress patterns; number of pauses extracted 
from reading text and monolog; rhythm extracted from 
rhythmically read text; and DDK rate, RIRS, RIRV, 
SDCV, RFPC extracted from /pa/-/ta/-/ka/ syllable 
repetition.  
     From these results, we can consider that 
abnormalities in phonation captured by jitter, shimmer, 
NHR, and HNR may be clinically interpreted as 
hoarseness, hypophony, and tremolo. Deficits in 
articulation captured during rapid articulation by DDK 
rate, RIRS, RIRV, SDCV, and RFPC can manifest 
occlusive weakening, lowered clarity and accuracy of 
articulation, and weakness in the production of stable 
airflow from the lungs. Finally, the defects in prosody 
captured by F0 SD, Intensity SD, Number of Pauses, and 
Rhythm can be caused by changed laryngeal tension, 
decreased breath support, and decreased range of 
motions. 
    Table 4 details the results obtained using the Bayes 
rule. From overall measurements performances, the 42 
participants (91.30 %) were classified according to their 
group. When taking separately, two of the 23 persons 
with PD (8.7 %) reached a speech performance of HC - 
e.g. P(PD|overall) <  0.5, and two of the 23 healthy 
persons (8.7 %) reached PD speech performance, - e.g. 
P(PD|overall) >  0.5. The classifier on the basis of Bayes 
theorem was confirmed to find the sign of disordered or 
healthy voices according to the subject’s speech 
performance.  
     Using Bayes rule classification applied to separate 
measurements, the RIRV in DDK task carry the greatest 

amount of information for separating both groups of 
speakers with classification score of 85.71 %. The F0 SD 
measurement in monolog was the best assessment 
method and gained 80.42% performance. The lowest 
score in determining both of group speech performances 
was found in measurement of jitter. The accuracy of the 
remaining measurements ranged between 63.04 % and 
78.25 %. 
 

4   Summary and Conclusion 
In this study, we introduce the classifier based on the 
Bayes theorem for separating healthy people from 
persons with PD, in assessing of their speech 
performances.  For extraction of the features from 
speech, we have designed number of new measures that 
are capable of automatic assessment of the major part of 
traditionally clinically used methods for quality of 
speech evaluation [12]. Here, we demonstrate that 
simple Bayes rule is capable to reliable assess the extent 
of vocal impairment of each subject and efficiency of 
each measurement. Considering that only 4 persons were 
incorrectly classified and overall classification rate was 
approximately 91 %, we can confirm the Bayes theorem 
as an available classifier that can be useful in effective 

Table 4: Summary of the classification results using 
Bayes theorem. 

Measurement PD correctly  HC correctly  (No.) Overall 

  classified  classified  classification 

Sustained phonation     

   01. Jitter 34.78 % 91.30 % (19.) 63.04 % 

   02. Shimmer 69.57 % 86.96 % (3-5.) 78.25 % 

   03. NHR 30.42 % 95.65 % (3-5.) 78.25 % 

   04. HNR 65.22 % 82.61 % (9-14.) 73.91 % 

Reading text 

   05. F0 SD 73.91 % 73.91 % (9-14.) 73.91 % 

   06. Intensity SD 78.26 % 69.57 % (9-14.) 73.91 % 

   07. N. of pauses 56.52 % 73.91 % (18.) 65.22 % 

Monolog 

   08. F0 SD 100 % 60.87 % (2.) 80.42 % 

   09. Intensity SD 78.26 % 69.57 % (9-14.) 73.91 % 

   10. N. of pauses 60.87 % 91.30 % (6-8.) 76.08 % 

Stress patterns 

   11. F0 SD 65.22 % 78.26 % (15.) 71.74 % 

   12. Intensity SD 82.61 % 65.22 % (9-14.) 73.91 % 

Emotional sentences 

   13. F0 SD 78.26 % 78.26 % (3-5.) 78.25 % 

Rhythmic text 

   14. Rhythm 52.38 % 85.71 % (16-17.) 69.05 % 

DDK task 

   15. DDK rate 76.19 % 76.19 % (6-8.) 76.19 % 

   16. RRIS 71.74 % 80.41 % (6-8.) 76.08 % 

   17. RRIV 85.71 % 85.71 % (1.) 85.71 % 

   18. RFPC 52.38 % 85.71 % (16-17.) 69.05 % 

   19. SDCV 57.14 % 90.28 % (9-14.) 73.91 % 

Overall performance 91.30 % 91.30 % (all) 91.30 % 
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and objective assisting in evaluation of speech and voice 
disorders.  
         The results of this study thus support the argument 
that features of impaired speech can be partially captured 
from early stages of PD. Acoustic analysis and speech 
signal processing algorithms have proved to be an 
excellent tool for voice disorders detection. The use of 
these techniques combined with classification methods 
can provide the development of expert aided systems for 
detection of speech pathology. Acoustic measurements 
then might serve as useful tool in assessment of vocal 
impairment, remote tracking of speech progression, and 
feedback in voice treatment. 
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