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“The sun will rise and set regardless. What we choose to do with the light while 

it's here is up to us.” 

- Alexandra Elle  
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Abstract 
 

As solar cells become ever cheaper to make, costs not directly related to the solar 

cell manufacturing process comprise an ever increasing share of the total cost of 

a solar cell [DOE 2014]. These costs can be reduced on a per unit energy basis 

by making more efficient solar cells. Therefore, there is a strong incentive for 

research in the field of high-efficiency solar cells. Specifically silicon solar cells are 

of great practical interest as they presently have a dominant market position. 

Contact recombination currents are one of the major power loss mechanisms in 

certain types of high efficiency silicon solar cells, for example interdigitated back 

contact silicon solar cells featuring diffused junctions. Therefore, reducing contact 

recombination currents can result in efficiency gains. However, the 

characterization of contact recombination losses is convoluted, and many present 

technologies for the characterization of contact recombination currents are 

imperfect. This provided the incentive for this work on a novel characterization 

method for contact recombination currents. The characterization method 

developed in this dissertation is based on photo conductance measurements on 

lattices of point contacts on otherwise passivated wafers.  

Chapter one features a general introduction. This includes a discussion the 

context in which this dissertation is performed is performed. Then, various sources 

of efficiency loss in solar cells are discussed. The focus is on silicon solar cells, 

and Interdigitated Back Contact (IBC) silicon solar cells in particular. Finally, 

various types of passivated contacts are discussed. 

In chapter two, an introduction to carrier recombination in silicon solar cells is 

provided. Chapter two also features an introduction to radio-wave detected quasi 

steady state photo conductance (QSSPC) measurements. QSSPC 

measurements lie at the basis of the characterization method for contact 

recombination measurements which is developed in this dissertation. The result 

of chapter two is a mathematical framework for a number of basic concepts in the 

field of silicon solar cells, and particularly in the field of silicon solar cell 

characterization. 

In chapter three, an overview of contemporary methods for contact recombination 

current measurements is given, and it is argued why the development of a novel 

method for contact recombination measurements is desirable. This method is 

subsequently described in detail. This detailed description covers the physics that 

lies at the basis of the method. It also covers design rules, error analysis, parasitic 

effects, and experimental results. The focus is on test structures based on lattices 
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of point contacts, but at the end of chapter three, alternative test structure 

embodiments are described. 

In chapter four, point contact based test structures are applied to the optimization 

of n+ diffusions which are used as back surface fields (BSF) in interdigitated back 

contact (IBC) silicon solar cells. In addition, various front surface field oxidations 

are investigated. The use of the 𝐽0,𝑚𝑒𝑡 test structure developed in chapter three for 

a classical junction optimization problem allows for further experimental 

confirmation of the characterization method. Certainly, the consistency of the 

trends observed between contact resistance, contact saturation current density 

and saturation current density of passivated junctions is a strong experimental 

confirmation of the novel characterization method described in this dissertation. 

In the final chapter, thin dielectric Al2O3 layers grown using thermal atomic layer 

deposition (ALD) are investigated for the passivation of the interface between 

aluminum contacts and n+ or p+ silicon. Specific attention is paid to the effect of 

specific surface treatments prior to the formation of Al2O3 contact passivation 

layers: ALD Al2O3 contact passivation layers on HF-last and HNO3-last silicon are 

investigated. ALD Al2O3 contact passivation layers are found to effectively 

passivate aluminum contacts on n+ silicon surfaces, but they are found to be 

ineffective at passivating aluminum contacts on p+ silicon surfaces. In addition, it 

is found that pin-holes associated with HF-last ALD Al2O3 contact passivation 

layers can improve the trade-off between contact resistance and contact 

recombination associated with passivated contacts. However, the reproducibility 

of pinhole formation in ALD Al2O3 contacts remains an open question. 
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Nederlandse samenvatting 
 

De siliciumzonnecellentechnologie gaat al enkele jaren met rasse schreden 

vooruit en de productie van silicium zonnecellen wordt steeds goedkoper. Dat 

brengt met zich mee dat de globale kost van een fotovoltaïsch systeem steeds 

meer wordt bepaald door kosten die niets te maken hebben met de kost van de 

eigenlijke zonnecellen. Zo bepaalt bijvoorbeeld de installatiekost intussen voor 

een groot stuk het globale prijskaartje van een zonnecelinstallatie. Zulke kosten 

dalen per eenheid geleverde energie wanneer de zonnecellen efficiënter worden. 

Daarom is er een sterke drijfveer voor onderzoek naar hoog efficiënte silicium-

zonnecellen. 

In bepaalde zonneceltechnologieën, zoals hoog efficiënte silicium-zonnecellen 

met gediffundeerde juncties, zijn contactrecombinatiestromen een grote bron van 

energieverlies. Daarom kunnen nieuwe technologieën voor de vermindering van 

contactrecombinatiestromen een efficiëntieverhoging met zich meebrengen. De 

karakterisatie van contactrecombinatiestromen is echter ingewikkeld, en heel wat 

moderne technologieën voor de karakterisatie van contactrecombinatiestromen 

laten nog ruimte voor verbetering. Daarom werd in deze dissertatie een nieuwe 

methode ontwikkeld voor de karakterisatie van contactrecombinatiestromen. Die 

methode is gebaseerd op fotoconductantiemetingen op twee dimensionele 

roosters van puntcontacten op gepassiveerde silicium plakken.  

Na een algemene inleiding in hoofdstuk een, wordt in hoofdstuk twee een inleiding 

tot ladingsdrager-recombinatie in silicium-zonnecellen gegeven. Hoofdstuk twee 

introduceert vervolgens radiogolf-gedetecteerde fotoconductantiemetingen in de 

gestage toestand (QSSPC), waarop de contactrecombinatiestroom-

karakterisatiemethode die in deze dissertatie wordt ontwikkeld is gebaseerd. 

Hoofdstuk twee brengt bovendien een wiskundig kader aan voor een aantal 

basisconcepten met betrekking tot QSSPC-metingen.  

In hoofdstuk drie geven we een overzicht van moderne 

contactrecombinatiestroom-karakterisatiemethodes. Bovendien wordt 

beargumenteerd waarom de ontwikkeling van een nieuwe 

contactrecombinatiestroom-karakterisatiemethode nuttig is. Die nieuwe methode 

voor de karakterisatie van contactrecombinatiestromen beschrijven we vervolgens 

in detail in hoofdstuk drie. Eerst komt de fysica die aan de basis van de methode 

ligt aan bod. Daarna behandelt hoofdstuk drie ook ontwerpregels, een 

foutenanalyse, en een bespreking van parasitaire effecten. Vervolgens 

ondersteunen de experimentele resultaten de eerder gegeven theoretische 

beschrijving. In dit proefschrift ligt de nadruk op teststructuren die gebaseerd zijn 
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op roosters van puntcontacten, maar aan het einde van hoofdstuk drie bespreken 

we ter volledigheid ook alternatieve vormen van de teststructuur. 

In hoofdstuk vier werken we uit hoe de teststructuren, gebaseerd op roosters van 

puntcontacten, gebruikt worden voor de optimalisatie van n+ diffusies. Die n+ 

diffusies dienen als achterzijdeveld (BSF) in IBC-silicium-zonnecellen. Daarnaast 

behandelt dit hoofdstuk ook enkele voorzijdeveld (FSF) oxidaties. De aanpak van 

een klassiek junctie-optimalisatieprobleem met de teststructuur uit hoofdstuk drie 

laat een verdere experimentele bevestiging toe van de nieuwe 

contactrecombinatiestroom-karakterisatiemethode. In het bijzonder levert de 

consistentie van de trends tussen contactweerstanden, 

contactrecombinatiestromen en recombinatiestromen in gepassiveerde juncties 

een sterk experimenteel bewijs voor de karakterisatiemethode die voor dit 

proefschrift ontwikkeld is.  

Het laatste hoofdstuk onderzoekt de passivatie van aluminium contacten op n+- 

en p+-silicium. Specifiek behandelen we het gebruik van dunne Al2O3 lagen, 

gegroeid via thermische atomaire laagdepositie (ALD). Het hoofdstuk besteedt 

bijzondere aandacht aan het effect van de oppervlaktebehandeling die voorafgaat 

aan de depositie van de Al2O3 contactpassivatielagen. Daarbij bespreken we 

zowel behandelingen die eindigen met een onderdompeling in verdund 

fluorwaterstofzuur als behandelingen die eindigen met een onderdompeling in 

azeotropisch salpeterzuur. Uit die studie blijkt dat ALD Al2O3-

contactpassivatielagen aluminium contacten op n+-silicium oppervlakken efficiënt 

passiveren, maar dat de passivatie van aluminium contacten op p+-silicium 

oppervlakken ineffectief is. Bovendien komen pinvormige perforaties voor bij de 

Al2O3 contactpassivatielagen, wanneer die lagen gedeponeerd zijn op plakken die 

als laatste oppervlaktebehandelingsstap een onderdompeling in verdund 

fluorwaterstofzuur hebben gekregen. Deze perforaties zijn afwezig voor Al2O3 

contactpassivatielagen die gedeponeerd zijn op wafers die als laatste 

oppervlaktebehandelingsstap een dip in azeotropisch salpeterzuur ondergingen. 

De aanwezige perforaties in Al2O3 contactpassivatielagen zorgen voor een 

gunstigere afweging tussen contactweerstand en contactrecombinatie in 

vergelijking met Al2O3 contactpassivatielagen waarbij die perforaties afwezig zijn. 

Tot slot moet worden toegevoegd dat de reproduceerbaarheid van die 

perforatievorming in ALD Al2O3 contacten een vraagteken blijft. 
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1. Introduction 

1.1. Context 

 

Conventional energy sources are increasingly replaced by renewable energy 

sources for a variety of reasons: to reduce global CO2 emissions to curb global 

warming; to reduce emissions of SOx, NOx and particulate matter; for energy 

security issues; to lower fossil-fuel import bills; and for concerns with regard to the 

reliability of foreign energy suppliers [CEC 2007, Fthenkakis 2008, IEA 2013, 

Turner 1999, WEO 2009, Wooley 2001]. In addition, renewable energy sources in 

general, and solar power in particular, are also useful for providing electric power 

in remote locations, where grid access is difficult and costly. Examples include 

applications in the mining industry, where photovoltaic systems are used to 

complement traditional fossil fuel-powered generators [First Solar 2014]; offshore 

drilling [IPM 2010] where solar panels and small rechargeable batteries replace 

large and expensive non-rechargeable batteries. Solar power is also used in 

Antarctic research [BAS 2014]. Finally, in military settings, photovoltaic systems 

can be very valuable as well, for example in the form of foldable solar arrays which 

replace batteries and portable generators, and thereby eliminating the need for 

vulnerable supply lines [Johnson 2011]. 

In Europe, the push for renewable energy is part of a wider commitment to a low-

carbon economy, which is set-out in the climate and energy package. The climate 

and energy package is a set of binding legislation which sets the “20-20-20” 

targets for 2020. The 20-20-20 targets set-out objectives for greenhouse gas 

emission reduction, renewable energy production, and energy efficiency 

improvement [EU 2014]. The role of renewable energy in a carbon-free energy 

future is now more significant than ever as the share of nuclear power in the global 

energy mix has become the lowest since the 1980s [DNA 2014]. This can be partly 

explained by the nuclear renaissance losing some of its luster in the wake of the 

Fukushima Daiichi accident which displaced more than 150,000 people from their 

homes [Saito 2014, Schwägerl 2011, Verbruggen 2014]. 

Solar photovoltaic energy is now one of the major renewable energy sources and 

modern solar photovoltaic systems are very environmentally friendly [Peng 2013]. 

Indeed, the solar photovoltaic industry has come a long way since the manufacture 

of the first practical, 6% efficient silicon solar cell in 1954 by Bell labs [Chapin 

1954]. The strides that have been taken during the last decades are especially 

spectacular; in the 1970’s, a decade wrought with oil crises, the state of the 

photovoltaic energy conversion technology was still described as: “We probably 

know only slightly more about generating energy from photovoltaic devices than 
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James Watt knew about producing mechanical energy from steam” [Kelly 1978]. 

At present, solar photovoltaic power has reached grid parity in at least 19 markets 

globally, and is therefore competitive without subsidies in these markets. More 

markets are expected to reach grid parity as the cost of photovoltaic systems 

further decreases, and a new gold rush has been predicted in the solar industry 

for the coming years [Chase 2014, Shah  2014]. 

Even though the solar photovoltaic industry seems to be set for a rosy future, many 

challenges remain. Because the solar photovoltaic energy landscape is very 

diverse, some challenges apply only for specific solar cell technologies, whereas 

other challenges are more general. A first, very general challenge is related to the 

solar power being an intermittent energy source, for which the output is difficult to 

predict. The same challenges arise in the context of another major renewable 

energy source: wind power. The intermittency of renewable energy sources such 

as wind and solar powers entails difficulties in balancing electricity supply and 

demand which are being tackled through the introduction of smart grid 

technologies, including energy storage; see for example [Strasser 2013]. Further 

challenges are related to the lobbying of vested interests, and to confusion about 

the extent to which governments are willing to support or accommodate renewable 

energy sources; see e.g. [Schwarzenegger 2010]. This is closely related to 

recurring questions about the about the amount societies are willing to pay for the 

social and environmental benefits of clean, renewable energy sources [Kelly 

1978]. Yet another challenge is related to health hazards related to the use of 

materials such as cadmium which are featured in the absorber of CdTe (cadmium 

telluride) solar cells and in the CdS window layer of some CIGS (copper indium 

gallium selenide) solar cells [MSDS 2014]. Finally, there are concerns related to 

the availability of certain materials such as indium and tellurium, which are used 

in the absorbers of CIGS and CdTe solar cells, respectively [DOE 2004, Feltrin 

2008]. Conversely, these concerns have been countered by other authors [Phipps 

2008, Zweibel 2010]. With respect to the availability and toxicity of the component 

materials of solar cells, silicon solar cells are an ideal technology since silicon is a 

relatively non-toxic and readily available material [Turekian 1961, MSDS 2014b]. 

However, the toxicity argument should be strongly nuanced as the emissions from 

both cadmium telluride and silicon photovoltaics are negligible compared to those 

from fossil fuels. In addition, the life-cycle cadmium emissions for CdTe 

photovoltaic systems are actually lower than those for crystalline silicon 

photovoltaic systems. The latter, highly counter-intuitive fact is due to silicon solar 

cells using less energy in their life cycle than cadmium telluride solar cells 

[Fthenakis 2008]. 

Silicon solar cells currently dominate the solar photovoltaic market with a 91% 

market share; of which 6% features n-type Czochralski silicon substrates and the 
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remaining 85% feature multi- and monocrystalline p-type silicon substrates 

[Kopecek 2014]. Different silicon solar cell technologies can be categorized 

according to the efficiency of the resulting modules. A detailed overview of 

contemporary solar photovoltaic technologies is beyond the scope of this 

dissertation, but the interested reader is referred to a number of reviews: [Bagnall 

2008, Parida 2011, De Wolf 2012]. High efficiency silicon solar cells provide the 

context for this dissertation and will be described in some detail in chapter one. 

As this doctoral dissertation is completed in the context of the development of 

novel technologies, its motivation is based on economic grounds. However, 

motivations based on economic grounds have a tendency to be volatile. Around 

2010, the material cost of silicon continued to be a major contributing factor to the 

final cost of a crystalline silicon photovoltaic module: 40-50% [Depauw 2009, 

O’Rourke 2009, O’Rourke 2010]. This was the case despite advances in silicon 

production technology and an increased production capacity which had resulted 

in a significantly reduced cost of the silicon base material [Taylor 2010]. As a 

result, there was a very strong argument for focusing research in the field of silicon 

solar cells to solar cell concepts that involve a reduced material use compared to 

the State-of-the-Art 

However, the situation has changed dramatically since then. In particular, the price 

of the polysilicon feedstock material for silicon solar cells is expected to continue 

its decreasing trend, and drop to a mere 11-12$/kg in the near term [Shah 2014]. 

Due to the significant drop in the cost of photovoltaic system components, non-

hardware related costs comprised over 50% of the total cost of a photovoltaic 

system in 2012 [DOE 2014, Friedman 2013]. As solar cells are becoming ever 

cheaper to make, costs which have nothing to do with the solar cell manufacturing 

process itself comprise an ever increasing share of the total cost of a photovoltaic 

system. These costs can be reduced on a per unit energy basis by making more 

efficient solar cells. Therefore, there is a strong rationale for research in the field 

of high-efficiency silicon solar cells. Contact recombination currents are one of the 

major power loss mechanisms in certain types of high efficiency silicon solar cells, 

for example interdigitated back contact silicon solar cells featuring diffused 

junctions [Verlinden 2012]. Therefore, reducing contact recombination currents 

will result in efficiency gains. This provides a strong rationale for their study. 

However, the characterization of contact recombination losses is convoluted, and 

present technologies for the characterization of contact recombination currents 

are imperfect. This provided the incentive for this work on a novel characterization 

method for contact recombination currents. 
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1.2. Theoretical, multi junction and single junction 

solar cells  

 

The ultimate efficiency of photovoltaic devices is discussed for the case of multi 

junction and single junction devices, and we compare record efficiencies to the 

maximum attainable efficiency of photovoltaic devices in their respective class. 

We first discuss the thermodynamic (reversible) efficiency limit, which follows 

directly from the first and second laws of thermodynamics. Then, we discuss the 

limiting efficiency of multi junction solar cells under more realistic, irreversible 

operating conditions. We then compare this limit to the highest efficiency obtained 

in real world multi junction solar cells at the time of writing. Subsequently, we 

discuss single junction solar cells, which are significantly cheaper to make than 

multi junction solar cells. This benefit offsets their lower conversion efficiencies in 

many practical settings. Finally, we shortly discuss the efficiency limits of single 

junction silicon-based solar cells, which are currently the most widely used class 

of solar cells. Their success is related to the favorable tradeoff between efficiency 

and cost for terrestrial applications. In addition, silicon is a non-toxic and readily 

available material. 

1.2.1.  The thermodynamic limit 

 

Energy conversion devices are generally benchmarked by comparing their 

efficiency to the maximum efficiency that could be attained from a theoretical point 

of view. From the point of view of thermodynamics, the theoretical maximum 

efficiency of any heat engine is only dependent on the temperatures of the hot and 

cold heat reservoirs that are used to feed the engine [De Vos 1981]: 

𝜂 =
𝑇ℎ−𝑇𝑐

𝑇ℎ
,                                (1.1) 

in which 𝜂 is the solar cell efficiency, 𝑇ℎ is the temperature of the hot heat reservoir, 

and 𝑇𝑐 is the temperature of the cold heat reservoir. Now let the solar cell be the 

cold heat reservoir with a temperature of 300 𝐾, and let the sun be the hot heat 

reservoir with a temperature of 6000 𝐾, then the maximum efficiency 𝜂 equals 

95%. 
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1.2.2.  Multi junction solar cells 

 

The thermodynamic limit corresponds to reversible operation. In reality, power 

cannot be extracted under reversible operation. Instead, solar cells operate at the 

maximum power point, which corresponds to irreversible operation. Under 

concentrated light, the maximum efficiency for an ideal multi junction device is 

86.8%. At 1 sun light intensity, the maximum efficiency of an ideal multi junction 

solar cell is further lowered to 54% [De Vos 1981]. These efficiencies were 

calculated assuming that the solar cell is a blackbody at 300 𝐾 which is illuminated 

by the sun which is modelled as a blackbody at 6000 𝐾. 

The most efficient solar cell made to date is a multi-junction solar cell featuring a 

monolithic InGaP/GaAs/InGaAs triple junction. This device, made by Sharp Solar, 

has an  efficiency of 44.4% under concentrated light [Green 2014]. Multi junction 

solar cells are generally very expensive to make such that their applicability is 

limited to niche markets such as space exploration, where their superior efficiency 

justifies the cell’s high cost. For terrestrial applications, their cost per unit of 

produced energy can be lowered by using the solar cells under concentration. 

Concentrated photovoltaic systems have the advantage that the technology allows 

for co-generation of heat and electricity, see e.g. [Chow 2010]. Unfortunately, the 

operation of concentrated photovoltaics requires direct sunlight which renders 

concentrating photovoltaic systems ineffective in generally cloudy countries, for 

example: Belgium. 

1.2.3. Single junction solar cells 

 

Single junction solar cells are less efficient than multi junction solar cells, but for 

many applications, this efficiency deficit is made up for by their significantly lower 

cost. Single junction solar cells are commonly used in non-concentrating systems. 

The maximum efficiency of single junction solar cells under unconcentrated light 

is given by the Shockley-Queisser limit [Shockley 1961]. The Shockley-Queisser 

limit follows from a detailed balance calculation, taking only radiative 

recombination into account. It models both the sun and the solar cells as ideal 

blackbodies.  

The most common semiconductor used for the manufacture of solar cells is silicon 

[Kopecek 2014]. Silicon has a band gap of 1.1 𝑒𝑉, which is close to the optimum 

band gap. For solar cells manufactured from a semiconductor with a band gap of 

1.1 𝑒𝑉, the Shockley-Queisser limit is an efficiency of ca. 30%, when the solar cell 

is taken to be a blackbody at 300 𝐾 and the sun is taken to be a blackbody at 

6000 𝐾. A further refinement of the Shockley-Queisser limit for the case of silicon 
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solar cells is the calculation by Tiedje et al. [Tiedje 1984]. This calculation takes 

the following additional phenomena into account: free carrier absorption, Auger 

recombination, the actual AM1.5 spectrum instead of blackbody radiation, and 

imperfect light trapping in silicon solar cells. This calculation yields a limiting 

efficiency of 29.8% for silicon solar cells at 300 𝐾. The most efficient silicon solar 

cells manufactured so far are interdigitated back contact (IBC) silicon solar cells 

with an efficiency of 25.6% [Green 2014, Panasonic 2014]. This dissertation was 

completed in the context of the study and improvement of IBC silicon solar cells. 
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1.3. Losses in silicon solar cells 

 

In this section, we provide a brief description of the major power loss categories 

in silicon solar cells. First, we provide an intuitive explanation of various categories 

of losses in solar cells. Then, we provide a qualitative power loss analysis which 

is based on heuristic grounds. This power loss analysis method is based on 

[Debucquoy 2013]. The motivation for providing this qualitative power loss 

analysis in the present dissertation lies in that it provides an elegant indication of 

the effect of different power loss categories on the major solar cell figures of merit. 

Many power loss analysis methods and tools are described in the literature, some 

of which are listed here as guidance for the interested reader. A simple analytical 

power loss analysis method for high-efficiency interdigitated back contact silicon 

solar cells is given in [Verlinden 2012]. Another simple model, directed modelling 

the saturation current of point contacted solar cells is provided in [Plagwitz 2006], 

which expands on the work of B. Fischer [Fischer 2003]. Many solar cell simulation 

programs can be used to perform power loss analysis, such as Quokka [Fell 2013] 

and PC1D [Clugson 1997]. An excellent resource where many freely available 

resources can be found is [PV Lighthouse 2014].  

1.3.1. Intuitive discussion of power loss mechanisms 

 

A first type of power losses in silicon solar cells are those which are fundamentally 

related to the solar cells being based on silicon absorbers. The choice of silicon 

as an absorber material implies that absorption of photons with an energy smaller 

than silicon’s band gap, 1.1 eV, do not give rise to electron-hole pair generation 

and therefore do not contribute to the solar  cell’s power output. Also, for photons 

with an energy larger than silicon’s band gap, which are usefully absorbed, only 

the band gap energy is needed for electron-hole pair generation and the remainder 

is lost as thermal energy. As explained in the previous section, these band-gap 

related limitations can be overcome by employing multi-junction solar cells. 

The imperfect optics of silicon solar cells results in another class of power loss 

mechanisms which primarily affect the short circuit current: the refractive index 

mismatch between silicon and the environment gives rise to reflection losses, and 

photons that do enter the silicon semiconducting layer may escape before being 

absorbed. These losses related to imperfect optics can be tackled through any of 

a variety of patterning methods, and through the application of anti-reflective 

coatings, see e.g. [Oh 2012, Trompoukis 2012, Vazsonyi 1999, Zhao 1991]. 

Additionally, there are parasitic absorption mechanisms, for example free carrier 
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absorption [Falk 1998] and parasitic absorption at back contacts [Duerinckx 2014], 

which also lower the short circuit current. 

A third type of power losses are resistive losses. Resistive losses themselves fall 

in two categories: losses associated with shunt resistance and losses associated 

with series resistance. Series resistance losses are of particular interest in the 

context of this dissertation as there is a trade-off between power loss related to 

contact resistance and power loss related to contact recombination. Contact 

recombination is one of the recombination mechanisms of yet another category of 

power losses: recombination losses. 

Recombination losses primarily affect the voltage of solar cells, although they also 

affect the fill factor and excessive recombination losses can give rise to significant 

current losses. Current losses in silicon solar cells due to recombination losses 

occur when the recombination current is sufficiently substantial such that the 

recombination current comprises a significant part of the maximally attainable 

short circuit current.  

Voltage losses due to carrier recombination are most easily explained in a 

simplified setting: we consider the absence of resistive effects and we also 

assume the absence of space charge recombination currents. In this case, the 

voltage across the solar cell terminals equals the difference between the minority 

carrier quasi Fermi levels at the p-n junction. Quasi Fermi level splitting is lowered 

by recombination currents, and the quasi Fermi level splitting at the pn-junction 

equals the voltage over the solar cell in the absence of resistive effects. Therefore,  

the voltage increases with increasing excess carrier density; and the higher the 

recombination rate for a given generation rate (that is, for a given amount of light 

reaching the solar cell), the lower the steady-state excess carrier density, and the 

lower the voltage.  

Recombination currents occur at the semiconductor surfaces and in the 

semiconductor bulk. Bulk recombination may occur through radiative 

recombination, through the Auger process, or through mediation of electronic 

states in silicon’s band gap: Shockley-Read-Hall recombination. With respect to a 

discussion of surface recombination, contacted and non-contacted areas must be 

distinguished. Non-contacted areas are passivated by thick dielectric layers, for 

example silicon oxide, in order to reduce the density of defect states, thereby 

limiting Shockley-Read-Hall recombination at those surfaces. In contacted areas 

on the other hand, there is a very large amount of surface states resulting in a 

large amount of Shockley-Read-Hall recombination at the metal-semiconductor 

interface. In addition, minority carrier injection from the semiconductor into the 

metal also results in a very large recombination current, even in the absence of 

surface states. This dissertation is performed in the context of techniques to 
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reduce the recombination current at contacted areas. These techniques are 

generally referred to as contact passivation techniques. 

Contact passivation techniques differ from techniques for the passivation of non-

contacted areas in the sense that passivated contacts must still allow for majority 

carrier transport, whereas there is no such requirement for passivation layers 

designed for non-contacted areas. 

1.3.2. Qualitative power loss analysis 

 

The efficiency 𝜂 of a solar cell is a function of the illumination conditions: i.e. of the 

spectral power distribution and the intensity of the incident light. For any given 

illumination conditions, a solar cell’s efficiency 𝜂 is the ratio between the maximum 

power density that can be delivered by the solar cell 𝑃𝑚𝑝𝑝, and the power density 

of the incident light 𝑃𝑖𝑛𝑐: 

𝜂 =
𝑃𝑚𝑝𝑝

𝑃𝑖𝑛𝑐
 .              (1.3.2.1) 

The voltage at the maximum power point is the maximum power point voltage 𝑉𝑚𝑝𝑝 

and the current density at the maximum power point is the maximum power point 

current density 𝐽𝑚𝑝𝑝. The 𝐽𝑚𝑝𝑝 - 𝑉𝑚𝑝𝑝 pair is commonly referred to as the maximum 

power point on a solar cell’s 𝐽 − 𝑉 characteristic. 𝑃𝑚𝑝𝑝, 𝑉𝑚𝑝𝑝 and  𝐽𝑚𝑝𝑝 are related 

by: 

𝑃𝑚𝑝𝑝 = 𝐽𝑚𝑝𝑝 ∙ 𝑉𝑚𝑝𝑝.            (1.3.2.2) 

Alternatively, the power output at the maximum power point can be written in terms 

of the solar cell’s open circuit voltage 𝑉𝑂𝐶 and the solar cell’s short circuit current 

density 𝐽𝑆𝐶 through the introduction of a new quantity, the fill factor 𝐹𝐹. The fill 

factor is defined by: 

𝐹𝐹 ≡
𝐽𝑚𝑝𝑝∙𝑉𝑚𝑝𝑝

𝐽𝑆𝐶∙𝑉𝑂𝐶
,             (1.3.2.3) 

i.e. the fill factor is the ratio of the solar cell’s true output power density and the 

solar cell’s output power if the solar cell would be able to yield the short circuit 

current density 𝐽𝑆𝐶 and the open circuit voltage 𝑉𝑂𝐶 at the same time. 

Through substitution of Equation 1.3.2.3 in Equation 1.3.2.2, the following equality 

is seen to be trivially satisfied: 

𝑃𝑚𝑝𝑝 = 𝐽𝑆𝐶 ∙ 𝑉𝑂𝐶 ∙ 𝐹𝐹,            (1.3.2.4) 

i.e. the power density delivered by a solar cell at its maximum power point equals 

the product of the short circuit current density, the open circuit voltage and the fill 

factor. 
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The power loss ∆𝑃 is defined as the difference between the maximum power 

density output of an ideal solar cell with minimal losses from a theoretical point of 

view, 𝑃𝑖𝑑𝑒𝑎𝑙, and the maximum power density output of the solar cell being 

analyzed 𝑃𝑚𝑝𝑝, subject to the same test conditions: 

∆𝑃 = 𝑃𝑖𝑑𝑒𝑎𝑙 − 𝑃𝑚𝑝𝑝 = 𝑉𝑖𝑑𝑒𝑎𝑙 ∙ 𝐽𝑖𝑑𝑒𝑎𝑙 ∙ 𝐹𝐹𝑖𝑑𝑒𝑎𝑙 − 𝑉𝑂𝐶 ∙ 𝐽𝐽𝐶 ∙ 𝐹𝐹,        (1.3.2.5) 

in which 𝑉𝑖𝑑𝑒𝑎𝑙 is the maximum power point voltage of the ideal solar cell, 𝐽𝑖𝑑𝑒𝑎𝑙 is 

the maximum power current density of the ideal solar cell, and 𝐹𝐹𝑖𝑑𝑒𝑎𝑙 is the fill 

factor of the ideal solar cell. 

The total power loss ∆𝑃 can be written as the sum of three power loss 

components: current power loss ∆𝑃𝐽, voltage power loss ∆𝑃𝑉 and fill factor power 

loss ∆𝑃𝐹𝐹:  

∆𝑃 = ∆𝑃𝐽 + ∆𝑃𝑉 + ∆𝑃𝐹𝐹,              (1.3.2.6) 

in which 

∆𝑃𝐽 = (𝐽𝑖𝑑𝑒𝑎𝑙 − 𝐽) ∙ 𝑉𝑖𝑑𝑒𝑎𝑙 ∙ 𝐹𝐹𝑚𝑎𝑥,           (1.3.2.7) 

∆𝑃𝑉 = 𝐽 ∙ (𝑉𝑖𝑑𝑒𝑎𝑙 − 𝑉) ∙ 𝐹𝐹𝑖𝑑𝑒𝑎𝑙,           (1.3.2.8) 

∆𝑃𝐹𝐹 = 𝐽 ∙ 𝑉 ∙ (𝐹𝐹𝑖𝑑𝑒𝑎𝑙 − 𝐹𝐹).           (1.3.2.9) 

Roughly speaking, the physical interpretation of the different power loss 

components is found as follows: ∆𝑃𝐽 is the power loss due to imperfect light 

trapping, parasitic absorption and imperfect carrier collection, ∆𝑃𝑉 is the power 

loss due to recombination currents that lead to less-than-maximum open circuit 

voltages and ∆𝑃𝐹𝐹 is the power loss due to resistive effects or non-ideal diode 

characteristics.  

This model has several major advantages. First, it is very easy to use due to its 

simplicity. Second, it only uses essential solar cell figures of merit which can be 

generally found in literature. For more detailed power loss analyses, more 

detailed, most likely proprietary information would be required. In addition, the 

more detailed a power loss analysis, the more intricate any comparison between 

different technologies becomes.  

The downside of this simple model is that it is purely based on heuristic grounds 

and that it only allows to make general, qualitative statements about power losses 

in the devices under investigation. Nevertheless, it is a useful tool to investigate at 

a glance whether power losses are mostly due to optical effects (∆𝑃𝐽), due to 

excessive recombination currents (∆𝑃𝑉) or due to non ideal diode currents or 

resistive effects (∆𝑃𝐹𝐹); in which the interpretation must be done with due care. 

As an ideal solar cell, we take the model calculation by Tiedje et al. [Tiedje 1984], 

which yields: 𝑉𝑖𝑑𝑒𝑎𝑙 = 769 𝑚𝑉, 𝐽𝑖𝑑𝑒𝑎𝑙 = 42.2𝑚𝐴 ∙ 𝑐𝑚2, 𝐹𝐹𝑖𝑑𝑒𝑎𝑙 = 0.89 and 𝑃𝑖𝑑𝑒𝑎𝑙 =
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289 𝑊𝑚−2. We consider the power losses in one of the most efficient mono-

crystalline silicon wafer-based solar cell technologies currently in industrial 

production [Cousins 2010]. This interdigitated back-contact silicon solar cell has 

the following figures of merit: 𝜂 = 24.2%, 𝐽𝑆𝐶 = 40.5𝑚𝐴 ∙ 𝑐𝑚2, 𝑉𝑂𝐶 = 721 𝑚𝑉, 𝐹𝐹 =

82.9%, in which 𝜂 denotes efficiency, 𝐽𝑆𝐶 short circuit current density and 𝑉𝑂𝐶 open 

circuit voltage. This leads to the power-loss distribution shown in Figure 1.3.2.1. 

From the figure, it is clear that the losses are limited compared to the ideal case, 

and are approximately equally distributed between the three major power loss 

categories for this particular type of solar cell. 

 

Figure 1.3.2.1: Power losses in a highly efficient wafer-based mono crystalline silicon 
solar cell used as a benchmark [Cousins 2010]. 

The solar cell for which the different power loss components are shown in Figure 

1.3.2.1 is an Interdigitated Back Contact (IBC) silicon solar cell. IBC silicon solar 

cells are discussed in the next section.  

4.0% optical losses

6.0% recombination losses

6.2% fill factor losses
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1.4. IBC Silicon Solar Cells 

 

This dissertation is completed in the context of studying and reducing power 

losses in Interdigitated Back Contact (IBC) silicon solar cells. IBC silicon solar cells 

have several advantages over two-side contacted solar cells. First, all contacts 

are at the back, which eliminates shading losses associated with front contacts. In 

addition, the IBC solar cell’s front surface can be optimized to minimize 

recombination losses, whereas in front contact solar cells, there is a trade-off 

between recombination losses and resistive losses. A final advantage of IBC solar 

cells compared to two-side contacted silicon solar cells lies in the use of single 

side contacts facilitates the incorporation of the solar cells into modules, thereby 

reducing cell-to-module losses as a result [Greulich 2014]. A schematic cross 

section of the essential features of IBC solar cells  is shown in Figure 1.4.1. 

 
Figure 1.4.1. Schematic cross section of a simple IBC silicon solar cell. The solar cell’s 
upper side in the picture is its illuminated side. 

The down side associated with the IBC structure is its cost. The higher cost is 

related to two distinct causes. First, IBC solar cells require more patterning steps 

than 2-side contacted solar cells. Second, high-lifetime substrates, and high 

lifetime cell processing techniques are required due to the rather challenging 

charge carrier collection in IBC solar cells structures compared to two side 

contacted solar cell structures. The challenges related to charge carrier collection 

have two distinct causes. We discuss these causes for n-type wafers, which are 

commonly used as substrates for IBC silicon solar cells. 

The first cause for the challenging minority carrier collection in IBC solar cells is 

related to the all contacts in an IBC solar cell being at the cell’s back side, while a 

large portion of the AM 1.5G spectrum, especially the short wavelengths, is 

absorbed close to the illuminated (front) surface. This is shown for a specific 

example in Figure 1.4.2. Most light being absorbed close to the front surface 

results in a larger average distance that minority charge carriers must travel before 

they are collected compared to two side contacted solar cells featuring a front 

emitter. The larger average charge carrier traveling distance results in additional 
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recombination losses unless electrically thin, high-lifetime substrates are used 

along with surface passivation techniques that yield very low effective surface 

recombination velocities. 

 

Figure 1.4.2. Electron-hole pair generation rate as a function of distance from the front 
surface in a 150 µm thick silicon solar cell.  

Figure 1.4.2 shows the results from a simulation which was performed using OPAL 

2, which is an online calculator freely available on www.pvlighthouse.com.au, 

using the following parameters: random surface morphology featuring upright 

pyramids with a characteristic angle of 54.74º. The solar spectrum was taken to 

be the AM1.5g spectrum according to [Guemyard 1995], the zenith angle was 0º. 

The path length enhancement factor was taken to be 𝑍 = 4 +

(𝑙𝑛 (𝑛2 + (1 − 𝑛2)𝑒−4𝛼𝑊)) (𝛼𝑊)⁄ . The silicon solar cell was simulated under air. 

The antireflective coating consisted of a 65 nm thick PECVD SiNx antireflective 

coating, and an underlying 20 nm thick passivating SiO2 layer which has a parasitic 

optical effect. The optical constants for the PECVD SiNx layer were taken from 

[Baker-Finch 2011]. The optical constants for the SiO2 layer were taken from [Palik 

1985]. The optical constants of silicon were taken from [Green 2008]. 

A second cause for the challenging minority carrier collection in IBC silicon solar 

cells is due to the requirement of lateral charge carrier transport. For IBC solar 

cells featuring n-type wafers, n+ back surface fields and p+ emitters; holes 

generated above the BSF diffusion must travel laterally in order to be collected in 

the emitter regions, and electrons generated above the emitter regions must travel 

laterally to be collected in the BSF regions. The lateral minority carrier transport 

can cause electrical shading, which results in current losses [Hermle 2008], 

[Kluska 2010]. Avoiding electrical shading is done through using BSF regions 

which are thin compared to the BSF’s effective diffusion length, through the use 
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of excellent surface passivation, and through the use of high-lifetime substrates 

which tend to have an above-average cost. 

We now proceed by giving a literature overview of the technologies that have been 

proposed to overcome the challenges associated with the IBC cell concept. Then, 

we give an overview of the IBC cell structure that was under development during 

the time when this dissertation was performed at imec and which provided the 

context for the work that is completed in this dissertation. 

1.4.1. IBC silicon solar cell literature overview 

 

Many different specific technologies have been proposed to fully exploit the 

benefits of the IBC solar cell structure, and to overcome the challenges associated 

with single side contacted solar cells. A detailed review of several back contact 

silicon solar cell technologies until 2005, including IBC solar cells, can be found in 

[Van Kerschaver 2006]. Recently, several notable IBC silicon solar cell 

technologies have emerged, which are discussed next. 

The first example are IBC silicon solar cells that feature emitter and BSF (Back 

Surface Field) regions comprising a thin silicon oxide layer and doped polysilicon; 

see [De Ceuster 2014, Dennis 2012, Dennis 2014, Smith 2014], and the 

references therein. The technology leader in polysilicon-based IBC solar cells is 

Sunpower Corp. The record efficiency of IBC silicon solar cells featuring 

polysilicon-based contacts is 25% [Green 2014]. 

At the time of writing, the highest efficiency single junction silicon solar cells have 

an efficiency of 25.6% [Green 2014, Panasonic 2014]. These record solar cells 

are IBC silicon solar cells in which amorphous silicon junctions are used. These 

amorphous silicon junctions comprise a thin intrinsic amorphous silicon layer and 

a highly doped amorphous silicon layer that serves to induce the junction. This is 

Panasonic’s HIT concept; HIT stands for Heterojunction with Intrinsic Thin layer. 

Polysilicon and amorphous silicon based IBC silicon solar cells achieve very high 

efficiencies through the introduction of materials and processes that are new to 

the field of silicon solar cells. There is also considerable effort going into the 

development of  IBC solar cells manufactured using common, “industry standard” 

processes. For example, Hareon solar presented 19.65% efficient IBC silicon 

solar cells made using alkaline texturing, POCl3 and BBr3 diffusions, and screen 

printing [Dong 2014]. Another low cost approach to IBC solar cells is ECN’s 

Mercury concept [Cesar 2014] in which screen printed contacts are used to keep 

processing costs down. In order to avoid electrical shading losses, a conductive 

front floating junction is used, which collects minority carriers in the BSF region 

and facilitates transport to the (contacted) emitter region, where they can be 
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collected by the contacted back side emitter. At the time of writing, the Mercury 

solar cell concept yielded an efficiency of 19%. Other examples of low-cost IBC 

silicon solar cell approaches are the Zebra cell from the University of Konstanz 

[Galbiati 2012] and Hanwha Solar’s p-type absorber IBC cell [Basore 2013].  

1.4.2. IBC silicon solar cells at imec 

 

In this section, we briefly describe how the IBC silicon solar cells featured in this 

dissertation are made. These IBC solar cells are produced following imec’s 

lithography-based baseline process, which is a variation on the process described 

in [Verlinden 2012]. The substrates are Czochralski (Cz) silicon wafers with a bulk 

resistivity in the range of 1 − 5 Ω ∙ 𝑐𝑚. Relatively lowly doped n-type Czochralski 

silicon substrates are used to ensure a large bulk diffusion length. Note that 

compared to p-type Czochralski silicon, n-type Czochralski silicon has the 

advantage of the absence of boron-oxygen complexes, which are a dominating 

defect type in p-type (boron doped) Czochralski silicon [Bothe 2005]. 

The first step in imec’s IBC solar cell process is saw damage removal using 

tetramethyl ammonium hydroxide (TMAH) at 80℃, which yields a relatively 

smooth, chemically polished surface. Prior to TMAH saw damage removal, a dip 

in a diluted aqueous HF/HCl solution (HF(aq):HCl:H2O 5:5:70) is performed to 

remove the native oxide. Optionally, an SPM clean (H2SO4:H2O2 4:1, 90-120℃) is 

performed prior to the HF-dip to remove organic contaminants. 

After saw damage removal, wafers are cleaned and subsequently receive a BBr3 

diffusion to form the p+ emitter. Subsequently, the borosilicate glass (BSG) is 

removed and after a clean, a passivating oxide is grown using wet oxidation. This 

yields the structure depicted in Figure 1.4.2.1.  

 
Figure 1.4.2.1. Schematic representation of the state of a device wafer during IBC solar 
cell processing, after emitter oxidation. 

After emitter oxidation, the oxide is locally etched on one side of the wafer to define 

the n+ back surface field (BSF). A BSF is a highly doped region in a high-low 
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junction on a solar cell’s non-illuminated side used for surface passivation and 

base contacting. 

The wafer is subsequently exposed to a silicon etchant such that the emitter is 

etched in the BSF openings. Then, n+ BSF regions are formed using POCl3 

diffusion. The phosphosilicate glass (PSG) formed during the POCl3 diffusion is 

subsequently removed, the wafers are cleaned, and a passivating oxide is formed 

on the BSF regions using dry oxidation. This yields the structure shown in Figure 

1.4.2.2. 

 
Figure 1.4.2.2. Schematic representation of the state of a device wafer during IBC solar 
cell processing, after BSF oxidation. 

After BSF oxidation, the front oxide, which is shown on the top side of the wafer 

in Figure 1.4.2.2, is etched using HF vapor. Then, the front side of the wafer is 

textured, which also removes the p+ emitter diffusion on the front side. 

Subsequently, the wafers receive a POCl3 diffusion forming a front surface field. 

The front surface field is optimized for passivation and is lower doped than the 

back surface field used for contacting the base. After the front surface field 

diffusion, the phosphosilicate glass (PSG) is removed, the wafers are cleaned and 

a thin passivating oxide is formed for front surface field passivation. Then, a silicon 

nitride anti-reflective coating is deposited on the front surface field oxide. This 

yields the structure shown in Figure 1.4.2.3. 

 
Figure 1.4.2.3. Schematic representation of the state of a device wafer during IBC solar 
cell processing, after FSF oxidation. 
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Figure 1.4.2.4. Coarse-grained overview of the major process steps of an IBC silicon 
solar cell process, as performed in imec’s photolithography baseline in December 
2013. This baseline process was used for the manufacture of the solar cells discussed 
in chapter 4. 

After FSF oxidation, contact openings are lithographically defined. The wafer is 

subsequently exposed to a silicon oxide etching solution. After resist removal, the 

metal contacts are sputtered. The metal contacts are aluminum alloyed with 1% 

silicon. Silicon is used as an alloying element in aluminum to prevent aluminum 

spiking during the forming gas anneal at the end of solar cell processing. After 

metal deposition, an interdigitated finger pattern is defined lithographically. The 

exposed metal regions are then etched to create the bus bar and interdigitated 

finger pattern. After resist removal and a silicon-dust etch (the silicon dust 
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 diffusion 

6. BSG removal 
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8. Wet oxidation 
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10. Silicon Etch 
11. Resist removal 
12. Clean 
13. POCl

3
 diffusion 
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31. Forming Gas anneal 
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originates from the Al:1% silicon alloy for contacting), a final forming gas anneal 

is done for 30 minutes at 400℃ to remove sputter damage and to improve surface 

passivation. This yields the structure shown in Figure 1.4.1. A course grained 

overview of the steps of the solar cell production process used in the present 

dissertation is given in Figure 1.4.2.4. 
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1.5. Passivated Contacts 

 

In this section, an overview is provided of various types of technologies and 

methods that are designed to reduce recombination currents at solar cell contacts, 

while allowing majority carriers to pass through and therefore having low contact 

resistance. In this thesis, we use the term passivated contacts to denote these 

technologies. Note that the term passivated contacts may also refer to corrosion 

protection of solar cell contacts, see e.g. [Fischer 1971]. An alternative name for 

passivated contacts is carrier selective contacts [Feldmann 2014]. The term 

carrier selective contacts is commonly used in the field of excitonic photovoltaics, 

in which it refers to contacting methods designed to boost their efficiency [Gregg 

2003]. There are ample examples of passivated contacts. We provide an 

extensive, though not exhaustive, overview below.  

One type of passivated contacts is the semiconductor-oxide-semiconductor 

structure, shown schematically in Figure 1.5.1. 

 
Figure 1.5.1. Schematic equilibrium band diagram of semiconductor (1) – dielectric (2) 
-semiconductor (3) passivated contacts (not to scale). Area (1) is a contacted highly 
doped semiconductor region. Area (2) is the interfacial tunnel oxide. Area (3) is a lowly 
doped semiconductor. The lower solid line is the valence band, the upper solid line is 
the conductance band, and the dotted line is the Fermi level. The drawings have been 
made for the case in which semiconductor areas (1) and (3) have the same band gap. 
a) p+ semiconductor – oxide – n- semiconductor structure; usable, for example, as an 
emitter. b) n+ semiconductor – oxide – n- semiconductor structure; usable, for example, 
as a back surface field (BSF). 

In Figure 1.5.1, the conductance and valence band offsets between 

semiconductor and dielectric are shown to be equal. However, asymmetric band 

offsets are rather the rule than the exception. For most dielectrics; for example 

SiO2, HfO2, ZrO2, Lu2O3, and Al2O3; the conductance band offset with silicon is 

smaller than the valence band offset with silicon [Bersch 2008, Seguini 2004]. The 

band offset asymmetry results in unequal barriers for electron and hole tunneling 
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through the oxide, which has been observed for e.g. silicon oxide tunnel barriers 

on silicon [Ng 1979]. We also explain some of our experimental results, specifically 

the observed trends in contact resistance and contact recombination current for 

MIS (metal-insulator-semiconductor) contacts featuring Al2O3 tunnel layers, from 

the valence band asymmetry of Al2O3 on silicon (chapter 5). Also, we note that the 

band structure of very thin tunnel oxides has been observed to depend on film 

thickness [Keister 1999]; which is a notion which is not explored any further in this 

dissertation. Apart from the symmetric band offsets, there is another simplification 

in Figure 1.5.1: Figure 1.5.1 shows the case in which both semiconductors have 

the same band gap, which is the case for, for example, polycrystalline silicon – 

silicon oxide – silicon passivated contacts. However, when regions (1) and (3) are 

made from different semiconductors, regions (1) and (3) generally have a different 

band gap. 

1.5.1. Polycrystalline silicon 

 

A first type of passivated contacts which are discussed in detail are polycrystalline 

silicon contacts. Polycrystalline silicon contacts were first discovered by IBM, and 

have been used in IBM’s bipolar transistors since 1981 [Ning 2001]. The first 

applications of polycrystalline silicon for contacts in silicon solar cells were 

published around the mid-1980’s [Lindholm 1985, Tarr 1985]. It was realized 

relatively soon that the trade-off between contact resistance and contact 

recombination can be improved through controlled break-up of the interfacial oxide 

between the polysilicon contact and the crystalline silicon base. This controlled 

interfacial oxide break-up can be done without detrimentally affecting the dopant 

profile by using a two-step annealing sequence: one anneal to break up the oxide, 

and a separate anneal for dopant diffusion [Gan 1990]; this avoids excessive 

dopant out diffusion, and the associated Auger recombination that comes with 

high thermal budgets after dopant incorporation.  

When the interfacial oxide has been partially broken up, the contact structure for 

silicon solar cells with polycrystalline silicon contacts features passivated areas 

and unpassivated areas. When the interfacial oxide in the passivated areas is 

sufficiently thin, tunneling through the interfacial oxide can occur. When the 

interfacial oxide is sufficiently thick (more than ca. 2 nm), and when the surface 

area of the perforations is sufficiently large, the tunnel current in the passivated 

contact areas is much smaller than the current in the perforated areas. The latter 

structure is reminiscent to the structure of contacts on diffused junctions for which 

the junction surface is partially passivated with a thick dielectric layer and partially 

contacted using unpassivated contacts. In fact, the physics of such passivated 

contacts with partially broken up interfacial dielectric layers can be explained 
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within the framework of classical p-n junctions for passivated, locally contacted 

junctions [Peibst 2014].  

Polysilicon contacts have gained significant attention after the achievement of 

24.2% efficient solar cells with “passivated contacts” by Sunpower Corp [Cousins 

2010]. Given a subsequent flurry of patent publications in the field of tunnel oxide 

- polysilicon contacts by the same company, this record is very likely to have been 

achieved using poly-Si / (SiO2) / c-Si junctions; see [De Ceuster 2014, Dennis 

2012, Dennis 2014, Smith 2014], and references therein. Another remarkable 

recent result in the field of poly-Si / (SiO2) / c-Si junctions is the achievement of 

implied Voc’s of 732 mV for Si-SiO2-n-type polysilicon and 711 mV for Si-SiO2 p-

type polysilicon [Römer 2014]. This investigation also featured the investigation of 

various chemical tunnel oxides as part of the passivated contact.  

Note that polycrystalline silicon thin films have also been extensively studied as 

absorbers in thin-film solar cells. It could be possible to apply technologies that 

have been investigated in this domain to the field of passivated contacts for high 

efficiency, crystalline silicon solar cells. Notable achievements in the field of thin-

film polycrystalline silicon solar cells are: solid phase crystallized, 9.2% efficient n-

type polycrystalline silicon absorber solar cells on steel substrates [Baba 1995]; 

10% efficient, solid phase crystallized, polycrystalline silicon absorbers on glass 

[Keevers 2007]; 8.5% efficient polycrystalline silicon solar cells on aluminum oxide 

substrates, featuring epitaxial absorbers on a template formed by aluminum-

induced crystallization of amorphous silicon [Qiu 2010]; thin-film solar cells 

featuring 9% electron beam crystallized polycrystalline silicon absorbers on glass 

substrates [Amkreutz 2014]; and finally, 11.7% efficient laser-crystallized thin-film 

polycrystalline silicon solar cells on glass [Dore 2014].  

The polycrystalline silicon layer in polycrystalline silicon passivated contacts can 

be replaced by another material such as amorphous or microcrystalline silicon. 

This yields a structure recently named TOPCon [Feldmann 2014, Feldmann 

2014b, Feldmann 2014c, Feldmann 2014d, Moldovan 2014]. A hybrid, 2-side 

contacted cell with selective diffused emitter on the front and an n-type TOPcon 

layer on the back featured an efficiency of 24.4% [Feldmann 2014c]. In [Feldmann 

2014b], the TOPcon structure is defined as being “based on the poly-silicon 

technology but makes use of a wide band gap layer placed above the tunnel oxide 

which can be more transparent than a-Si due to its crystalline phases”. This could 

be specifically advantageous for frontside contacts, but it is less critical for 

backside contacts. In [Felmann 2014d], the semiconducting layer is disclosed to 

be amorphous, microcrystalline or polycrystalline silicon, depending on the 

annealing temperature. 

  



22 

 

1.5.2. Semi insulating oxygen doped polycrystalline silicon 

 

Semi insulating oxygen doped polycrystalline silicon (SIPOS) is another 

semiconducting material used for contact passivation that stems from the field of 

bipolar transistors [Matsushita 1979]. In this reference, SIPOS is defined as a CVD 

film made of SiH4 and N2O, with N2 as a carrier gas at 650°C. SIPOS is a mixture 

of silicon crystallites, amorphous silicon, and silicon dioxide. Many material 

properties are described in detail in [Pan 1993]. One of the advantages of SIPOS 

is that its absorption coefficient can be lowered by increasing the oxygen 

concentration, thereby reducing parasitic absorption [Pan 1993b]. An early 

application of SIPOS to photovoltaics resulted in an excellent open circuit voltage 

of 720 mV, but low fill factor [Yablonovitch 1985]. Both polycrystalline silicon and 

SIPOS emitters can yield emitter saturation current densities lower than 20 fA/cm2 

in their optimized form [Kwark 1987]. 

1.5.3. Amorphous silicon 

 

Another contact passivation method makes use of amorphous silicon. The use of 

amorphous silicon heterojunctions also stems from the field of bipolar transistors 

[IMEC 1984, Ghannam 1992]. Crystalline silicon solar cells featuring amorphous 

silicon emitters have been commercialized by Sanyo (now Panasonic) [Tanaka 

1992]. Panasonic’s amorphous silicon based HIT (heterojunction with intrinsic thin 

layer) concept features an intrinsic amorphous silicon passivation layer, and a 

highly doped, field-inducing amorphous silicon layer. This structure provides 

excellent contact passivation resulting in a 24.7% efficient, two-side contacted 

silicon solar cell with an open circuit current of 750 mV [Taguchi 2014]. The 

efficiency of this solar cell was limited by the relatively low short circuit current of 

39.5 𝑚𝐴 𝑐𝑚2⁄ . The short circuit current limitations in the two-side-contacted solar 

cell lay-out have been overcome by moving towards an IBC solar cell design, 

resulting in efficiencies of 25.6% under AM 1.5G illumination [Panasonic 2014], 

which is the most efficient silicon solar cell produced up to now [Green 2014]. Note 

that like polycrystalline silicon films, amorphous silicon films have been used as 

absorbers for thin-film solar cells, see for example [Schropp 2007]. It could be 

possible to apply technologies that have been investigated in this domain to the 

field of passivated contacts for high efficiency, crystalline silicon solar cells. 
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1.5.4. Undisclosed materials 

 

We finally mention a variation on the semiconductor – dielectric – semiconductor 

passivated contact structure that features an undisclosed semiconducting 

material, Silevo’s Triex solar cells, which have a 22.1% efficiency for cells with an 

area of 155 cm2 [Heng 2013]. These solar cells feature a silicon oxide tunnel layer 

and a highly doped semiconducting layer which is described a “graded doped 

silicon-based thin film”.  

1.5.5. Metal-Insulator-Semiconductor Structures 

 

The function of metal-insulator-semiconductor (MIS) contacts is conceptually 

similar to that of semiconductor-insulator-semiconductor contacts. There is a 

notable difference though, namely that the effective surface recombination velocity 

at the metal-insulator interface is infinite; there are no minority carriers in a metal. 

Therefore, any minority carriers that tunnel from the semiconductor to the metal 

through the dielectric layer are lost in MIS structures. In the semiconductor-

insulator-semiconductor structures on the other hand, the highly doped 

semiconductor region can have a finite minority carrier lifetime. Therefore, minority 

carriers that tunnel from the lowly doped semiconductor, through the dielectric, to 

the highly doped semiconductor do not immediately recombine, and they are 

therefore not necessarily lost.  

An early discussion of the theory of MIS solar cells can be found in [Green 1974], 

and early experiments by the same authors are described in [Shewchun 1974].  

One application of MIS structures to solar cells are inversion layer solar cells. In 

an ideal world, Al-SiO2-p Si MIS solar cells have been predicted to have an 

efficiency potential of 21% [Shewchun 1977], which is an efficiency that has not 

materialized so far. For MIS-inversion layer devices, thermal stability has been a 

major concern [Beyer 1996, Hezel 1984]. The efficiencies of such MIS- inversion 

layer devices have been mostly limited by their low open circuit voltages, see e.g. 

[Bartels 1995]. 

Recently, a new line of research has emerged in the field of MIS structures for 

solar cells. Rather than attempting to induce a junction through appropriate choice 

of metal work function and charged dielectrics, attempts have been made to 

reduce the recombination currents of contacted p-n or high-low junctions. One 

example is the passivation of aluminum contacts on n+ silicon surfaces by Al2O3 

or SiO2 [Zielke 2011, Bullock 2013]. Other examples are the passivation of indium-

tin oxide on n-type silicon by SiO2 tunnel layers [Young 2014], and Al2O3 

passivated aluminum-doped ZnO stacks for passivated contacts [Garcia-Alonso 
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2013]. Also, an interesting MIS passivated contact could be formed using a stack 

of intrinsic amorphous silicon and magnesium, as magnesium is known to form a 

good Ohmic contact with undoped a-Si:H [Matsuura 1989]. An Ohmic contact is a 

low-resistance junction with non-rectifying behavior [Warwick 2014]. However, it 

must be noted that for MIS contacts featuring amorphous silicon, there are likely 

temperature stability concerns as many metals; such as nickel, palladium and 

aluminum are known to induce the crystallization of amorphous silicon at low 

temperatures [Yoon 2001]. Also, the processing temperature would be additionally 

limited because of concerns related to hydrogen retention. 

A MIS-contact based device architecture which is conceptually particularly 

appealing is a structure for which a band diagram is shown in Figure 1.5.2. For 

simplicity, no band bending is considered. The center are in Figure 1.5.2 shows a 

semiconductor. The left- and right-hand areas, denoted (1) and (2) respectively, 

are metal contacts.  

The left-hand contact in Figure 1.5.2 is shielded from the semiconductor by means 

of a dielectric layer having a very small conductance band offset with the 

semiconductor, but a very large valence band offset. Therefore, the dielectric layer 

between the semiconductor and the left-hand metal contact shields holes from the 

left hand contact but allows electrons to readily pass through.  

Conversely, the right hand contact (2) in Figure 1.5.2 is shielded from the 

semiconductor by means of a dielectric layer which has a large conductance band 

offset but a small valence band offset with the semiconductor. Therefore, the 

dielectric layer between the semiconductor and the right-hand metal contact 

shields electrons from the right-hand contact but allows holes to readily pass 

through.  

When carriers are excited in the semiconductor under the influence of light with 

an above-bandgap energy, electrons will flow to the left hand contact and holes 

will flow through the right hand contact because of the band-offset asymmetry of 

the dielectric layers between contacts and semiconductor. When the left-hand and 

the right-hand contacts are connected through an electrical circuit, the asymmetry 

between hole and electron current flow can be exploited to do work.  

The device structure shown in Figure 1.5.2 is particularly appealing because the 

device structure does not feature any highly doped semiconductor regions; 

thereby avoiding the associated Auger recombination or effective bandgap 

narrowing. The challenge associated with the practical realization of this device 

architecture lies in finding material systems and processing sequences which 

result in the band diagram shown in Figure 1.5.2. 
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Figure 1.5.2. Solar cell device structure featuring MIS-contacts with dielectric layers 
having asymmetric band offsets. 

 

1.5.6. Surface state passivation 

 

A final type of passivated contacts that is discussed here are metal-semiconductor 

structures for which interface states have been passivated, thereby avoiding Fermi 

level pinning at metal-semiconductor interfaces, and allowing band bending at 

metal-semiconductor junctions to be controlled by the metal’s work function. For 

example, passivation at the metal (titanium) – n-type silicon interface can be 

accomplished by for using selenium [Osvald 2004, Tao 2004, Tao 2004b, Tao 

2004c]. For metals with an appropriate work function, the resulting band bending 

can repel minority carriers from the metal-semiconductor interface, thereby 

reducing parasitic minority carrier flow from semiconductor to metal. However, 

there is no report on the effect of surface passivation on the effective surface 

recombination velocity in the aforementioned references.  
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2. Basic concepts 
 

In this chapter, several basic aspects of semiconductor device physics are 

introduced in a simplified way. This introductory discussion is included for two 

reasons. First, it serves as a useful introduction to subsequent chapters on 

recombination current measurements. Second, it provides a summary of several 

key concepts, which will be used as a basis for future reference. For the sake of 

conciseness, this chapter is limited to the essential theory that is required for 

understanding further chapters. An excellent introduction to semiconductor device 

physics, aimed at the layperson, can be found in [Shockley 1956]. A detailed 

technical discussion of a great variety of semiconductor devices can be found in 

[Sze 2007, Van Overstraeten 1998]. 

Charger carrier recombination in silicon solar cells is discussed first (section 2.1). 

Subsequently, an introduction is given to radio-wave detected quasi steady state 

photoconductance (QSSPC) measurements (section 2.2). QSSPC 

measurements lie at the basis of the characterization method for contact 

recombination measurements treated in this dissertation. We end this chapter with 

a treatment of how the minority carrier concentration varies over the wafer 

thickness (section 2.3) in blanket test structures during QSSPC measurements 

under uniform illumination. The resulting mathematical framework forms the basis 

for the discussion of the novel characterization method for contact recombination 

currents introduced in this dissertation.  
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2.1. Recombination and Current Flow 

 

Recombination is a process by which the carrier concentration in an excited 

semiconductor returns to its equilibrium value. Therefore, the equilibrium carrier 

concentration in semiconductors is discussed first. Then, departure from 

equilibrium and the associated recombination processes are described. 

2.1.1. Equilibrium 

 

Consider a large and uniform semiconductor volume such that boundary effects 

are of no importance. The semiconductor contains freely moving electrons and 

holes. In thermal equilibrium, the electron and hole concentration is determined 

by a naturally occurring balance between two continually occurring processes: 

generation and recombination. The first process, generation, is due to the thermal 

excitation of electrons from their lower energy states in the valence band to higher 

energy states in the conduction band, where they are free to move. In this process, 

a hole remains in the valence band which, in turn, acts as a freely moving 

positively charged species. In the second process, recombination, electrons and 

holes annihilate each other. The balance between generation and recombination 

processes can be described as a chemical equilibrium: 

𝑛 + 𝑝 ↔[],             (2.1.1.1) 

in which 𝑛 is the electron concentration in the conduction band, 𝑝 is the hole 

concentration in the valence band and [] denotes the absence of either free charge 

carrier. Equation 2.1.1.1 states that free electrons and free holes are antiparticles; 

when they react, they annihilate each other. In equilibrium, the product of electron 

and hole concentrations equals a constant: 

𝑛0 ∙ 𝑝0 = 𝑛𝑖
2,                              (2.1.1.2) 

in which 𝑛0 is the equilibrium electron concentration, 𝑝0 is the equilibrium hole 

concentration and 𝑛𝑖
2 is the square of the intrinsic carrier concentration, 𝑛𝑖. In its 

simplest definition, 𝑛𝑖 is the carrier concentration in an intrinsic semiconductor. An 

intrinsic semiconductor is a semiconductor to which no doping elements are 

added. In an intrinsic semiconductor, the electron and hole concentrations are 

equal and therefore in thermal equilibrium, they equal the intrinsic concentration: 

𝑛 = 𝑝 = 𝑛𝑖.                (2.1.1.3) 

Note that the quantity 𝑛𝑖
2 is analogous to the concept of a chemical equilibrium 

constant [Shockley 1956]. 
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Apart from intrinsic semiconductors, extrinsic semiconductors exist as well. In the 

simplest picture of an extrinsic semiconductor, impurities (dopants) are added that 

either lack electrons or have an excess of electrons in their valence shell. The 

case of excess electrons corresponds to an n-type semiconductor and the case of 

an electron deficit corresponds to the case of a p-type semiconductor. For group 

IV semiconductors such as silicon, group III elements are p-type dopants and 

group V elements are n-type dopants. When the concentration of one charge 

carrier type is increased through incorporation of donor or acceptor impurities in 

the silicon lattice, the concentration of its antiparticle is decreased such that 

Equation 2.1.1.2 still holds.  

For example, take the case of an n-type semiconductor that contains a 

concentration of active electron donor atoms 𝑁𝐷. In this case, the equilibrium 

electron concentration 𝑛 approximately equals the donor concentration 𝑁𝐷: 

𝑛0 ≈ 𝑁𝐷,              (2.1.1.4) 

Combining Equations 2.1.1.2 and 2.1.1.4, the equilibrium hole concentration 𝑝 

approximately equals 𝑛𝑖
2/𝑁𝐷: 

𝑝0 ≈ 𝑛𝑖
2/𝑁𝐷,             (2.1.1.5) 

In most practical settings, 𝑁𝐷 ≫ 𝑛𝑖. Therefore, there are many more electrons than 

holes in an n-type semiconductor in equilibrium, and electrons are called majority 

carriers and holes are called minority carriers. 

The preceding discussion established that electron and hole concentrations are 

linked in equilibrium. For a given material, this relation is elegantly described by 

the Fermi level, 𝐸𝐹. The Fermi level is the electrochemical potential. As electrons 

and holes are Fermions, their energy distribution follows Fermi-Dirac statistics. 

For low doping concentrations, the Fermi-Dirac distribution is equivalent to the 

mathematically simpler Maxwell-Boltzmann distribution, and the free electron and 

hole concentration are: 

𝑛 = 𝑁𝐶𝑒𝑥𝑝((𝐸𝐹 − 𝐸𝐶)/𝑘𝑇),           (2.1.1.6) 

𝑝 = 𝑁𝑉𝑒𝑥𝑝((𝐸𝑉 − 𝐸𝐹)/𝑘𝑇),           (2.1.1.7) 

in which 𝑁𝐶 and 𝑁𝑉 are electron and hole effective density of states, respectively, 

𝐸𝐹 is the Fermi level, 𝐸𝐶 is the conductance band energy, 𝐸𝑉 is the valence band 

energy, 𝑘 is Boltzmann’s constant, and 𝑇 is absolute temperature. Note that by 

combination of Equations 2.1.1.2, 2.1.1.6 and 2.1.1.7; the intrinsic carrier 

concentration is linked to the effective density of states and the difference between 

conduction and valence band energy as: 

𝑛𝑖
2 = 𝑁𝐶𝑁𝑉𝑒𝑥𝑝((𝐸𝑉 − 𝐸𝐶)/𝑘𝑇).           (2.1.1.8) 
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𝐸𝑉 − 𝐸𝐶 is the semiconductor’s band gap, ∆𝐸𝑔. 

2.1.2. Departure from equilibrium 

 

We first describe how departure from equilibrium is described in a semiconductor. 

Then, we discuss how the balance between generation and recombination 

processes results in steady state carrier concentrations in an out of equilibrium 

situation. We will continue to arbitrarily consider the case of an n-type 

semiconductor. The p-type semiconductor case is readily found by analogy. 

 

Excess carrier density 

The simplest, most intuitive way to describe departure from equilibrium in a 

semiconductor is through the concept of excess carrier density. By definition, the 

excess carrier density is the amount by which the carrier concentration exceeds 

the equilibrium carrier concentration. For an n-type semiconductor: 

𝑝 = 𝑝0 + ∆𝑝 ≈ ∆𝑝,            (2.1.2.1) 

𝑛 = 𝑛0 + ∆𝑛 ≈ 𝑁𝐷 + ∆𝑛,              (2.1.2.2) 

in which ∆𝑝 is the excess hole concentration, 𝑁𝐷 is the electron donor 

concentration, ∆𝑛 is the excess electron concentration, 𝑛0 is the equilibrium 

electron concentration, and 𝑝0 is the equilibrium hole concentration. 

 

Quasi neutrality 

In uniformly doped, electrically neutral semiconductor regions, the excess electron 

concentration equals the excess hole concentration: 

∆𝑛 = ∆𝑝.             (2.1.2.3) 

The assumption of electrical neutrality is useful in the analysis of the properties of 

certain regions in various semiconductor devices. One example is the bulk 

absorber of a typical pn junction silicon solar cell. However, the assumption of 

electrical neutrality is often not exact such that the term “quasi neutrality” is used 

instead of the term “electrical neutrality”.  

The assumption of quasi neutrality allows the description of the carrier 

concentrations in a semiconductor by considering only one charge carrier: the 

concentration of the other charge carrier is determined by the concentration of the 

first charge carrier and the condition of quasi neutrality (i.e. the assumption that 

∆𝑛 approximately equals ∆𝑝). As a result, the behavior of only one charge carrier 

type must be considered in the analysis of electrically neutral semiconductor 
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regions, which greatly simplifies the mathematical treatment of the quasi neutral 

semiconductor region. 

In particular, the quasi neutrality concept allows an elegant analysis of the flow of 

electrons and holes in a semiconductor through the concept of the ambipolar 

diffusion coefficient, as discussed for example in [Baliga 2008]. The ambipolar 

diffusion coefficient is discussed in the next paragraphs. 

In order to preserve quasi neutrality over time, the quasi neutrality concept 

requires that at any position in a quasi neutral semiconductor region, the electron 

flux equals the hole flux such that the electron current density exactly cancels the 

hole current density: 

𝐽𝑝 + 𝐽𝑛 = 0.       (2.1.2.4) 

The electron and hole current densities are given by: 

𝐽𝑛 = 𝑞𝜇𝑛𝑛𝐸 + 𝑞𝐷𝑛∇𝑛; and      (2.1.2.5) 

𝐽𝑝 = 𝑞𝜇𝑝𝑝𝐸 − 𝑞𝐷𝑝∇𝑝;      (2.1.2.6) 

in which 𝐽𝑛 is the electron current density, 𝑞 is elementary charge, 𝜇𝑒 is electron 

mobility, 𝑛 is electron concentration, 𝐸 is electric field, 𝐷𝑛 is electron diffusion 

constant, 𝐽𝑝 is hole current density, 𝜇𝑝 is hole mobility, 𝑝 is hole concentration, and 

𝐷𝑝 is hole diffusion coefficient. In a uniformly doped semiconductor, spatial 

variations in electron and hole concentrations can only occur through spatial 

variations in the excess carrier density. By Equation 2.1.2.3, the excess carrier 

densities are equal in quasi neutral semiconductor regions, and therefore, the 

electron and hole concentration gradients are equal as well. Taking this into 

account and combining Equations 2.1.2.4 to 2.1.2.6 yields:  

𝐸 =
𝐷𝑝−𝐷𝑛

𝜇𝑛𝑛+𝜇𝑝𝑝
∇𝑝,       (2.1.2.7) 

which provides an expression for the electrical field in the quasi neutral region as 

a function of the hole concentration gradient, which equals the excess carrier 

concentration gradient. 

Substitution of Equation 2.1.2.7 in Equation 2.1.2.6 yields: 

𝐽𝑝 = −𝑞 (
(𝑛+𝑝)𝐷𝑛𝐷𝑝

𝐷𝑛𝑛+𝐷𝑝𝑝
) ∇𝑝,      (2.1.2.8) 

which has the form of a hole diffusion current. The quantity within brackets is the 

ambipolar diffusion coefficient 𝐷𝑎 for quasi neutral regions in a semiconductor: 

𝐷𝑎 =
(𝑛+𝑝)𝐷𝑛𝐷𝑝

𝐷𝑛𝑛+𝐷𝑝𝑝
.       (2.1.2.9) 

The ambipolar diffusion coefficient 𝐷𝑎 is a modified diffusion coefficient which 

takes interactions between electrons and holes in quasi neutral regions into 
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account. It is a function of the electron and hole concentrations. For an n-type 

semiconductor in low injection (𝑝 ≪ 𝑁𝐷 ≈ 𝑛): 

 𝐷𝑎 ≈ 𝐷𝑝.        (2.1.2.10) 

Similarly, for a p-type semiconductor in low injection, (𝑛 ≪ 𝑁𝐴 ≈ 𝑝): 

𝐷𝑎 ≈ 𝐷𝑛.       (2.1.2.11) 

Therefore, the ambipolar diffusion coefficient equals the minority carrier diffusion 

coefficient in the low injection limit. Throughout the remainder of this dissertation, 

we assume that the low injection limit is valid for the purpose of determining 

diffusion coefficients in quasi neutral regions. The reason for this is pragmatic: 

using the ambipolar diffusion coefficient instead would introduce injection level 

dependence in the diffusion coefficient, which would make the transport equations 

used herein more difficult to solve.  

We now analyze the worst-case error which is introduced in the diffusion 

coefficient for holes in n-type quasi neutral regions. We assume that the hole 

diffusion coefficient of silicon is 12 𝑐𝑚2 𝑠⁄  and that the electron diffusion coefficient 

of silicon is 36 𝑐𝑚2 𝑠⁄ .  In that case, the low injection limit (𝑛 ≫ 𝑝) of the ambipolar 

coefficient is the hole diffusion coefficient, 12 𝑐𝑚2 𝑠⁄ . The high injection limit (𝑛 ≈

𝑝) of the ambipolar diffusion coefficient is 18 𝑐𝑚2 𝑠⁄ ; resulting in an error of 50% if 

the low injection value of the ambipolar diffusion coefficient is used in the high 

injection limit instead of the actual value of the ambipolar diffusion coefficient. 

 

Quasi Fermi level splitting 

Quasi Fermi level splitting is an alternative way to describe departure from 

equilibrium in semiconductors. When excess carriers are generated, the electron 

and hole distributions are no longer in thermal equilibrium with one another. 

However, it is assumed that the electron and hole distributions are in thermal 

equilibrium with themselves, separately. Therefore, the electron energy 

distribution is a Fermi-Dirac distribution described by an “electron quasi Fermi 

level” and the hole energy distribution is described by a separate Fermi-Dirac 

distribution, with its own “hole quasi Fermi level”. Analogous to the equilibrium 

case, the Fermi-Dirac distributions reduce to Maxwell-Boltzmann distributions for 

low doping levels and low excess carrier densities: 

𝑛 = 𝑁𝐶𝑒𝑥𝑝((𝐸𝐹𝑛 − 𝐸𝐶)/𝑘𝑇),               (2.1.2.12) 

𝑝 = 𝑁𝑉𝑒𝑥𝑝 ((𝐸𝑉 − 𝐸𝐹𝑝)/𝑘𝑇),         (2.1.2.13) 

in which 𝐸𝐹𝑛 is the electron quasi Fermi level, and 𝐸𝐹𝑝 is the hole quasi Fermi level. 

The difference between the electron and hole quasi Fermi level, also known as 
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the quasi Fermi level splitting 𝑉, is a measure of the amount by which a 

semiconductor is out of equilibrium, similar to the excess carrier density. 

Combination of Equations 2.1.1.8, 2.1.2.1, 2.1.2.2, 2.1.2.12, and 2.1.2.13 yields 

the following relation between excess carrier density ∆𝑝 and quasi Fermi level 

splitting 𝑉: 

𝑛𝑝 = ∆𝑝(𝑁𝐷 + ∆𝑝) = 𝑛𝑖
2𝑒𝑥𝑝(𝑞𝑉/𝑘𝑇),        (2.1.2.14) 

in which 𝑉 = (𝐸𝐹𝑛 − 𝐸𝐹𝑝)/𝑞, with 𝑞 elementary charge.  

 

Generation, recombination and current 

In uniform semiconductors out of equilibrium, and in the absence of electric fields, 

the electron and hole concentrations are determined by a balance between 

generation and recombination processes, analogous to the equilibrium case. For 

non-uniform semiconductors, so-called “diffusion currents” flow which tend to even 

out any non-uniformities in the carrier profile. In addition, in the presence of electric 

fields, the electric field induces currents to flow as well. Electrical current flow 

under influence of electric fields is referred to as “drift current”. In this subsection, 

we focus on holes in an n-type semiconductor, but an analogous derivation holds 

for electrons in a p-type semiconductor. 

Consider an elementary volume of semiconductor in Cartesian coordinates. A two 

dimensional analogue is shown in Figure 2.1.2.1 for the purpose of defining the 

symbols used. 

 

Figure 2.1.2.1. Two dimensional representation of an elementary semiconductor 
volume (i.e. one spatial dimension is suppressed). 

A mass balance for holes in a small semiconductor volume yields: 
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𝑞𝐺∆𝑥∆𝑦∆𝑧 − 𝑞𝑅∆𝑥∆𝑦∆𝑧 − ∆𝐽𝑥∆𝑦∆𝑧 − ∆𝐽𝑦∆𝑥∆𝑧 − ∆𝐽𝑧∆𝑥∆𝑦 = 𝑞
∆𝑝

∆𝑡
∆𝑥∆𝑦∆𝑧,        

      

(2.1.2.15) 

in which ∆𝐽𝑥 = 𝐽𝑥,𝑛+1 − 𝐽𝑥,𝑛, ∆𝑥 = 𝑥𝑛+1 − 𝑥𝑛. ∆𝐽𝑦, ∆𝐽𝑧, ∆𝑦 and ∆𝑧 are defined 

analogously. The semiconductor volume is small in the sense that current 

densities 𝐽𝑥, 𝐽𝑦 and 𝐽𝑧 do not vary significantly in the plane perpendicular to the 

direction of current flow, for the volume under consideration. In addition, for 

Equation 2.1.2.15 to hold, the volume under consideration must be sufficiently 

small such that the generation rate 𝐺 and the recombination rate 𝑅 do not vary 

appreciably over the volume. 

Division of Equation 2.1.2.15 by the small volume element ∆𝑥∆𝑦∆𝑧 yields: 

𝑞𝐺 − 𝑞𝑅 −
∆𝐽𝑥

∆𝑥
−

∆𝐽𝑦

∆𝑦
−

∆𝐽𝑧

∆𝑧
= 𝑞

∆𝑝

∆𝑡
.         (2.1.2.16) 

Taking the limit of Equation 2.1.2.16 for infinitesimally small distances and times, 

the  fractions of finite differences in Equation 2.1.2.16 become partial derivatives: 

𝑞𝐺 − 𝑞𝑅 −
𝛿𝐽𝑥

𝛿𝑥
−

𝛿𝐽𝑦

𝛿𝑦
−

𝛿𝐽𝑧

𝛿𝑧
= 𝑞

𝛿𝑝

𝛿𝑡
.         (2.1.2.17) 

Using the del symbol ∇ to denote a gradient, Equation 2.1.2.17 can be written in 

a condensed form: 

𝑞𝐺 − 𝑞𝑅 − ∇Jp = 𝑞
𝛿𝑝

𝛿𝑡
,          (2.1.2.19) 

in which Jp, the hole current density  is the vector quantity (𝐽𝑥 , 𝐽𝑦, 𝐽𝑧). 

The hole current density J𝑝 has two components: the diffusion current which tends 

to annihilate carrier profile inhomogeneity, and the drift current in which carriers 

move under influence of an electric field. The total current is given by the sum of 

the two: 

Jp = qμp𝑝𝐸 − qμp
𝑘𝑇

𝑞
∇p,          (2.1.2.20) 

in which μp is hole mobility, and 𝐸 is the electric field. The first term in Equation 

2.1.2.20 is the drift current and the second term in Equation 2.1.2.20 is the 

diffusion current. The recombination rate in Equation 2.1.2.19 is commonly 

expressed by means of the excess carrier density ∆𝑝 and the bulk lifetime 𝜏𝑏: 

𝑅 =
∆𝑝

𝜏𝑏
.            (2.1.2.21) 

Substitution of Equations 2.1.2.20 and 2.1.2.21 in Equation 2.1.2.19 yields: 

𝐺 −
∆𝑝

𝜏𝑏
− ∇ [μp𝑝𝐸 − μp

𝑘𝑇

𝑞
∇p] =

𝛿𝑝

𝛿𝑡
.         (2.1.2.22) 
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The assumption of constant mobility, quasi neutrality, low injection, and the 

identification of the bulk diffusion length as 𝐿𝐷 = √𝜏𝑏𝐷𝑝, with 𝐷𝑝 = μp 𝑘𝑇 𝑞⁄ , yields: 

𝜏𝑏𝐺 − ∆𝑝 − 𝐿𝐷
2 ∇2p = 𝜏𝑏

𝛿𝑝

𝛿𝑡
.          (2.1.2.23) 

Throughout this dissertation, the steady-state form of this equation will be 

commonly used to analyze the behavior of charge carriers in quasi neutral regions. 

Surface recombination 

Semiconductor surfaces act as catalysts for carrier recombination in 

semiconductors. The simplest description of surface recombination currents 𝐽𝑅 

makes use of an effective surface recombination velocity 𝑆𝑒𝑓𝑓: 

𝐽𝑅 = 𝑞𝑆𝑒𝑓𝑓(𝑝 − 𝑝0).          (2.1.2.24) 

At any boundary of a semiconductor volume, current continuity, the assumption of 

only a diffusion current flowing to the surface and the description of surface 

recombination using an effective surface recombination velocity 𝑆𝑒𝑓𝑓 yields the 

following well-known boundary condition for Equation 2.1.2.23: 

𝐷𝑝∇𝑝 ∙ �⃗� = 𝑆𝑒𝑓𝑓(𝑝 − 𝑝0) = 𝐽𝑅 𝑞⁄ ,         (2.1.2.25) 

in which �⃗�  is an outward pointing unit vector perpendicular to the surface, 𝐽𝑅 is the 

surface recombination current, and “∙” denotes the dot product. Equation 2.1.2.25 

is the statement that the diffusion current flowing towards a semiconductor surface 

equals the recombination current at that surface. In one dimension, Equation 

2.1.2.25 becomes: 

𝐷𝑝
d𝑝

𝑑𝑥
= ±𝑆𝑒𝑓𝑓(𝑝 − 𝑝0),          (2.1.2.26) 

in which the sign is determined by the relative orientation of semiconductor and 

surface in a particular coordinate system. 

Junction recombination 

Consider recombination currents in p-n or high-low junctions shielding minority 

carriers in the semiconductor bulk, for example emitters and back surface fields, 

from recombining surfaces. These recombination currents are generally lumped 

together with recombination currents at the respective surfaces. Such lumped 

recombination currents are often expressed by means of saturation current 

densities 𝐽0 instead of by effective surface recombination velocities 𝑆𝑒𝑓𝑓 (Equation 

2.1.2.25): 

𝐽𝑅 = 𝐽0𝑒𝑥𝑝 (
𝑞𝑉

𝑚𝑘𝑇
),           (2.1.2.27) 

in which 𝐽𝑅 is the surface recombination density, 𝐽0 is the saturation current 

density, 𝑞 is elementary charge, 𝑉 is quasi Fermi level splitting, 𝑘 is Boltzmann’s 

constant, 𝑇 is absolute temperature, and 𝑚 is the ideality factor. In this work, we 
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will be mostly dealing with junctions for which the recombination current has unit 

ideality factor at the relevant injection levels such that: 

𝐽𝑅 = 𝐽0𝑒𝑥𝑝 (
𝑞𝑉

𝑘𝑇
).           (2.1.2.28) 

Using the relation between the p-n product and quasi Fermi level splitting, 

Equation 2.1.2.14, the junction recombination current according to Equation 

2.1.2.28 can be expressed in terms of the excess carrier density: 

𝐽𝑅 = 𝐽0
∆𝑝(𝑁𝐷+∆𝑝)

𝑛𝑖
2 .           (2.1.2.29) 

Note that the excess carrier density in Equation 2.1.2.29 is the excess carrier 

density at the bulk side of the space charge region between the semiconductor 

bulk and the highly doped region under consideration.  

The saturation current density 𝐽0 is a central concept throughout this dissertation. 

The next section is dedicated to providing the interested reader with a means to 

obtain an intuitive understanding of this quantity. 
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2.1.3. Saturation current density J0  

 

In order to gain some physical understanding of the saturation current density 𝐽0, 

we consider a uniformly doped n+ silicon back surface field (BSF) on an n-type 

wafer that shields minority carriers (holes) from a recombining surface with 

effective surface recombination velocity 𝑆𝑊. 

Other cases are readily found by analogy. With respect to the analogy, the bulk 

doping type is immaterial (i.e. it does not influence the resulting equations for 𝐽0). 

When recombination in a p+ region instead of an n+ region is considered, the 

following substitutions are made: the hole diffusion coefficient 𝐷𝑝 is substituted for 

by the electron diffusion coefficient 𝐷𝑛, the hole diffusion length 𝐿𝑝 is substituted 

for by the electron diffusion length 𝐿𝑛, and the donor concentration 𝑁𝐷 is 

substituted for by the acceptor concentration 𝑁𝐴. 

The minority carrier concentration in the n+ BSF under consideration is 

schematically depicted in Figure 2.1.3.1 as a function of position 𝑥. In the present 

example d∆p 𝑑𝑥⁄ = dp 𝑑𝑥⁄  as ∆p = p − p0 and p0 is a constant because 𝑁𝐷 is a 

constant. 

 

Figure 2.1.3.1. Schematic representation of the excess minority carrier (hole) 
concentration in an n+ BSF in a silicon solar cell. The same picture applies for other 
quasi neutral regions in which minority carriers are injected at one surface (here x=0) 
and where minority carriers recombine at another surface (here x=W).  

Intuitively, Figure 2.1.3.1 should be read as follows: the excess minority carrier 

(hole) concentration ∆p at the edge of a space charge region 𝑥 = 0 is determined 

by the equilibrium minority carrier concentration 𝑝0 at that position and by the quasi 

Fermi level splitting 𝑉 at that position. When the only source of minority carriers in 

the BSF is minority carrier injection at 𝑥 = 0 (i.e. there is negligible minority carrier 
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generation in the BSF region), the total recombination current density in the BSF, 

𝐽𝑅 = 𝐽0𝑒𝑥𝑝(𝑞𝑉 𝑘𝑇⁄ ), is equal to 𝐽𝑝(0), 𝐽𝑝(0) being the hole current density at 𝑥 = 0. 

𝐽𝑝(0) is determined by the hole diffusion coefficient 𝐷𝑝 and by the hole excess 

carrier density gradient d∆p 𝑑𝑥⁄  at 𝑥 = 0.  

The excess carrier density gradient is the mathematical description of how the 

excess carrier density changes with position. In general, the local change of 

𝑑∆𝑝 𝑑𝑥⁄  (i.e. the second derivative of ∆𝑝 with respect to position) is determined by 

the local balance between generation and recombination currents, and by the local 

transport properties (i.e. 𝐷𝑝). In the present example, generation currents are of 

no importance because for highly doped regions (such as a BSF or emitter) on the 

back side of typical wafer-based silicon solar cells, most light is absorbed near the 

front surface (Refer to section 1.4, Figure 1.4.2). Therefore, the local change in 

d∆p 𝑑𝑥⁄  is only determined by local transport and recombination processes. The 

occurrence of bulk recombination currents in the present example explains why 

the absolute value of d∆p 𝑑𝑥⁄  decreases with increasing position: as minority 

carriers recombine, fewer minority carriers are available to contribute to the 

diffusion current density, such that the diffusion current density decreases with 

increasing position. The diffusion current density is proportional to d∆p 𝑑𝑥⁄  such 

that decreasing diffusion current densities with position correspond to decreasing 

|d∆p 𝑑𝑥⁄ |, in which | | denotes the absolute value of the quantity within vertical 

lines.  

Despite the bulk recombination, some minority carriers injected at 𝑥 = 0 still reach 

the junction’s surface at 𝑥 = 𝑊. This surface features a certain number of surface 

states where recombination may occur. The resulting surface recombination 

current density is expressed as the product of the elementary charge 𝑞, an 

effective surface recombination velocity 𝑆𝑊, and the excess carrier density ∆𝑝. A 

basic mass balance requires that the diffusion current density flowing towards the 

surface equals the recombination current density at that surface. Therefore, the 

effective surface recombination velocity 𝑆𝑊 determines the slope of ∆𝑝 at 𝑥 = 𝑊, 

and indirectly the slope of ∆𝑝 at 𝑥 = 0. Therefore, 𝑆𝑊 indirectly determines 𝐽0. 

However, this is only the case when 𝑊𝐵𝑆𝐹 𝐿𝑝⁄  is not much bigger than one, 

because in the latter case all minority carriers recombine before they reach the 

back surface and as a result, the properties of the back surface do not have any 

influence on 𝐽0 in this case. 

Mathematically, 𝐽0 can be found as follows: solve Equation 2.1.2.14 for the steady 

state case (solar cells are devices which operate in steady state), i.e. 𝛿∆𝑝 𝛿𝑡⁄ = 0,  

with boundary conditions ∆p(0) = p0 exp(𝑞𝑉 𝑘𝑇⁄ ) and 𝑆𝑊∆p(𝑊) =

−𝐷𝑝 𝑑∆𝑝 𝑑𝑥⁄ (𝑊). Then use the obtained minority carrier profile to obtain 𝐽0 from: 
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𝐽𝑅 = 𝐽0𝑒𝑥𝑝 (
𝑞𝑉

𝑘𝑇
) = −𝑞𝐷𝑝

𝑑∆𝑝

𝑑𝑥
(0).          (2.1.3.1) 

For the present example, this yields for the saturation current density 𝐽0 [Verlinden 

2010]:  

𝐽0 =
𝑞𝐷𝑝𝑛𝑖

2

𝐿𝑝𝑁𝐷,𝐵𝑆𝐹
[

𝑆𝑊𝐿𝑝

𝐷𝑝
+𝑡𝑎𝑛ℎ(

𝑊𝐵𝑆𝐹
𝐿𝑝

)

1+
𝑆𝑊𝐿𝑝

𝐷𝑝
tanh(

𝑊𝐵𝑆𝐹
𝐿𝑝

)
],          (2.1.3.2) 

in which 𝑞 is elementary charge, 𝐷𝑝 is the hole diffusion coefficient in the uniformly 

doped BSF, 𝑛𝑖 is the intrinsic carrier concentration, 𝐿𝑝 is the hole diffusion length 

in the BSF, 𝑁𝐷,𝐵𝑆𝐹 is the dopant concentration in the BSF, and 𝑊𝐵𝑆𝐹 is the BSF 

thickness. 

Equation 2.1.3.2 is a function of the ratio 𝑊𝐵𝑆𝐹 𝐿𝐷⁄  and it has two interesting limits. 

The first limit is for 𝑊𝐵𝑆𝐹 𝐿𝐷⁄ ≫ 1. In this case, the factor between brackets is equal 

to one, and Equation 2.1.3.2 becomes: 

lim
𝑊𝐵𝑆𝐹 𝐿𝐷⁄ ≫1

𝐽0 =
𝑞𝐷𝑝𝑛𝑖

2

𝐿𝑝𝑁𝐷,𝐵𝑆𝐹
.           (2.1.3.3) 

Equation 2.1.3.3 corresponds to the case of an electrically opaque junction; 

minority carriers injected at the space charge region at 𝑥 = 0 (see Figure 2.1.3.1) 

recombine before reaching the recombining surface at 𝑥 = 𝑊 such that the 

effective surface recombination velocity 𝑆𝑊 does not influence 𝐽0.  

The other limit of Equation 2.1.3.2 is for 𝑊𝐵𝑆𝐹 𝐿𝐷⁄ ≪ 1. In this case, the factor 

between brackets is equal to 𝑆𝑊𝐿𝑝 𝐷𝑝⁄ , and Equation 2.1.3.2 becomes: 

 lim
𝑊𝐵𝑆𝐹 𝐿𝐷⁄ ≪1

𝐽0 =
𝑞𝑛𝑖

2𝑆𝑊

𝑁𝐷,𝐵𝑆𝐹
.            (2.1.3.4) 

Equation 2.1.3.4 corresponds to the case of an electrically transparent junction; 

minority carriers injected at the space charge region at 𝑥 = 0 (see Figure 2.1.3.1) 

do not recombine before reaching the recombining surface at 𝑥 = 𝑊 such that the 

bulk diffusion length or the bulk diffusion coefficient do not influence 𝐽0. The doping 

level 𝑁𝐷,𝐵𝑆𝐹 does influence 𝐽0 because by combination of Equation 2.1.2.28 and 

Equation 2.1.2.29, the excess carrier density is inversely proportional to the 

doping level for a given amount of quasi Fermi level splitting (this is true for 

moderate doping levels, i.e. as long as 𝑛𝑖 does not increase due to effective 

bandgap narrowing). The smaller the effective carrier density for a given amount 

of quasi Fermi level splitting, the smaller the recombination current for a given 

amount of quasi Fermi level splitting and the smaller 𝐽0. 

Figure 2.1.3.2 is an elegant representation of Equation 2.1.3.2, which has been 

adapted from [Verlinden 2010]. It is a plot of a first dimensionless number, 𝐽0 ∙

[(𝐿𝑝𝑁𝐷,𝐵𝑆𝐹) 𝑞𝐷𝑝𝑛𝑖
2⁄ ], as a function of a second dimensionless number, 𝑊𝐵𝑆𝐹 𝐿𝑝⁄ , 
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for various values of a third dimensionless number, [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄ . In essence, the 

picture is an elegant representation of how 𝐽0 changes as a function of the most 

relevant parameters. 𝐽0 ∙ [(𝐿𝑝𝑁𝐷,𝐵𝑆𝐹) 𝑞𝐷𝑝𝑛𝑖
2⁄ ] is a measure of 𝐽0, 𝑊𝐵𝑆𝐹 𝐿𝑝⁄  is a 

measure of the electrical opacity of the junction, and [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  is a measure of 

the magnitude of surface recombination with respect to bulk recombination. 

𝑊𝐵𝑆𝐹 𝐿𝑝⁄  and [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  are discussed in detail in the next paragraphs. 

𝑊𝐵𝑆𝐹 𝐿𝑝⁄  is a measure of the extent to which minority carriers at 𝑥 = 0 are shielded 

from the surface at 𝑥 = 𝑊𝐵𝑆𝐹. 𝑊𝐵𝑆𝐹 𝐿𝑝⁄  is the ratio of two characteristic lengths: 

𝑊𝐵𝑆𝐹 is the characteristic length of the spatial extension of the region under 

consideration and 𝐿𝑝 is the characteristic length over which minority carriers travel 

before they recombine. The higher the 𝑊𝐵𝑆𝐹 𝐿𝑝⁄  ratio, the more minority carriers 

recombine before they reach the surface. Therefore, surface recombination 

contributes less to 𝐽0 for higher 𝑊𝐵𝑆𝐹 𝐿𝑝⁄  ratios. In other words, electrical opacity 

explains why 𝐽0 ∙ [(𝐿𝑝𝑁𝐷,𝐵𝑆𝐹) 𝑞𝐷𝑝𝑛𝑖
2⁄ ] does no depend on [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  for high 

𝑊𝐵𝑆𝐹 𝐿𝑝⁄  ratios. Conversely, electrical transparency explains why 

[(𝐿𝑝𝑁𝐷,𝐵𝑆𝐹) 𝑞𝐷𝑝𝑛𝑖
2⁄ ] is strongly dependent on [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  for low 𝑊𝐵𝑆𝐹 𝐿𝑝⁄  ratios. 

 

Figure 2.1.3.2. Intuitive representation of the saturation current density of a quasi 
neutral region, for example a BSF or emitter region, in a silicon solar cell; adapted from 

[Verlinden 2010]. 𝐽0 ∙ [(𝐿𝑝𝑁𝐷,𝐵𝑆𝐹) 𝑞𝐷𝑝𝑛𝑖
2⁄ ] is plotted as a function of 𝑊𝐵𝑆𝐹 𝐿𝑝⁄ , for 

various values of [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄ . The number above each curves indicates the 

[𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  value corresponding to that particular curve. 
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The last dimensional number, [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄ , is a measure of the magnitude of the 

effective surface recombination velocity 𝑆𝑊, normalized to a measure for the 

importance of bulk recombination and the ease at which minority carriers traverse 

through the bulk: 𝐿𝑝/𝐷𝑝. In essence, [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  is a figure of merit that 

determines whether or not it is useful to shield minority carriers from a recombining 

surface using a particular junction. When [𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  is larger than one, surface 

recombination currents dominate 𝐽0 and as a result, 𝐽0 can be reduced by further 

shielding minority carriers from the surface by making the junction thicker; i.e. 𝐽0 

decreases with increasing 𝑊𝐵𝑆𝐹 𝐿𝑝⁄  in this case. On the other hand when 

[𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  is smaller than one, bulk recombination currents are dominating and 

𝐽0 can be reduced by reducing the junction’s thickness. The peculiar case of 

[𝑆𝑊𝐿𝑝] [𝐷𝑝]⁄  being equal to one corresponds to the case when 𝐽0 is independent 

of 𝑊𝐵𝑆𝐹 𝐿𝑝⁄ . 

Apart from the dimensionless numbers, also the pre-factor 𝑞𝐷𝑝𝑛𝑖
2 𝐿𝑝𝑁𝐷,𝐵𝑆𝐹⁄  on the 

right-hand side of Equation 2.1.3.2 influences 𝐽0. Naively, one could think that 𝐽0 

could be made arbitrarily small by increasing the doping level 𝑁𝐷,𝐵𝑆𝐹 to an 

arbitrarily high value. Unfortunately the hole diffusion length 𝐿𝑝 and especially the 

intrinsic concentration 𝑛𝑖 are adversely affected as 𝑁𝐷,𝐵𝑆𝐹 becomes large. In 

particular, 𝐿𝑝 decreases due to increased Auger recombination, which increases 

proportional to 𝑁𝐷,𝐵𝑆𝐹
2  in the highly doped BSF. Also, 𝑛𝑖 increases dramatically at 

high doping levels due to effective bandgap narrowing, which is for example 

discussed in [Lanyon 1979, Slotboom 1976]. 

As a result of these various competing factors, 𝐽0 is a complex function of the 

junction shape, surface concentration, and surface passivation. In the context of 

planning experiments in the field of contacted or passivated diffused junctions, the 

𝐽0 contours in [King 1990] can be used as a guidance. 
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2.2. QSSPC measurements 

 

In quasi steady state photoconductance (QSSPC) measurements [Sinton 1996], 

the photoconductance of a wafer is measured using inductive coupling between a 

coil and the wafer. From the difference between conductance measurements in 

the dark and under illumination, the wafer’s photoconductance is obtained. During 

a photoconductance measurement under illumination, light intensity is measured 

using a photodiode. Using a calibration factor, the photoconductance is translated 

into the photoconductivity, and using the electron and hole mobility, the 

photoconductivity is translated into the excess carrier concentration. Also, light 

intensity is translated into a generation rate using optical modeling. The generation 

rate and excess carrier concentration are used to define an effective lifetime, 

which is a figure of merit for minority carrier recombination.  

In this chapter, we discuss the basics of QSSPC measurements. Selected main 

features of a QSSPC lifetime tester are schematically drawn in Figure 2.2.1. 

 

Figure 2.2.1. Schematic representation of selected main features of a QSSPC lifetime 
tester. 
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A QSSPC lifetime tester comprises a measurement chuck housing an RF-coil 

which is inductively coupled to the sample under test. The coil induces eddy 

currents in the sample under test, and the resulting Ohmic losses result in a 

measurable signal from which the conductance of the sample under test is 

obtained. More specifically, typical operating frequencies are in the range of 10s 

of MHz: operating frequencies of 8 to 10 MHz are reported in [Sinton 1996b], 

operating frequencies of 11 MHz are reported in [King 1990], and operating 

frequencies of 25 MHz are reported in [Fischer 2003]. In the present dissertation, 

an operating frequency of 11 MHz is taken as a typical operating frequency for the 

purpose of qualitative reasoning. In [Sinton 1996b], the coil is described as being 

in a bridge (presumably a Wheatstone Bridge). The electrical circuitry which 

comprises the coil yields a signal which is proportional to the conductance of the 

sample under test [King 1990]. Therefore, with an appropriate calibration factor, 

the RF-coil can be used to probe the conductance of a sample under test which is 

put on the measurement chuck. By measuring a sample’s conductance under 

illumination and in the dark, the sample’s photo conductance is obtained. Sample 

illumination is generally done using a flashlight. High-powered LEDs that emit light 

in the infrared range, for example light with a wavelength of 875 nm, can be used 

as an alternative for the flashlight [Fischer 2003, p. 56]. The light intensity is 

measured concurrently using a reference photodiode. Optionally, an infrared filter 

can be used to filter out short wavelength light from the flashlight’s spectrum. 

Infrared light is only weakly absorbed in silicon such that the use of infrared light 

for carrier excitation ensures a uniform generation rate.  

A uniform generation rate is often desirable in QSSPC measurements because a 

uniform generation rate helps to obtain uniform excess carrier densities 

throughout the wafer’s quasi neutral bulk. Uniform excess carrier densities 

throughout the quasi neutral bulk make the measurement interpretation easier. 

This can be intuitively understood from the fact that only in the case of uniform 

excess carrier densities, the measured injection level equals the injection level. In 

addition, the various recombination current components are strongly injection level 

dependent such that the occurrence of injection level inhomogeneity complicates 

the measurement interpretation. As a result, uniform bulk injection levels are highly 

desirable.  

In the remainder of this section, we explore the physics of photoconductance-

based effective lifetime measurements in detail. First, we discuss the physics of 

photoconductance measurements per se. Then, we consider the transfer of light 

and dark conductance to photoconductance in detail. We proceed to discuss the 

concept of “effective lifetime”. Finally, we discuss how the effective lifetime is 

extracted from photoconductance measurements. 
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2.2.1. Conductance measurements 

 

In a QSSPC measurement, the photoconductance is obtained through a sequence 

of two conductance measurements. First, the conductance under dark conditions 

𝑆0 is measured, and subsequently the conductance under uniform illumination 𝑆𝐿 

is measured. From the difference between light and dark conductance, the 

measured photoconductivity is calculated. Then, the average injection level is 

calculated from the average photoconductivity. By concurrently measuring the 

generation rate using a reference photodiode, the effective lifetime is obtained. 

These different steps are now considered one-by-one. 

Consider a wafer’s conductivity 𝜎. It is related to the excess carrier density as: 

𝜎 = 𝑞(𝜇𝑒𝑛 + 𝜇𝑝𝑝),            (2.2.1.1) 

in which 𝑞 is elementary charge, 𝜇𝑒 is electron mobility, 𝑛 is electron concentration, 

𝜇𝑝 is hole mobility, and 𝑝 is hole concentration. 

For the sake of clearness, we mention that the derivations in this section should 

not be confused with the discussion of quasi neutrality in section 2.1.2. In this 

section, we treat current flow under the influence of externally applied electric 

fields. Conversely, in our treatment of quasi neutrality in section 2.1.2, we discuss 

the effect of interactions between electrons and holes on diffusion currents in 

“quasi neutral regions”. The only electric field considered in section 2.1.2 is the 

electric field that arises from interactions between electrons and holes in quasi 

neutral regions. 

A blanket wafer has uniform properties throughout the wafer plane, but its 

properties may vary in the direction perpendicular to the wafer plane. The position 

in the wafer is described by an associated Cartesian coordinate system. The x-

axis is aligned with the direction perpendicular to the wafer plane and 

perpendicular in-plane directions are aligned with the y- and z- axis. The wafer 

and the associated coordinate system are shown in Figure 2.2.1.1. 
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Figure 2.2.1.1. A silicon wafer piece with lateral dimensions ∆𝑦 and ∆𝑧, subdivided in 

thin wafer slices parallel to the wafer plane with thickness ∆𝑥. 

We now consider the conductance of a thin wafer slice parallel to the wafer plane, 

with in-plane dimensions ∆𝑦 and ∆𝑧 in the y and z directions respectively, and with 

thickness ∆𝑥. Its conductance in the y-and z-directions is: 

∆𝑆𝑦 = 𝜎
∆𝑥∆𝑧

∆𝑦
, ∆𝑆𝑧 = 𝜎

∆𝑥∆𝑦

∆𝑧
           (2.2.1.2) 

with ∆𝑆𝑦 and ∆𝑆𝑧 the slap’s conductance in the y- and z- directions, respectively. 

From now, we focus solely on the conductance in the y-direction, with the 

conductance in the z direction found by interchange of the y and z labels. In fact, 

by rotational symmetry in the wafer plane, the exact choice of coordinate axis is 

arbitrary for a blanket structure and the y-axis can denote any direction in the wafer 

plane.  

Now consider an in-plane conductance measurement on a wafer, and assume 

that the measurement is set-up such that current transport perpendicular to the 

wafer plane is of no importance for the conductance measurement. This is the 

case in a QSSPC measurement, in which the eddy currents used to probe the 

wafer’s conductance in the wafer plane. 

A wafer piece can be thought of as consisting of a stack of many thin slices, which 

all contribute in parallel to the wafer’s in-plane conductance. When the 

conductance of all thin wafer slices spanning the wafer’s thickness is summed, an 

approximation for the wafer piece’s in-plane conductance is obtained: 

𝑆𝑦 = ∑ 𝜎𝑖
∆𝑧

∆𝑦
∆𝑥𝑖𝑖 ,             (2.2.1.3) 

in which 𝑆𝑦 is the wafer’s conductance in the y-direction, i is an index that 

distinguishes different wafer slices, ∆𝑥𝑖 is the thickness of the ith wafer slice, and 

𝜎𝑖 is the conductivity in the middle of the ith wafer slice. Equation 2.2.1.3 is a 
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Riemann sum. In the limit of infinitesimal ∆𝑥𝑖, it becomes an integral for wafer’s 

the in-plane conductance: 

𝑆𝑦 = ∫ 𝜎
∆𝑧

∆𝑦𝑊
𝑑𝑥,             (2.2.1.4) 

with W wafer thickness. Because ∆𝑦 and ∆𝑧 are constants, they can be moved out 

of the integral: 

𝑆𝑦 =
∆𝑧

∆𝑦
∫ 𝜎
𝑊

𝑑𝑥.             (2.2.1.5) 

From the mean value theorem of integral calculus, there exists a number 𝜎𝑎 such 

that: 

∫ 𝜎
𝑊

𝑑𝑥 = 𝑊𝜎𝑎,             (2.2.1.6) 

in which 𝜎𝑎 is the mean value of 𝜎 over the wafer thickness 𝑊. From inspection of 

Equations 2.2.1.5 and 2.2.1.6, a measurement of a wafer’s in-plane conductance 

is equivalent to a measurement of the average conductivity over the wafer’s 

thickness 𝜎𝑎. 

2.2.2. Photoconductivity 

 

Now consider a wafer which is illuminated with sufficiently energetic light such that 

excess minority carriers are generated, i.e. there is a non-zero excess carrier 

density. The electron and hole concentrations can be written as the sum of two 

components: their equilibrium concentration and an excess carrier density: 

𝜎 = 𝜎0 + ∆𝜎 = 𝑞(𝜇𝑒𝑛0 + 𝜇𝑝𝑝0) +  𝑞(𝜇𝑒∆𝑛 + 𝜇𝑝∆𝑝),         (2.2.2.1) 

in which 𝜎0 is the dark conductivity, ∆𝜎 is photoconductivity, 𝑛0 is the equilibrium 

electron concentration, 𝑝0 is the equilibrium hole concentration, ∆𝑛 is the excess 

electron concentration, and ∆𝑝 is the excess hole concentration. Combining 

Equations 2.2.1.6 and 2.2.2.1 yields: 

𝜎𝑎 =
1

𝑊
∫ 𝜎0𝑑𝑥
𝑊

+ 
1

𝑊
∫ 𝑞(𝜇𝑒∆𝑛 + 𝜇𝑝∆𝑝)𝑑𝑥
𝑊

,          (2.2.2.2) 

or: 

∆𝜎𝑎 =
1

𝑊
∫ 𝑞(𝜇𝑒∆𝑛 + 𝜇𝑝∆𝑝)𝑑𝑥
𝑊

.           (2.2.2.3) 

That is: 

∆𝜎𝑎 = 𝜎𝑎 −
1

𝑊
∫ 𝜎0𝑊

𝑑𝑥.                         (2.2.2.4) 

Applying the mean value theorem of integral calculus to Equation 2.2.2.3, ∆𝜎𝑎 can 

be interpreted as the mean value of ∆𝜎 over the wafer thickness. 
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2.2.3. Excess carrier density 

 

The integral in Equation 2.2.2.3 runs over the wafer’s thickness. For a typical 

photoconductance measurement on a blanket test wafer, three regions can be 

typically discerned in the wafer: quasi neutral bulk, diffused regions, and 

intermediary regions in which band bending occurs. This is the structure we will 

be considering in this section and we will show that only the quasi neutral bulk 

contributes to photoconductance. Other cases (e.g. a uniform wafer with no 

diffused regions) are readily found by analogy. 

To discuss why only the quasi neutral bulk has a contribution to 

photoconductance, we focus on n-type samples with p+ diffusions on both sides. 

For simplicity, we assume constant quasi Fermi level splitting, quasi neutrality 

(∆𝑛 = ∆𝑝) and we assume that in all quasi neutral regions, the injection level is 

much higher than the respective equilibrium minority carrier concentrations. 

For constant quasi Fermi level splitting across the space charge region between 

emitter and bulk, the following equality holds: 

∆𝑝𝑏𝑢𝑙𝑘(𝑁𝐷,𝑏𝑢𝑙𝑘 + ∆𝑝𝑏𝑢𝑙𝑘) = ∆𝑝𝑒𝑚𝑖𝑡𝑡𝑒𝑟(𝑁𝐴,𝑒𝑚𝑖𝑡𝑡𝑒𝑟 + ∆𝑝𝑒𝑚𝑖𝑡𝑡𝑒𝑟),        (2.2.3.1) 

in which the subscripts “bulk” and “emitter” denote the quantities at the bulk and 

emitter side of the space charge region between bulk and emitter, respectively; 𝑁𝐷 

is the donor concentration in the bulk and 𝑁𝐴 is the acceptor concentration in the 

emitter. Typically, the doping level in diffused regions is several orders of 

magnitude higher than the doping level in the quasi neutral bulk, such that 

Equation 2.2.3.1 requires 𝑁𝐴,𝑒𝑚𝑖𝑡𝑡𝑒𝑟 ≫ ∆𝑝𝑒𝑚𝑖𝑡𝑡𝑒𝑟 . Reordering then yields: 

∆𝑝𝑒𝑚𝑖𝑡𝑡𝑒𝑟 = ∆𝑝𝑏𝑢𝑙𝑘
𝑁𝐷,𝑏𝑢𝑙𝑘+∆𝑝𝑏𝑢𝑙𝑘

𝑁𝐴,𝑒𝑚𝑖𝑡𝑡𝑒𝑟
.           (2.2.3.2) 

Therefore, ∆𝑝𝑒𝑚𝑖𝑡𝑡𝑒𝑟  is orders of magnitude smaller than ∆𝑝𝑏𝑢𝑙𝑘, as long as 

∆𝑝𝑏𝑢𝑙𝑘 ≪ 𝑁𝐴,𝑒𝑚𝑖𝑡𝑡𝑒𝑟, which is definitely the case in the relevant injection level range 

for common terrestrial silicon solar cells operating at 1 sun illumination. Because 

of this, and because the emitter is much thinner than the quasi neutral bulk region 

in a silicon solar cell (e.g. 1 µm versus 150µm), the emitter’s photoconductance is 

negligible compared to the bulk photoconductance. Also, since the space charge 

regions are less than 1 micrometer wide for typical solar wafers, and since the 

excess carrier concentration in the space charge region is definitely not bigger 

than in the quasi neutral bulk, the photoconductance of space charge regions is 

negligible compared to the bulk photoconductance. In addition, because space 

charge region thickness and the thickness of diffused regions are much smaller 

than wafer thickness, the quasi neutral region thickness is approximately equal to 

the wafer thickness. Therefore, Equation 2.2.2.3 can be written as: 
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∆𝜎𝑎 =
1

𝑊𝑏
∫ 𝑞(𝜇𝑒∆𝑛𝑏 + 𝜇𝑝∆𝑝𝑏)𝑑𝑥
𝑊𝑏

 ,          (2.2.3.3) 

in which the subscript “𝑏” denotes the respective quantity in the quasi neutral bulk. 

From now on, we omit the subscript b for ease of notation. 

In the quasi neutral wafer bulk, ∆𝑛 ≈ ∆𝑝. As such, and approximating 𝜇𝑒 and 𝜇𝑝 

as constants, Equation 2.2.3.3 becomes: 

∆𝜎𝑎 = 𝑞(𝜇𝑒 + 𝜇𝑝)
1

𝑊
∫ ∆𝑝𝑑𝑥
𝑊

.           (2.2.3.4) 

Note that the subscript “b” has been omitted. Using the mean value theorem of 

integral calculus, there exists a value ∆𝑝𝑎 such that: 

∆𝑝𝑎 =
1

𝑊
∫ ∆𝑝𝑑𝑥
𝑊

,            (2.2.3.5) 

with ∆𝑝𝑎 the mean value of ∆𝑝 over the quasi neutral region thickness 𝑊. 

Combining Equations 2.2.3.4 and 2.2.3.5 yields: 

∆𝜎𝑎 = 𝑞(𝜇𝑒 + 𝜇𝑝)∆𝑝𝑎.                         (2.2.3.6) 

Therefore, the measured injection level in a QSSPC measurement is the average 

injection level in the quasi neutral bulk. 

Note that we have made a number of assumptions regarding the structure of the 

device under test which are valid for the structures investigated in the present 

dissertation. For more exotic test structures, more arcane contributions to 

photoconductance might be important. Examples of such rather arcane 

contributions to photoconductance are for example volume trapping, 

photoconductance from p-n junctions, and photoconductance from charged 

surfaces, as discussed for example in [Fischer 2003, p. 64-66]. 

2.2.4. Effective lifetime  

 

Consider an n-type silicon wafer during a steady state measurement of the in-

plane photoconductance. A wafer piece is depicted in Figure 2.2.4.1. It spans the 

entire wafer thickness and distances ∆x and ∆y in the in-plane x and y directions, 

respectively. One in-plane dimension is suppressed in Figure 2.2.4.1. 

We focus on the behavior of minority carriers (holes) in the quasi neutral bulk and 

assume that the majority carrier concentration is determined by the minority carrier 

concentration and the requirement of quasi neutrality. An approximate mass 

balance yields the following approximate equation: 

𝑞 ∫ 𝐺
𝑊

𝑑𝑧∆𝑥∆𝑦 − 𝑞 ∫ 𝑅𝐵𝑊
𝑑𝑧∆𝑥∆𝑦 + ∫ 𝐽𝑥𝑊

𝑑𝑧∆𝑦 − ∫ 𝐽𝑥+𝑑𝑥𝑊
𝑑𝑧∆𝑦  
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+∫ 𝐽𝑦𝑊
𝑑𝑧∆𝑥 − ∫ 𝐽𝑦+𝑑𝑦𝑊

𝑑𝑧∆𝑥 − 𝐽𝑆,1∆𝑥∆𝑦 − 𝐽𝑆,2∆𝑥∆𝑦 = 𝑞 ∫
𝛿𝑝

𝛿𝑡𝑊
𝑑𝑧∆𝑥∆𝑦, 

              (2.2.4.1) 

in which 𝑞 is elementary charge, 𝐺 is the volumetric generation rate, 𝑅𝐵 is the bulk 

recombination rate, 𝑊 is cell thickness, 𝑑𝑥 is an elementary distance in the wafer 

plane, 𝑑𝑦 is an elementary distance in the wafer plane in a direction perpendicular 

to 𝑥, 𝐽𝑥 is the net current density flowing into the wafer region of size 𝑑𝑥 on the left 

side of the respective region (low 𝑥), 𝐽𝑥+𝑑𝑥 is the net current flowing out of on the 

right side of the respective region (high 𝑥), 𝐽𝑆,1 is the recombination current density 

at the top wafer surface, 𝐽𝑆,2 is the recombination current density at the lower wafer 

surface, 𝑝 is the minority carrier concentration, and 𝑡 is time. 𝐽𝑦 and 𝐽𝑦+𝑑𝑦 are 

defined analogously to 𝐽𝑥 and 𝐽𝑥+𝑑𝑥, respectively. 

 

Figure 2.2.4.1. Volume element in a silicon wafer spanning the entire thickness of its 
quasi neutral bulk. Its dimensions in the x and y directions are ∆𝑥 and ∆𝑦, respectively. 
One dimension (the y-direction out of the picture’s plane) is suppressed. 

Equation 2.2.4.1 is approximate in the sense that ∫
𝛿𝑝

𝛿𝑡𝑊
𝑑𝑧, ∫ 𝐺

𝑊
𝑑𝑧, ∫ 𝑅𝐵𝑊

𝑑𝑧, 𝐽𝑆,1, 

and 𝐽𝑆,2 are approximated as constants over the area ∆𝑥∆𝑦. Equation 2.2.4.1 is 

also approximate in the sense that ∫ 𝐽𝑥𝑊
𝑑𝑧 and  ∫ 𝐽𝑥+𝑑𝑥𝑊

𝑑𝑧 are assumed to be 

constant over the interval ∆𝑦, and that ∫ 𝐽𝑦𝑊
𝑑𝑧 and ∫ 𝐽𝑦+𝑑𝑦𝑊

𝑑𝑧 are assumed to be 

constant over the interval ∆𝑥. 

We now use the mean value theorem of integral calculus to replace all integrals 

by their average values over 𝑊. The subscript “a” is used to denote an average 

quantity over 𝑊: 

𝑞𝐺𝑎𝑊∆𝑥∆𝑦 − 𝑞𝑅𝑎,𝐵𝑊∆𝑥∆𝑦 + 𝐽𝑎,𝑥𝑊∆𝑦 − 𝐽𝑎,𝑥+𝑑𝑥𝑊∆𝑦  
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+𝐽𝑎,𝑦𝑊∆𝑥 − 𝐽𝑎,𝑦+𝑑𝑦𝑊∆𝑥 − 𝐽𝑆,1∆𝑥∆𝑦 − 𝐽𝑆,2∆𝑥∆𝑦 = 𝑞
𝛿𝑝𝑎

𝛿𝑡
𝑊∆𝑥∆𝑦.       (2.2.4.2) 

Division of Equation 2.2.4.2 by 𝑊∆𝑥∆𝑦 yields: 

𝑞𝐺𝑎 − 𝑞𝑅𝑎,𝐵 −
∆𝐽𝑎,𝑥

∆𝑥
−

∆𝐽𝑎,𝑦

∆𝑦
−

𝐽𝑆,1+𝐽𝑆,2

𝑊
= 𝑞

𝛿𝑝𝑎

𝛿𝑡
,           (2.2.4.3) 

in which 𝑅𝑎,𝐵 is the average bulk recombination rate and in which we used the 

following notation: ∆𝐽𝑎,𝑥 = 𝐽𝑎,𝑥+𝑑𝑥 − 𝐽𝑎,𝑥, and ∆𝐽𝑎,𝑦 = 𝐽𝑎,𝑦+𝑑𝑦 − 𝐽𝑎,𝑦. Now take the 

limit for ∆𝑥 and ∆𝑦 going to zero such that the finite differences in Equation 2.2.4.3 

become differentials, and the expression becomes exact rather than approximate: 

𝑞𝐺𝑎 − 𝑞𝑅𝑎,𝐵 −
𝛿𝐽𝑎,𝑥

𝛿𝑥
−

𝛿𝐽𝑎,𝑦

𝛿𝑦
−

𝐽𝑆,1+𝐽𝑆,2

𝑊
= 𝑞

𝛿𝑝𝑎

𝛿𝑡
.          (2.2.4.4) 

By Equation 2.2.4.4, 𝑅𝑎,𝐵 can be expressed in terms of the excess carrier 

concentration and bulk lifetime: 

𝑅𝑎,𝐵 =
1

𝑤
∫

∆𝑝

𝜏𝑏𝑊
𝑑𝑧 = [

∆𝑝

𝜏𝑏
]
𝑎

≈
∆𝑝𝑎

𝜏𝑏
,           (2.2.4.5) 

in which the last equality holds true when 𝜏𝑏 is constant over the thickness of the 

wafer’s quasi neutral bulk. 

With Equation 2.2.4.5, and when we write the surface recombination currents in 

terms of the excess carrier concentration and effective surface recombination 

velocities at the surfaces, Equation 2.2.4.4 can be written as: 

𝑞𝐺𝑎 −
𝛿𝐽𝑎,𝑥

𝛿𝑥
−

𝛿𝐽𝑎,𝑦

𝛿𝑦
− 𝑞

∆𝑝𝑎

𝜏𝑏
− 𝑞

𝑆1∆𝑝1+𝑆2∆𝑝2

𝑊
= 𝑞

𝛿𝑝𝑎

𝛿𝑡
,         (2.2.4.6) 

in which 𝑆1 and 𝑆2 are the effective surface recombination velocities of surfaces 1 

and 2, respectively, and ∆𝑝1 and ∆𝑝2 are excess carrier concentrations at surfaces 

1 and 2, respectively. 

We now introduce the effective lifetime 𝜏𝑒𝑓𝑓: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏
+

𝑆1
∆𝑝1
∆𝑝𝑎

+𝑆2
∆𝑝2
∆𝑝𝑎

𝑊
,             (2.2.4.7) 

and introduce the notation: 

∇𝐽𝑎 =
𝛿𝐽𝑎,𝑥

𝛿𝑥
+

𝛿𝐽𝑎,𝑦

𝛿𝑦
.                          (2.2.4.8) 

Equation 2.2.4.6 then becomes:      

𝑞𝐺𝑎 − ∇𝐽𝑎 − 𝑞
∆𝑝𝑎

𝜏𝑒𝑓𝑓
= 𝑞

𝛿𝑝𝑎

𝛿𝑡
,            (2.2.4.9) 

which has the same form as Equation 2.1.2.19, with ∆𝑝𝑎𝜏𝑒𝑓𝑓
−1  identified as the 

recombination rate. The only differences are the suppression of one spatial 

dimension, bulk lifetime is substituted by effective lifetime and local quantities are 

substituted by average quantities over the wafer thickness. In the next section, the 



50 

 

extraction of effective lifetimes 𝜏𝑒𝑓𝑓 from photoconductance measurements is 

discussed in detail. 

  



51 

 

2.2.5. Effective lifetime measurements. 

 
By reordering the different terms, Equation 2.2.4.9 can be rewritten as: 

𝑞
𝛿𝑝𝑎

𝛿𝑡
= −∇𝐽𝑎 + 𝑞 [𝐺𝑎 −

∆𝑝𝑎

𝜏𝑒𝑓𝑓
].           (2.2.5.1) 

We assume that ∇𝐽𝑎 is negligible compared to the net recombination term. The 

assumption of negligible ∇𝐽𝑎 is met when electric fields are slowly varying or zero 

and when minority carrier concentrations vary linearly or are constant in space.  

The requirement of slowly varying or zero electric fields holds true because it 

follows from the assumption of quasi neutrality which implies very small electric 

fields in the semiconductor bulk. The diffusion current is zero in the wafer plane 

since the average carrier concentration is constant in a blanket test structure due 

to translational symmetry. Also, the electric field used in a radio-wave detected 

photoconductance measurement to probe the wafer is the only electric field 

present in the wafer’s quasi neutral bulk during the measurement. This electric 

field oscillates with a frequency of around 11 MHz [King 1990], that is the timescale 

in which the field oscillates is about 0.1 𝜇𝑠. The timescales of QSSPC 

measurements are much larger than this very short timescale. Therefore, the 

effect of this field is found from its average value over the timescale of a QSSPC 

measurement, which is zero. 

For negligible ∇𝐽𝑎, and using that the time-rate of change of the minority carrier 

concentration equals the time-rate of change of the excess minority carrier density, 

Equation 2.2.5.1 becomes: 

 
1

𝜏𝑒𝑓𝑓
=

𝐺𝑎

∆𝑝𝑎
−

1

Δ𝑝𝑎

𝛿∆𝑝𝑎

𝛿𝑡
.            (2.2.5.2) 

Note that by Equation 2.2.4.7, 𝜏𝑒𝑓𝑓 is a parameter which describes all 

recombination processes in the wafer. Depending on the time rate of change of 

the excess minority carrier density compared to the generation rate, 

photoconductance measurements fall in different categories. First, when 𝜏𝑒𝑓𝑓 is 

much longer than the characteristic decay time of the generation term, the 

photoconductance measurement is said to be done in transient mode. Second, 

when the characteristic decay time of the generation term is much longer than 

minority carrier lifetime, the photoconductance measurement is done in (quasi) 

steady state mode (QSSPC). Finally, in the in-between case, the 

photoconductance measurement is said to be done in the generalized mode. 

We proceed to summarize how effective lifetimes are extracted from 

photoconductance measurements in different cases. In this dissertation, the focus 

lies on steady state photoconductance measurements (QSSPC), but for the merit 
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of completeness, we shortly discuss the transient and generalized case [Nagel 

1999] as well. 

Transient measurements 

When the generation term decays much faster than the characteristic time in which 

minority carrier concentration changes, the generation term is zero during the 

effective lifetime measurement such that only the second term on the right hand 

side of Equation 2.2.5.2 is important such that: 

𝜏𝑒𝑓𝑓 = −Δ𝑝𝑎 [
𝛿∆𝑝𝑎

𝛿𝑡
]
−1

.            (2.2.5.3) 

The effective lifetime obtained from transient photoconductance measurements is 

discussed in more detail in [Fischer 2003, p. 59]. 

Steady state measurements (QSSPC) 

In a steady state photoconductance measurements, changes in excess minority 

carrier density are assumed to occur in much faster time scales than changes in 

the generation term. Therefore, the first term on the right hand side of Equation 

2.2.5.2 is dominating in the steady state regime: 

𝜏𝑒𝑓𝑓 =
∆𝑝𝑎

𝐺
.             (2.2.5.4) 

Generalized measurements 
Generalized effective lifetimes are found directly from Equation 2.2.5.2, i.e. no 

assumption is made about the timescale of the effective generation rate and the 

transient excess carrier concentration: 

1

𝜏𝑒𝑓𝑓
=

𝐺

∆𝑝𝑎
−

1

Δ𝑝𝑎

𝛿∆𝑝𝑎

𝛿𝑡
.            (2.2.5.5) 

In the present dissertation, we focus on steady state measurements (QSSPC).  
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2.3. Minority carrier concentration over wafer thickness 

 

In section 2.2, we showed that the measured minority carrier concentration in a 

photoconductance measurement on a blanket test structure is the average 

minority carrier concentration over the wafer thickness. In this section, we derive 

the minority carrier variations over the thickness of the quasi neutral bulk in a 

planar test structure. The derivation is done for a constant generation rate, and 

bulk lifetime is assumed to be constant with injection level. The boundary 

conditions are written in terms of effective surface recombination velocities. 

Minority carrier concentrations in a wafer’s quasi neutral bulk under illumination 

are found from Equation 2.1.2.14; which we repeat here for the steady-state case: 

−𝐷𝑝∇
2𝑝 + 𝐺 − 𝑅 = 0,                (2.3.1) 

in which 𝐷𝑝 = 𝜇𝑝 𝑘𝑇 𝑞⁄ . We describe bulk recombination with an effective lifetime 

𝜏𝑏, we identify the minority carrier diffusion length 𝐿𝐷 = √𝐷𝑝𝜏𝑏, and we use that in 

a planar test structure, translational symmetry causes the minority carrier 

concentration to change in only one dimension (i.e. perpendicular to the wafer 

plane). This yields: 

−𝐿𝐷
2 d2𝑝

𝑑𝑥2 − 𝑝 + 𝑝0 + 𝜏𝑏𝐺 = 0.              (2.3.2) 

Solutions of this equation are of the form: 

𝑝 = 𝐶1𝑠𝑖𝑛ℎ (
𝑥

𝐿𝐷
) + 𝐶2𝑐𝑜𝑠ℎ (

𝑥

𝐿𝐷
) + 𝑝0 + 𝜏𝐺,             (2.3.3) 

in which 𝐶1 and 𝐶2 are constants which are found by taking the boundary 

conditions for Equation 2.3.2 into consideration. We define the x-coordinate to 

have its origin at the front surface, and to have the value 𝑊 at the back surface, 

with 𝑊 wafer thickness.  

As 𝑥 can take on values from 0 to 𝑊, Equation 2.3.3. is a constant in the limit of 

𝐿𝐷 ≫ 𝑊 (for 𝐿𝐷 ≫ 𝑊, the argument of the 𝑠𝑖𝑛ℎ and 𝑐𝑜𝑠ℎ terms is zero, and 

sinh(0) = 0 and cosh(0) = 1). However, as we shall see in a moment, very large 

surface recombination currents can cause significant excess carrier density 

variations, even when the bulk diffusion length is much bigger than wafer 

thickness. The influence of surface recombination currents manifests itself through 

the prefactors 𝐶1 and 𝐶2 and is incorporated via appropriate boundary conditions. 

In the chosen coordinate system, the boundary conditions are: 

𝑆1[𝑝 − 𝑝0]𝑥=0 = 𝐷𝑝 [
𝑑𝑝

𝑑𝑥
]
𝑥=0

,              (2.3.4) 

𝑆2[𝑝 − 𝑝0]𝑥=𝑊 = −𝐷𝑝 [
𝑑𝑝

𝑑𝑥
]
𝑥=𝑊

,              (2.3.5) 
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in which 𝑆1 and 𝑆2 are effective surface recombination velocities at the front and 

back surfaces, respectively. With these boundary conditions, the constants in the 

solution of Equation 2.3.2 are found to be: 

𝐶1 = 𝜏𝐺𝑆1
𝐿𝐷

𝐷𝑝
 [1 −

𝑆2+𝑆1 cosh(
𝑊

𝐿𝐷
)+𝑆1𝑆2

𝐿𝐷
𝐷𝑝

sinh (
𝑊

𝐿𝐷
)

(𝑆1+𝑆2) cosh(
𝑊

𝐿𝐷
)+(

𝐷𝑝

𝐿𝐷
+𝑆1𝑆2

𝐿𝐷
𝐷𝑝

) sinh(
𝑊

𝐿𝐷
)
],            (2.3.6) 

𝐶2 = −𝜏𝐺
𝑆2+𝑆1 cosh(

𝑊

𝐿𝐷
)+𝑆1𝑆2

𝐿𝐷
𝐷𝑝

sinh (
𝑊

𝐿𝐷
)

(𝑆1+𝑆2) cosh(
𝑊

𝐿𝐷
)+(

𝐷𝑝

𝐿𝐷
+𝑆1𝑆2

𝐿𝐷
𝐷𝑝

) sinh(
𝑊

𝐿𝐷
)
.             (2.3.7) 

When 𝑆1 = 𝑆2, the boundary value problem ‘Equation 2.3.2, 2.3.4, 2.3.5’ is 

symmetric around the center of the wafer. Therefore, the solution of the boundary 

value problem, Equation 2.3.3, is mirror symmetric around the center of the wafer 

as well. This case is shown in Figure 2.3.1. 

 

Figure 2.3.1. Normalized minority carrier concentration as a function of position (in the 
direction perpendicular to the wafer plane), for a wafer thickness of 150 µm, and for 
symmetric structures; i.e. structures in which 𝑆1 = 𝑆2. The value of 𝑆1 and 𝑆2 used in 
each simulation is indicated above each curve. 

In Figure 2.3.2, we show the normalized minority carrier concentration as a 

function of position (in the direction perpendicular to the wafer plane), for 

asymmetric structures; i.e. for structures in which 𝑆1 = 0 and for which 𝑆2 has the 

value indicated next to each curve. Note that in the case shown in Figure 2.3.2, 

there is no symmetry associated with the minority carrier concentration profile. 

By comparison of figures 2.3.1 and 2.3.2, the minority carrier concentration is less 

constant in the asymmetric case compared to the symmetric case. Otherwise 

stated: the normalized minority carrier concentration is lower near the recombining 
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surface in the asymmetric compared to the symmetric case. This observation is 

the underlying reason for a well-known mantra in the field of QSSPC 

measurements: symmetric test structures are preferable over asymmetric test 

structures because the minority carrier concentration is more constant for 

symmetric test structures. 

 

Figure 2.3.2. Normalized minority carrier concentration as a function of position (in the 

direction perpendicular to the wafer plane), for asymmetric structures in which 𝑆1 = 0 

and 𝑆2 has the value indicated next to each curve. 

Figures 2.3.1 and 2.3.2 are plots of Equation 2.3.3 with 𝐶1 and 𝐶2 given by 

Equations 2.3.6 and 2.3.7, respectively. In the simulations, the following 

parameters were used: 𝑊 = 150 𝜇𝑚, 𝐺 = 1.67 ∙ 1019𝑐𝑚−3 (ca. 1 sun), 𝐷𝑝 =

12𝑐𝑚2 ∙ 𝑠−1, 𝑝0 = 9.4 ∙ 104𝑐𝑚−3, 𝐿𝐷 = 1000 𝜇𝑚. 𝑆1 and 𝑆2 were equal for the 

simulations shown in Figure 2.3.1 and are shown next to each curve. In Figure 

2.3.2, 𝑆1 = 0 and 𝑆2 was varied, wich each value of 𝑆2 shown next to the 

corresponding curve.  

Note that in all simulations, the bulk diffusion length LD was kept constant and was 

always much larger than the wafer thickness LD; 𝐿𝐷 = 1000 μm and 𝑊 = 150 μm, 

respectively. As we will show in sections 3.5 and 3.6, significant excess carrier 

variations throughout the wafer’s quasi neutral bulk have detrimental effects on 

contact recombination current measurements done using the test structure 

developed in the present dissertation, and should therefore be avoided. 

In conclusion, the minority carrier concentration can vary appreciably over the 

wafer thickness, even when the bulk diffusion length is much larger than the wafer 
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thickness. However, for LD ≫ 𝑊 and 𝑆 ≈ 0, the minority carrier concentration is 

approximately constant over a wafer’s thickness. 
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3. Contact recombination current 
measurements 

 

In this chapter’s first section, an overview is given of contemporary methods for 

contact recombination current measurements, and it is argued why the 

development of a novel method for contact recombination current measurements 

is desirable. This novel method for contact recombination current measurements 

is subsequently described in detail. We cover the basic physics that underlies the 

method and we discuss design rules, error analysis, parasitic effects, and 

experimental results. The focus is on test structures based on lattices of point 

contacts on otherwise passivated wafers. Such a lattice of point contacts is shown 

in Figure 3.1. At the end of this chapter, alternative test structure embodiments 

are described. 

 

Figure 3.1. Simple square lattice of point contacts on an otherwise passivated wafer. 

Our test structure is based on photoconductance measurements on different 

areas with different contact fractions. Each area is a simple square lattice of point 

contacts on an otherwise passivated wafer (figure 3.1.). In order to perform 

accurate contact recombination current measurements using our test structure, a 

number of design rules must be followed. These design rules, summarized in 

Table 3.1, are formulated to ensure the elimination of two types of parasitic effects. 

The first parasitic effect type is related to current flow through the point contacts 

instead of through the semiconductor, and causes underestimations of contact 

saturation current densities. It is discussed in section 3.4. The transfer length – 

contact diameter ratio, 𝐿𝑇 𝑑𝑚⁄ , is the primary figure of merit that determines 

whether parasitic current flow through point contacts affects the contact 
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recombination current measurement. When 𝐿𝑇 is much bigger than 𝑑𝑚, current 

does not flow through the point contacts and the parasitic effect is avoided. 

 
Table 3.1. Summary of design rules for contact recombination current measurement 
test structures. 

The second type of parasitic effect is related to injection level variations, and is 

discussed in sections 3.5 and 3.6.  

Injection level variations in the wafer plane are discussed in section 3.5 and a 

distinction can be made between in-plane injection level variations in contacted 

areas and in-plane injection level variations in passivated areas. In-plane injection 

level variations in passivated areas can be avoided by making the characteristic 

size of passivated areas, 𝑑𝑝, much smaller than the effective diffusion length in 

passivated areas, 𝐿𝑝. Similarly, in-plane injection level variations in contacted 

areas can be avoided by making the characteristic size of contacted areas, 𝑑𝑚, 

much smaller than the effective diffusion length of contacted areas, 𝐿𝑚.  

Out-of plane injection level variations are discussed in section 3.6 in the context 

of our test structure. In addition, they have been discussed in section 2.3 in a 

general context. In order to avoid out-of-plane injection level variations, two 

conditions have to be met. First, the bulk diffusion length 𝐿𝐷 must be much bigger 

than the wafer thickness 𝑊. Second, effective surface recombination velocities 

must be small.  

In sections 3.7 to 3.9, we provide additional guidance for the design of 

photoconductance-based test structures for contact recombination 

measurements. 
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In section 3.7, we discuss the importance of using the correct doping level when 

using our test structure to extract contact saturation current densities, especially 

when the arbitrary injection level technique (Equation 3.2.2.7) is used. 

In section 3.8, we discuss the effect of non-unit ideality factors on extracted 

saturation current densities. This includes a proposed method for fitting the 

extracted contact recombination current using a two-diode model. 

In section 3.9, we discuss the effect of using incorrect contact fractions on 

extracted saturation current densities, with a focus on errors in the point contact 

diameter, which was particularly difficult to control in the lithography-defined test 

structures used in the present dissertation. 

In section 3.10, we discuss alternative test structure embodiments. In some 

experimental settings, the use of point contact lattice- based test structures may 

be inconvenient or downright unfeasible. Therefore, we discuss the design of test 

structures featuring line-shaped or circle-shaped contacts. The use of these test 

structures in practice would require the development of new tools though, and is 

therefore beyond the scope of the present dissertation. 
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3.1. Methods for the characterization of contact 

recombination currents1 

 

There exists a variety of methods for the extraction of contact recombination 

currents. Their merits and flaws are shortly discussed in this section.  

One well-known method for contact saturation current density 𝐽0,𝑚𝑒𝑡 

measurements is based on short circuit current-open circuit voltage or suns-𝑉𝑜𝑐 

data for solar cells, in which contact fractions of emitter or back surface fields are 

varied [Fellmeth 2011]. As this is a device-level measurement, a positive result 

has the advantage of being the ultimate proof that a contact passivation scheme 

is successful at reducing the contact recombination current in the finished device. 

However, the 𝐽0,𝑚𝑒𝑡 measurement is only possible after all cell process steps are 

complete, which makes it the most laborious measurement technique. In addition, 

care must be taken to ensure that the contact recombination current of interest is 

limiting the open circuit voltage in the device structure under test. If the contact 

recombination current of interest does not limit the open circuit voltage, no 

detection of contact passivation can be expected. Finally, saturation current 

densities extracted from current-voltage characteristics are highly temperature 

dependent (see section 3.2.4, intrinsic concentration), such that excellent 

temperature control is required during the measurement. 

Photoluminescence based techniques have the advantage of spatial resolution 

and allow for effective lifetime measurements on unfinished devices. However, 

extraction of injection levels at which lifetimes are measured is convoluted using 

photoluminescence data alone. This issue has been circumvented by using 

QSSPC calibrated photoluminescence measurements, including the use of both 

low- and high-pass filters in front of the detector [Mueller 2012]. However, this 

technique is limited to the characterization of contacts on thick wafers. For thin 

wafers, elimination of parasitic effects due to back reflection with a short pass filter 

would involve cutting off the entire band-to-band photoluminescence peak in 

silicon. In the context of 𝐽0 measurements, the use of thin wafers is desirable since 

the bigger the bulk minority carrier diffusion length to wafer thickness ratio, the 

more constant the minority carrier concentration is over the wafer thickness. Non-

constant injection levels over the wafer thickness result in errors in the 𝐽0 

measurement. More specifically, 𝐽0 will be underestimated (see section 3.6 for a 

discussion on this subject in the context of the test structure developed in the 

present dissertation). Such errors may be overcome through the use of numerical 

                                                 
1 This section is adapted from [Deckers 2013] 
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modelling techniques, for example similar to those described in [Fell 2013b]; in 

which numerical modelling using the Quokka device simulator was used to 

enhance the accuracy of contact recombination currents extracted from 

photoluminescence measurements. Analogous methods could also be applied to 

the characterization method proposed in the present dissertation. 

Photoconductance measurements allow for effective lifetime extraction at specific 

injection levels. For photoconductance measurements to be feasible, special care 

must be taken to prevent wafer conductivity to be dominated by the metal layer, 

as has successfully been done in the past for microwave-detected and inductively 

detected photoconductance measurements on wafers covered by a ca. 1 nm thick 

aluminum layer [Cuevas 1996]. A disadvantage of the use of very thin metal layers 

is that many metallization techniques do not allow for the deposition of such thin 

metal layers, and the contact surface recombination characteristics may well 

depend on the contacting method. In addition, unless specific precautions are 

taken, such thin aluminum layers could be fully oxidized before measurements are 

done since aluminum is well known to react fast with oxygen in ambient air to form 

aluminum oxide.  

Microwave detected photoconductance decay measurements (𝜇W-PCD) have 

also been used by Plagwitz et al. for the characterization of contact recombination 

currents [Plagwitz 2006]. In 𝜇W-PCD measurements, minority carrier properties 

are extracted from the reflected microwave power form a sample under test. The 

test structure used in [Plagwitz 2006] is reminiscent to the test structure proposed 

in this dissertation. The test structure is based on a silicon wafer which is 

passivated by a 50 nm aSi:H passivation layer on both wafer sides. On one side 

of the wafer features circular aluminum contacts (unknown thickness) with 

diameters between 120 and 920 𝜇𝑚. After a three hour anneal at 210℃, the 

amorphous silicon under the aluminum contacts is dissolved in the aluminum, 

while the amorphous silicon in the passivated contacts is not affected. During the 

microwave detected photoconductance measurement, the test structure is 

illuminated on the non-contacted side. However, the interpretation of microwave 

detected photoconductance decay measurements is convoluted, as eloquently put 

by B. Fisher: “Interpretation of the measured decay time constants as effective 

lifetimes is not straightforward. Microwave reflectance is not linear in wafer 

conductance and is sensitive to the geometrical arrangement of sample, 

microwave antennae and metallic 'short circuit' behind the wafer. The sensitivity 

even changes sign and must be optimised by adjusting the rear short circuit or the 

microwave frequency for each sample.  In addition, according to [Schöfthaler 

1995], the measurement interpretation is further complicated by the measured 

reflected microwave power decay only mirroring the minority carrier decay in low 
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injection, for homogeneous carrier generation, and for an appropriately positioned 

detector. 

An alternative to photoconductance on test structures that comprise metal layers 

is to avoid the use of a metal layer during photoconductance measurements, and 

to assume that the surface recombination velocity at the silicon-air interface equals 

the surface recombination rate at the silicon-metal interface. Unfortunately, this 

approach is not applicable for the investigation of passivated contacts, e.g. MIS 

(metal-insulator-semiconductor) contacts, in which interactions between the 

insulator and metal layer are essential to take into account, see for example 

[Manole 2005]. In addition, taking recombination currents at the semiconductor-

air interface as a proxy for semiconductor-metal recombination currents is 

oblivious to the fact that different contacts lead to different band bending and 

surface states at the metal-semiconductor interface, which may significantly affect 

contact recombination currents. 

Although the aforementioned methods certainly have their merits, and have 

contributed to the understanding of contact recombination currents, their flaws are 

sufficiently significant to motivate the investigation of a novel characterization 

method for contact recombination currents. The main subject of this dissertation 

is the development of such a method. 
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3.2. 𝐽0,𝑚𝑒𝑡 test structures: Fundamentals 

We developed a test structure that allows for effective lifetime measurements as 

a function of contact fraction using photo conductance measurements [Deckers 

2013, Deckers 2013b]. Under relatively high injection conditions, saturation 

current densities of metallized junctions can be extracted from the slope of the 

saturation current density as a function the contact fraction. At arbitrary injection 

levels, the difference between the saturation current density at metallized 

junctions and the saturation current density at passivated junctions is extracted 

from the slope of inverse effective lifetime versus contact fraction. If bulk 

recombination is negligible compared to junction recombination, saturation current 

densities at the Si-metal and at the passivated silicon surface can be 

independently determined for arbitrary injection levels. 

3.2.1. Test structure lay-out 

 

Our test structure is a two-side passivated wafer which is divided in numerous 

areas with different contact fractions. Each area comprises circular metal point 

contacts arranged in a simple square lattice. A top view and cross section of a part 

of our test structure is schematically depicted in Figure 3.2.1.1.  

 

Figure 3.2.1.1. Our test structure for contact recombination current measurements, 
adapted from [Deckers 2013]. a) top view. b) cross section along one of the [10] 
directions. 

A top view optical micrograph of one of the point contact lattices in our test 

structure is shown in Figure 3.2.1.2. Two approximately concentric circles are 
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observed in the point contacts. The inner circles are the contact openings in the 

oxide passivation layer. The outer circles are defined by the edge of the metal 

layers that cover the contact openings. 

 

Figure 3.2.1.2. Optical micrograph of a part of one of the point contact lattices in our 
test structure. 

A picture of a finished test structure in a sample box is shown in Figure 3.2.1.3. 

The test structure consists of nine 4 cm by 4 cm simple square point contact 

lattices with different contact fractions between 0 and 20%. For the test structures 

we manufactured, contact openings have a diameter of approximately 15 𝜇𝑚 and 

the pitch is typically in the order of 30 − 120 𝜇𝑚. The as-designed dimensions of 

the test structure used in the experiments shown in the present dissertation are 

summarized in Table 3.2.1.2. 

 

𝐶𝑚𝑒𝑡 [%] 0 1,25 2,5 5 7,5 10 12,5 15 17 

𝑆 [𝜇𝑚]  - 118,9 84,1 59,4 48,5 42 37,6 34,3 32,2 
Table 3.2.1.2. Design parameters of the test structure used in the experiments shown 
in the present dissertation. The inter-contact point distance (pitch) is shown as a 

function of contact fraction. The contact hole diameter is 15 𝜇𝑚 for all contact fractions. 

East test structure area with a given contact fraction can contain up to millions of 

very small, closely packed point contacts. Because the point contacts are very 

small and very closely packed, they are not visible by the naked eye. With the 

naked eye, lattices of point contacts look like the uniformly colored areas in Figure 

3.2.1.3. In Figure 3.2.1.3, the lighter and darker areas correspond to areas with 

higher and lower contact fractions, respectively. The test structure shown in Figure 

3.2.1.3 is designed such that different squares with different contact fractions are 

scattered across the wafer. This is done to avoid measurement artifacts related to 
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bulk lifetime variations across the wafer. Such lifetime variations could cause 

errors in extracted contact recombination currents if areas with similar contact 

fractions would be grouped together.  

As stated before, our test structure is based on effective lifetime measurements 

on different wafer areas with different contact fractions. The effective lifetime 

measurements are performed with the QSSPC technique which is explained in 

section 2.2. 

For the specific test structures used in the present dissertation, each wafer area 

on which a QSSPC measurement is done consists of a simple square lattice of 

point contacts on an otherwise passivated wafer. In addition, the specific test 

structure used in the present dissertation is contacted on one side only. In each 

area with a given contact fraction, two distinct regions can be discerned. The first 

region consists of passivated patches. The passivated patches in our test 

structure are for example passivated on both sides with a thermal SiO2 layer. The 

second region consists of metallized patches. The metallized patches of our test 

structure have the same surface passivation as the first patches on one side, and 

the surface on the other side can be anything with different recombination 

characteristics such as a silicon-metal interface, a passivated contact, or a silicon-

air interface. 

The test structures should be designed such that minority carrier concentrations 

are approximately constant throughout the wafer’s quasi neutral bulk. In section 

3.5.1, we show that minority carrier concentrations are exactly constant when the 

bulk diffusion length is infinite and when all effective surface recombination 

velocities are zero. We also show in section 3.5.1 that the larger the bulk diffusion 

length and the smaller the effective surface recombination velocities, the smaller 

the excess carrier density variations in the wafer’s quasi neutral bulk.  

In the present dissertation, we do not strive for a general quantitative mathematical 

expression for when the minority carrier concentration can be considered to be 

constant in the context of our present test structure. Instead, we provide a 

qualitative treatment of the effect of in-plane excess carrier density variations in 

section 3.5 and we provide a qualitative treatment of the effect of out-of-plane 

excess carrier density variations in section 3.6. In these sections, we show how to 

design test structures such that bulk excess carrier density variations are avoided. 

In short, both passivated and contacted areas should have characteristic feature 

sizes much smaller than their respective effective diffusion lengths such that the 

minority carrier concentration can be considered to be approximately constant 

throughout the test structure plane. Also, relatively thin wafers are used to limit 

out-of-plane excess carrier density variations: the excess carrier dependency of 

Equation 2.3.3, which describes out-of-plane excess carrier density variations in 



66 

 

blanket test structures, depends on the ratio of 𝑊 𝐿𝐷⁄ ; the smaller 𝑊 compared to 

𝐿𝐷 for the same surface recombination velocities, the smaller the out-of-plane 

excess carrier density variations. 

 

 

Figure 3.2.1.3. A silicon wafer on which a point contact-based test structure for contact 
recombination current measurements is made. The sides of the semi-square wafer 
have a length of 156 mm. 

In addition, the contacts should be designed such that their transfer length is much 

larger than the contact size such that no current flows through the point contacts. 

The effect of current flow through the point contacts is discussed in section 3.4.  

Throughout the remainder of section 3.2, we consider ideal test structures with 

constant bulk excess carrier densities and in which no current flows through the 

point contacts. Also, we assume that the bulk doping level is well-known. 

Furthermore, we assume that when we are treating recombination currents at 

surfaces featuring p-n or high-low junctions, the recombination currents are 

characterized by having a unit ideality factor. Finally we assume that the contact 
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fraction is well-known as well. The effect of the break-down of these assumptions 

is discussed throughout sections 3.4 to 3.9.  
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3.2.2. 𝐽0,𝑚𝑒𝑡 extraction1 

𝐽0,𝑚𝑒𝑡 is extracted from effective lifetime measurements as a function of the contact 

fraction. For a wafer piece comprising different areas with different recombination 

characteristics, the total recombination rate per unit area 𝑅 is the area-weighted 

sum of the recombination rates per unit area in those areas, 𝑅1 and 𝑅2.  

𝑅 =  
𝐴1

𝐴
𝑅1 +

𝐴2

𝐴
𝑅2             (3.2.2.1) 

in which 𝐴1/𝐴 is the fractional coverage of the first area and 𝐴2/𝐴 is the fractional 

coverage of the second area. This equation holds when the recombination rate is 

a constant throughout each area separately.  

We consider a wafer piece which has the same surface passivation layer on both 

sides. One side is contacted in contact openings. The semiconductor surface 

exposed to the contact openings has a different surface passivation. Therefore, 

two different areas can be discerned in the wafer piece: area one features two 

passivated surfaces and area two features one passivated surface and one 

contacted surface. When the excess carrier density is assumed to be constant 

throughout the wafer piece, the recombination rate in area 1 is given by:  

𝑅1 = 𝑅𝑏𝑢𝑙𝑘 + 2𝑅𝑑𝑖𝑒𝑙,            (3.2.2.2) 

in which 𝑅𝑏𝑢𝑙𝑘 and 𝑅𝑑𝑖𝑒𝑙 are recombination rates per unit area in the bulk and at 

the passivated surfaces, respectively.  

The recombination rate in area 2 is given by: 

𝑅2 = 𝑅𝑏𝑢𝑙𝑘 + 𝑅𝑑𝑖𝑒𝑙 + 𝑅𝑚𝑒𝑡,            (3.2.2.3) 

in which 𝑅𝑚𝑒𝑡 is the recombination rate per unit area at the silicon-contact 

interface. 

Combination of Equations 3.2.2.1-3.2.2.3, and renaming 𝐴2/𝐴 to 𝐶𝑚𝑒𝑡, i.e. metal 

contact fraction, yields an expression for the overall recombination rate per unit 

area in the test structure as a function of the metal contact fraction: 

𝑅 =  𝑅𝑏𝑢𝑙𝑘 + 2𝑅𝑑𝑖𝑒𝑙 + 𝐶𝑚𝑒𝑡[𝑅𝑚𝑒𝑡 − 𝑅𝑑𝑖𝑒𝑙].          (3.2.2.4) 

Therefore, the difference between recombination rates per unit area at the 

metallized and passivated surfaces can be extracted from the slope of the 

recombination rate versus contact fraction. 

We now consider the case of an n-type wafer with an emitter diffusion on both 

sides. The assumption of constant injection levels in the entire wafer piece’s quasi 

neutral bulk is a reasonable assumption if wafer thickness, contact opening size, 

                                                 
1 This section is partly based on [Deckers 2013]. 
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and inter-contact opening distance are smaller than bulk minority carrier diffusion 

length, effective minority carrier diffusion length in the contacted regions and 

effective minority carrier diffusion length in passivated regions between contacts, 

respectively. The general reasoning behind the approach to write the 

recombination rate as a function of its components is similar to the approach in 

[Cuevas 1999], but it is applied here specifically to the point contact based test 

structure studied in this dissertation. Emitter recombination can be described by a 

saturation current density 𝐽0 which is defined from: 

𝑅𝑒𝑚𝑖𝑡𝑡𝑒𝑟 =
𝐽0

𝑞𝑛𝑖
2 Δ𝑝(𝑁𝐷 + Δ𝑝),           (3.2.2.5) 

in which a recombination mechanism characterized by a unit ideality factor is 

assumed and in which Δ𝑝 is the injection level at the bulk-side of the space charge 

region between emitter and bulk. Bulk recombination is described by a bulk lifetime 

𝜏𝑏𝑢𝑙𝑘. In section 2.2.4, we showed that the bulk lifetime is related to the average 

bulk recombination rate 𝑅𝑎,𝐵 by 𝑅𝑎,𝐵 ≈ ∆𝑝𝑎 𝜏𝑏⁄ , in which the expression is exact 

when 𝜏𝑏 is independent of Δ𝑝 in the relevant range. In this section, we have 

assumed constant excess carrier densities throughout the quasi neutral bulk. 

Therefore, the average injection level equals the injection level (∆𝑝𝑎= Δ𝑝) and we 

can identify a bulk recombination rate per unit area 𝑅𝑏𝑢𝑙𝑘 such that 𝑅𝑏𝑢𝑙𝑘 =

Δ𝑝 𝑊 𝜏𝑏𝑢𝑙𝑘⁄ , in which 𝑊 is the distance between the emitter space charge regions 

at the front and at the back of the test structure, which is approximately equal to 

the wafer thickness. From the total recombination rate, a global effective lifetime 

𝜏𝑒𝑓𝑓 is defined: 𝑅 ≡ Δ𝑝 𝑊 𝜏𝑒𝑓𝑓⁄ . This yields the following expression for 𝜏𝑒𝑓𝑓: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏𝑢𝑙𝑘
+ 𝐽0,𝑡𝑜𝑡

Δ𝑝(𝑁𝐷+Δ𝑝)

𝑞𝑛𝑖
2𝑊

,           (3.2.2.6) 

in which we once again used that in this section, we assume that the bulk excess 

carrier density is constant. Using Equation 3.2.2.4 and Equation 3.2.2.5, Equation 

3.2.2.6 can we written explicitly as a function of 𝐶𝑚𝑒𝑡: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏𝑢𝑙𝑘
+ 2𝐽0,𝑑𝑖𝑒𝑙

𝑁𝐷+Δ𝑝

𝑞𝑛𝑖
2𝑊

+ 𝐶𝑚𝑒𝑡[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]
𝑁𝐷+Δ𝑝

𝑞𝑛𝑖
2𝑊

.             (3.2.2.7) 

𝐽0,𝑚𝑒𝑡, 𝐽0,𝑑𝑖𝑒𝑙 and 𝐽0,𝑡𝑜𝑡 are saturation current densities at the metallized surface, at 

the passivated surface and the total saturation current density, respectively. Δ𝑝 is 

the injection level, 𝑛𝑖 is the intrinsic carrier concentration, 𝑞 is elementary charge, 

𝑁𝐷 is the base doping level. At arbitrary injection levels, 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 can be 

extracted from the slope of inverse effective lifetime versus contact fraction. If 

recombination at the passivated surface dominates bulk recombination, 𝐽0,𝑑𝑖𝑒𝑙 can 

be extracted from the intercept of inverse effective lifetime versus contact fraction 

with the  𝐶𝑚𝑒𝑡 = 0 axis. Otherwise, only 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 and an upper limit for 𝐽0,𝑑𝑖𝑒𝑙 

can be extracted at arbitrary injection levels. 
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An alternative method for 𝐽0,𝑚𝑒𝑡 extraction exists. This method is based on the 

extraction of 𝐽0,𝑚𝑒𝑡 from the slope of 𝐽0,𝑡𝑜𝑡 as a function of contact fraction. For this 

method to be applicable, it must be possible to extract 𝐽0,𝑡𝑜𝑡 from the effective 

lifetime data at each contact fraction. One way to extract 𝐽0,𝑡𝑜𝑡 from the effective 

lifetime data at each contact fraction is by using Kane and Swanson’s method 

[Cuevas 1999, Kane 1985]: 

𝐽0,𝑡𝑜𝑡 = 𝑞𝑛𝑖
2𝑊

𝑑𝜏𝑒𝑓𝑓,𝐴
−1

𝑑∆𝑝
,                         (3.2.2.8) 

in which 𝜏𝑒𝑓𝑓,𝐴 is Auger-corrected effective lifetime, which is defined such that: 

1

𝜏𝑒𝑓𝑓,𝐴
=

1

𝜏𝑒𝑓𝑓
−

1

𝜏𝐴
,                          (3.2.2.9) 

with 𝜏𝐴 the carrier lifetime that describes Auger recombination. After correction for 

Auger-recombination, 𝜏𝑏𝑢𝑙𝑘 is assumed to be constant with injection level. This 

assumption is commonly, though not exclusively, met in the high injection regime. 

In the range of injection levels where the assumption of constant Auger-

recombination-corrected bulk lifetimes is valid, 𝐽0,𝑚𝑒𝑡 and 𝐽0,𝑑𝑖𝑒𝑙 can be extracted 

from 𝐽0,𝑡𝑜𝑡 versus contact fraction data irrespective of the relative magnitude of bulk 

recombination and recombination at the passivated surface. In particular, 

substituting 𝜏𝑒𝑓𝑓
−1  as given by Equation 3.2.2.7 in Equation 3.2.2.9, and extracting 

𝐽0,𝑡𝑜𝑡 from 𝜏𝑒𝑓𝑓,𝐴 using Equation 3.2.2.8 yields: 

𝐽0,𝑡𝑜𝑡 = 2 𝐽0,𝑑𝑖𝑒𝑙 + 𝐶𝑚𝑒𝑡[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙],        (3.2.2.10) 

in which additionally, the following fact was  used: 𝜏𝑏
−1 − 𝜏𝐴

−1 is approximately 

constant as a function of the injection level, at sufficiently high injection levels. The 

above discussion has focused on extraction of saturation current densities of 

contacted emitters. However, the method is equally applicable to extraction of 

saturation current densities of contacted back surface fields. In Figure 3.2.2.1, 

experimental measurements of 𝜏𝑒𝑓𝑓
−1  and 𝐽0,𝑡𝑜𝑡 as a function of 𝐶𝑚𝑒𝑡 are shown for 

test structures featuring aluminum contacts on an n+ silicon diffusion. The 

substrate is a high lifetime, 145 𝜇𝑚 thick, n-type Czochralski silicon wafer with a 

bulk resistivity of 4 Ω ∙ 𝑐𝑚. The sheet resistance of the resulting n+ n n+ structure 

was 43 Ω 𝑠𝑞𝑢𝑎𝑟𝑒⁄ . 

A photoluminescence image of a 𝐽0,𝑚𝑒𝑡 test structure is shown in Figure 3.2.2.2. 

Darker and lighter areas correspond to regions with higher and lower contact 

fractions, respectively. Higher contact fractions correspond to lower effective 

lifetimes, and therefore to a higher fraction of non-radiative recombination 

processes compared to radiative recombination processes. As a result, higher 

contact fractions correspond to lower photoluminescence signals.  
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Figure 3.2.2.1. Experimental data used for contact recombination current extraction. 
The data are shown for unpassivated aluminum contacts on an n-type Czochralski 
silicon wafer with thermal oxide-passivated n+ diffusions (POCl3) on both sides. The 
symbols are experimental data and the lines are least square fits of Equations 3.2.2.7 
and 3.2.2.10, for panels a) and b), respectively. Panel a) shows the inverse lifetime as 

a function of contact fraction, extracted at an excess carrier density of 1 ∙ 1015𝑐𝑚−3. 
Panel b) shows the total saturation current density as a function of contact fraction. 

 

Figure 3.2.2.2. Photoluminescence image of a 𝐽0,𝑚𝑒𝑡 test structure based on simple 

square lattices of point contacts. The measurements are done with the non-contacted 
side facing the camera such that the pattern is the mirror image of the pattern shown 
in Figure 3.2.1.3. 
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The circular feature in the middle of Figure 3.2.2.2 is the QSSPC coil used in the 

measurement. The QSSPC coil is visible because the coil is placed in a circular 

orifice in the measurement chuck which has different optical properties than the 

rest of the measurement chuck. 

3.2.3. Other measures for contact recombination1 

 

Equation 3.2.2.7 is readily modified to allow for effective surface recombination 

velocity extraction as a function of injection level. This is accomplished by writing 

the surface recombination rate per unit area in terms of an effective surface 

recombination velocity times injection level (𝑅𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑆𝑒𝑓𝑓Δ𝑝) and following a 

derivation similar to the derivation of Equation 3.2.2.7. This yields: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏𝑢𝑙𝑘
+

2𝑆𝑑𝑖𝑒𝑙

𝑊
+

𝐶𝑚𝑒𝑡

𝑊
[𝑆𝑚𝑒𝑡 − 𝑆𝑑𝑖𝑒𝑙],                       (3.2.3.1) 

in which 𝑆𝑑𝑖𝑒𝑙 is the surface recombination velocity at passivated surfaces and 𝑆𝑚𝑒𝑡 

is the surface recombination velocity at contacted surfaces. The interpretation of 

Equation 3.2.3.1 is analogous to that of Equation 3.2.2.7. It shows that 𝑆𝑚𝑒𝑡 − 𝑆𝑑𝑖𝑒𝑙 

can be derived from the slope of inverse lifetime as a function of the contact 

fraction. If bulk recombination is negligible compared to surface recombination in 

the passivated areas, 𝑆𝑑𝑖𝑒𝑙 can be derived from the intercept of inverse lifetime 

with the 𝐶𝑚𝑒𝑡 = 0 axis. If bulk recombination is significant compared to surface 

recombination, an upper limit for 𝑆𝑑𝑖𝑒𝑙 can be derived from the intercept of inverse 

lifetime with the 𝐶𝑚𝑒𝑡 = 0 axis.  

Finally, Equation 3.2.2.4 can also be written in terms of effective lifetimes of 

contacted and passivated areas, yielding yet another alternative for Equation 

3.2.2.7: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑝
+ 𝐶𝑚𝑒𝑡 [

1

𝜏𝑚
−

1

𝜏𝑝
],                         (3.2.3.2) 

in which 𝜏𝑚 is the effective lifetime of contacted areas and 𝜏𝑝 is the effective 

lifetime of passivated areas. 

3.2.4. Intrinsic concentration 

 

Contactless photoconductivity measurements actually provide a measurement of 

𝐽0 𝑛𝑖
2⁄  instead of 𝐽0, when Kane and Swanson’s method is used for 𝐽0 extraction 

[King 1990]. Similarly, when 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is extracted using Equation 3.2.2.7, the 

                                                 
1 This section is based on [Deckers 2013] 
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quantity that is actually measured is (𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙) 𝑛𝑖
2⁄  instead of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙. 

Both 𝐽0 and 𝑛𝑖 depend strongly on temperature, but the temperature dependence 

of 𝐽0 𝑛𝑖
2⁄  is much less. This has several interesting and useful consequences. First, 

the relative temperature independence of 𝐽0 𝑛𝑖
2⁄  causes temperature control to be 

much less critical than for the case of 𝐽0,𝑚𝑒𝑡 extraction from suns-Voc 

measurements [Fellmeth 2011] or from current-voltage characteristics. Second, 

𝐽0 𝑛𝑖
2⁄  is rather temperature independent. Therefore, the exact choice of intrinsic 

concentration used to report 𝐽0 values measured from contactless 

photoconductance measurements is rather arbitrary. That is, the exact choice of 

𝑛𝑖 is not predetermined by the measurement. 

In this work, we consistently use 𝑛𝑖 = 7.4 ∙ 109𝑐𝑚−3 for our room temperature 𝐽0,𝑡𝑜𝑡 

measurements. According to [Green 1990], this corresponds to a measurement 

temperature of 23℃. However, the saturation current densities reported in this 

work can be transferred at leasure to saturation current densities corresponding 

to different values of the intrinsic concentration, as long as the 𝐽0 𝑛𝑖
2⁄  does not 

change too much in the relevant temperature range. This can be accomplished 

using the following procedure: 

Let 𝐽0,𝑎 and 𝑛𝑖,𝑎 represent the actual saturation current density and the actual 

intrinsic carrier concentration at the measurement conditions, respectively. The 

quantity 𝐽0,𝑎 𝑛𝑖,𝑎
2⁄  is the measured figure of merit for the contact recombination 

current density during the photoconductance measurement. 

Let 𝐽0,𝑏 be a saturation current density that is extracted from the photoconductance 

measurement assuming an intrinsic concentration 𝑛𝑖,𝑏. Therefore: 

𝐽0,𝑏 = 𝑛𝑖,𝑏
2 𝐽0,𝑎

𝑛𝑖,𝑎
2                           (3.2.4.1) 

Let 𝐽0,𝑐 be a saturation current density that is extracted from the photoconductance 

measurement assuming an intrinsic concentration 𝑛𝑖,𝑐. Therefore: 

𝐽0,𝑐 = 𝑛𝑖,𝑐
2 𝐽0,𝑎

𝑛𝑖,𝑎
2 .                          (3.2.4.2) 

Combination of Equations 3.2.4.1 and 3.2.4.2 yields: 

𝐽0,𝑐 =
𝑛𝑖,𝑐

2

𝑛𝑖,𝑏
2 𝐽0,𝑏.                          (3.2.4.3) 

Equation 3.2.4.3 can be used to recalculate saturation current densities that 

correspond to any given value of the intrinsic carrier concentration to saturation 

current densities corresponding to a preferred intrinsic carrier concentration. The 

intrinsic carrier concentration in crystalline silicon is discussed in the following 

references: [Altermatt 2003, Green 1990, Misiakos 1993, Sproul 1991, 

Vankemmel 1993].  
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The recalculation of 𝐽0 from one arbitrary 𝑛𝑖 value to another can be done provided 

that 𝐽0 𝑛𝑖
2⁄  does not change significantly with temperature in the relevant 

temperature range. In order to investigate the remaining temperature dependence 

of 𝐽0 𝑛𝑖
2⁄ , we take Equation 2.1.3.2 and reorder:  

 
𝐽0

𝑛𝑖
2 =

𝑞𝐷𝑝

𝐿𝑝𝑁𝐷,𝐵𝑆𝐹
[

𝑆𝑊𝐿𝑝

𝐷𝑝
+𝑡𝑎𝑛ℎ(

𝑊𝐵𝑆𝐹
𝐿𝑝

)

1+
𝑆𝑊𝐿𝑝

𝐷𝑝
tanh(

𝑊𝐵𝑆𝐹
𝐿𝑝

)
].           (3.2.4.4) 

Whereas 𝐽0 and 𝑛𝑖 both depend exponentially on temperature (Equation 2.1.1.8), 

the right hand side of Equation 3.2.4.4 depends only on terms which depend 

comparatively softly on temperature. 

In order to verify this, we investigate the temperature dependence of Equation 

3.2.4.4 in two extreme cases: the opaque junction limit and the transparent 

junction limit. For the opaque junction limit (i.e. 𝑊𝐵𝑆𝐹 𝐿𝑝⁄ ≫ 1, see section 2.1.3): 

𝐽0

𝑛𝑖
2 =

𝑞𝐷𝑝

𝐿𝑝𝑁𝐷,𝐵𝑆𝐹
,             (3.2.4.5) 

and for the transparent junction limit (i.e. 𝑊𝐵𝑆𝐹 𝐿𝑝⁄ ≪ 1, see section 2.1.3): 

𝐽0

𝑛𝑖
2 =

𝑞𝑆𝑊

𝑁𝐷,𝐵𝑆𝐹
.                          (3.2.4.6) 

In order to investigate the temperature dependence in the right hand sides of 

Equations 3.2.4.5 and 3.2.4.6, we consider the temperature dependence of each 

of the individual factors.  

First, 𝑞 is a universal constant and is therefore temperature independent.  

Assuming (quasi) complete dopant atom ionization, 𝑁𝐷,𝐵𝑆𝐹 can be considered to 

be a constant as well at room temperature. This assumption is reasonable for the 

present qualitative discussion on the temperature dependence of 𝐽0 𝑛𝑖
2⁄  around 

room temperature because for phosphorous and boron, the dopant ionization 

fraction is above 70% at room temperature in the doping concentration range of 

1015 𝑐𝑚−3 to 1020 𝑐𝑚−3 [Schenk 2006]. 

As 𝑞 and 𝑁𝐷,𝐵𝑆𝐹 can be considered to be roughly constant around room 

temperature, the remaining temperature dependence in Equations 3.2.4.5 and 

3.2.4.6 is in the ratio 𝐷𝑝 𝐿𝑝⁄  and 𝑆𝑊, respectively.  

We first consider the remaining temperature dependence in Equation 3.2.4.5. As 

𝐿𝐷 = √𝜏𝑝𝐷𝑝, the ratio 𝐷𝑝 𝐿𝑝⁄  equals √𝐷𝑝 𝜏𝑝⁄ , with 𝜏𝑝 the minority carrier (hole) 

lifetime in the highly doped region under consideration. 𝐷𝑝 = 𝜇𝑝 𝑘𝑇 𝑞⁄  and 𝜇𝑝 can 

be found from [Van Overstraeten p. II-24]: 

1

𝜇𝑝
= ∑

1

𝜇𝑘
𝑘 ,             (3.2.4.7) 
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in which 𝜇𝑘 is the mobility due to a specific scattering mechanism and comprises 

the mobility related to ionized impurity scattering 𝜇𝑖 and the mobility due to 

acoustic phonon scattering 𝜇𝑎𝑝, in which:  

𝜇𝑖 ∝
𝑇3 2⁄

√𝑚∗𝑁𝐷
              (3.2.4.8) 

and 

𝜇𝑎𝑝 ∝
1

(𝑚∗)5 2⁄ 𝑇3 2⁄
.             (3.2.4.9) 

For the highly doped regions under consideration, ionized impurity scattering 

dominates at room temperature such that the temperature dependence of the 

mobility is: 

𝜇𝑝 ∝ 𝑇3 2⁄ .           (3.2.4.10) 

The hole lifetime 𝜏𝑝 is dominated by Auger recombination in the highly doped 

regions under consideration, which is not very temperature dependent because 

the Auger coefficients 𝐶𝑛 and 𝐶𝑝 are not very temperature dependent: 𝐶𝑛 =

(2.3; 2.8;  2.8) ∙ 10−31𝑐𝑚6𝑠−1 at (75;  300; 400)𝐾 and 𝐶𝑝 = (0.78; 0.99; 1.2) ∙ 10−31 

𝑐𝑚6𝑠−1 at (75;  300;  400)𝐾 [Dziewior 1977], in which 𝐶𝑛 is the Auger coefficient 

for the electron-electron-hole process and 𝐶𝑝 is the Auger coefficient for the 

electron-hole-hole process.  

As 𝐿𝑝 = √𝜏𝑝𝐷𝑝, the 𝐷𝑝 𝐿𝑝⁄  ratio in Equation 3.2.4.5. equals √𝐷𝑝 𝜏𝑝⁄  and as 𝜏𝑝 is 

approximately constant for the case being considered, the main temperature 

dependence left in Equation 3.2.4.5 is the temperature dependence of √𝐷𝑝, and 

from the preceding discussion, √𝐷𝑝 ∝ 𝑇5 4⁄  when ionized impurity scattering 

dominates mobility. 

The primary source of temperature dependence in Equation 3.2.4.6 is 𝑆𝑊. For the 

n-type semiconductor surface under consideration, and assuming a constant 

density of surface states throughout the bandgap as a function of energy, 𝑆𝑊 =

𝜎𝑝𝑣𝑡ℎ𝑁𝑆𝑆 [Van Overstraeten p. II-14], in which 𝜎𝑝 is the capture cross section for 

holes, 𝑣𝑡ℎ is the thermal velocity and 𝑁𝑆𝑆 is the density of surface states. The main 

source of temperature dependence in 𝑆𝑊 is 𝑣𝑡ℎ, which is proportional to √𝑇 [Van 

Overstraeten p. II-12].  

In conclusion around room temperature and for sufficiently highly doped 

semiconductors such that ionized impurity scattering dominates mobility:  

lim
𝑊𝐵𝑆𝐹 𝐿𝐷⁄ ≫1

𝐽0

𝑛𝑖
2 ∝ 𝑇5 4⁄ ,          (3.2.4.11) 

Also, around room temperature and assuming a constant density of surface states 

as a function of energy throughout the band gap:  
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lim
𝑊𝐵𝑆𝐹 𝐿𝐷⁄ ≪1

𝐽0

𝑛𝑖
2 ∝ 𝑇1 2⁄ .          (3.2.4.12) 

Therefore, the temperature dependence of 𝐽0 𝑛𝑖
2⁄  is estimated to be supralinear at 

most (𝑇5 4⁄ ), which is much less than the exponential temperature dependence of 

𝐽0. Therefore, 𝐽0 𝑛𝑖
2⁄  can be considered to be approximately constant over a limited 

temperature range, thereby justifying the applicability of Equation 3.2.4.3. The 

extent of the limited temperature range is determined by the accuracy which is 

demanded by the experimentalist; a detailed treatment of which is beyond the 

scope of the present dissertation. 
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3.3. 𝐽0,𝑚𝑒𝑡 test structure process flow 

 

In this section, the fabrication of 𝐽0,𝑚𝑒𝑡 test structures is explained for the 

characterization of passivated contacts on diffused junctions. For the sake of 

relevance and conciseness, we limit the scope of our discussion of 𝐽0,𝑚𝑒𝑡 test 

structure manufactor to the scope of this dissertation’s experimental part. 

However, the usefulness of 𝐽0,𝑚𝑒𝑡 test structures is not limited to this specific case, 

and 𝐽0,𝑚𝑒𝑡 test structures can also be used to characterize other types of contacts. 

Process flows for these other types of contacts are readily found by analogy. 

In particular, a process flow is considered for the following case: passivated metal 

contacts on diffused junctions following the metal-insulator-semiconductor (MIS) 

route for contact passivation. The contact pattern is defined using lithography.  

𝐽0,𝑚𝑒𝑡 test structures are made starting from a bare silicon wafer. The substrate 

should have a high bulk lifetime such that the bulk diffusion length is much larger 

than the wafer thickness. In this dissertation, we used n-type Czochralski silicon 

wafers with a bulk resistivity around 3 Ω ∙ 𝑐𝑚 and with a typical bulk lifetime of at 

least several milliseconds. 

 
Figure 3.3.1. Cross section of an n-type silicon wafer prior to 𝐽0,𝑚𝑒𝑡 test structure 

processing (not to scale). 

An n-type silicon wafer prior to 𝐽0,𝑚𝑒𝑡 test structure processing is shown in Figure 

3.3.1. The first process step is saw damage removal. After saw damage removal, 

the wafers are cleaned prior to a diffusion step. In our experiments, POCl3 and 

BBr3 were used for phosphorous and boron diffusions, respectively. The diffusions 

were followed by phosphosilicate glass (PSG) or borosilicate glass (BSG) 

removal, for POCl3 and BBr3 diffusions, respectively. Then the wafers are 

thermally oxidized. In Figure 3.3.2, the wafer is shown after oxidation for the case 

of a boron diffusion. 



78 

 

 
Figure 3.3.2. Cross section of an n-type silicon wafer during 𝐽0,𝑚𝑒𝑡 test structure 

processing, after BBr3 diffusion and thermal oxidation (not to scale). 

Subsequent to thermal oxidation, the contact opening pattern is defined 

lithographically. Then, contact openings are etched, and the wafers are cleaned, 

resulting in the structure schematically shown in figure 3.3.3. 

 
Figure 3.3.3. Cross section of an n-type silicon wafer during 𝐽0,𝑚𝑒𝑡 test structure 

processing, after contact opening lithography (not to scale). 

After contact opening lithography, the contacts are formed. For the passivated 

contacts in this thesis, a thin Al2O3 layer is deposited using thermal atomic layer 

deposition (ALD) prior to metal deposition. As a metal, we use sputtered 

aluminum, alloyed with 1% silicon. Then, the metal pattern is lithographically 

defined and the metal layer is etched such that only the contact openings remain 

covered with metal. The wafers are subsequently cleaned to remove the resist 

and are finally given a forming gas anneal to improve surface passivation. This 

results in the structure schematically shown in Figure 3.3.4. 
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Figure 3.3.4. Cross section of finished 𝐽0,𝑚𝑒𝑡 test structure after processing (not to 

scale). 
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3.4. Parasitic current flow through point contacts1 

 

The effect of metal contacts in the 𝐽0,𝑚𝑒𝑡 test structure is two-fold. First, the metal 

contacts introduce an additional recombination current, which is the quantity of 

interest. Second, part of the eddy currents induced during the radio wave-detected 

photoconductance measurement may flow through the metal point contacts 

instead of through the semiconductor, which is a parasitic effect since it influences 

the test structure’s photoconductance in a way that is not related to the excess 

minority carrier density. 

The influence of this parasitic effect on extracted lifetimes, injection levels, and 

contact saturation current densities is discussed. The present analysis yields the 

remarkable result that for test structures featuring point contacts with a 

characteristic size smaller than the contact’s transfer length, there are negligible 

parasitic effects related to current flow through the point contacts instead of 

through the semiconductor. Finally, this prediction is proven experimentally. 

3.4.1. Influence on measured conductivity 

 

In our test structure, contact openings and contact opening spacing should both 

be much smaller than the effective diffusion lengths in contacted and passivated 

areas, respectively. These requirements arise from the fact that the minority carrier 

concentration has to be constant for our simple analysis to be valid. Therefore, in 

realistic embodiments of our test structure, both point contact size and point 

contact spacing are well in the sub-millimeter range. Typical coil frequencies used 

to probe wafer conductance during contact less photoconductance measurements 

are around 11 MHz [King 1990], which corresponds to probing wafers with 

electromagnetic radiation that has a wavelength of ca. 27m. Since the wavelength 

of radiation by which the photoconductance in our test structure is probed is many 

orders of magnitude larger than the characteristic size of its metal features, the 

equivalent resistance of our test structure’s partly metallized areas can be derived 

using ordinary electric circuit theory. 

We now derive the influence of point contacts on photoconductance 

measurements for a simple square lattice of circular contacts. For simplicity, we 

do not consider current flow in the bulk of the wafer perpendicular to the wafer 

plane. Consider a unit cell of our test structure as in Figure 3.4.1.1. A lumped-

circuit analysis of the conductance along one of the <10> directions in the point 

                                                 
1 Parts of this section are adapted from [Deckers 2013] and [Deckers 2014]. 
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contact lattice is performed. The <10> directions are chosen because the 

symmetry of a simple square lattice allows for a simple analysis in these directions 

(note that we refer to the symmetry of the point contact lattice, not to the symmetry 

of the semiconductor’s crystal lattice; throughout the present dissertation, silicon 

is approximated as an isotropic material). Qualitatively, our analysis also holds 

true for other directions. This is motivated in some detail at the end of this section. 

Due to coarse lumping in the equivalent circuit, it is assumed that part of the 

current can flow through the metal inside the smallest squares that enclose the 

circular contacts. Resistances 𝑅1 and 𝑅2, as defined in Figure 3.4.1.1, are given 

by: 

𝑅1 =
2𝑅𝑠𝑆

𝑆−𝑑𝑚
 and 𝑅2 =

𝑅𝑠(𝑆−𝑑𝑚)

2𝑑𝑚
,           (3.4.1.1) 

in which 𝑅𝑠 is the wafer’s sheet resistance in the absence of metal contacts, S is 

point contact spacing (pitch) and 𝑑𝑚 is the point contact diameter. 

 

Figure 3.4.1.1. Definition of the <10> directions in the simple square lattice of point 
contacts in our test structure and equivalent lumped circuit for in-plane current flow in 
the <10> directions for a unit cell in our test structure’s simple square lattices of point 
contacts [Deckers 2013]. 

The impedance of a contacted semiconductor region is called 𝑅𝑚𝑒𝑡. To calculate 

𝑅𝑚𝑒𝑡, we first approximate the circular contacts by the smallest square contacts 

that entirely contain them. Then, we assume that electrical current flow through 

the semiconductor in the contacted area can be described by a transmission line. 

We subsequently solve for the spatial distribution of current and voltage in the 

semiconductor under metal contacts and use this information to obtain contacted 

area resistance. The metal layers are assumed to be perfect conductors, the 

semiconductor is described by its sheet resistance 𝑅𝑆, the metal-semiconductor 

interface is described by the specific contact resistance 𝜌𝑐, and the specific 

capacitance associated with the metal-semiconductor space charge region 𝐶𝑗 . For 

this case, the well-known telegrapher’s Equations read [Berger 1972]: 
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𝛿𝑉(𝑥)

𝛿𝑥
= −𝑅 𝐼(𝑥),             (3.4.1.2) 

𝛿𝐼(𝑥)

𝛿𝑥
= −𝐺𝑐𝑉(𝑥),             (3.4.1.3) 

with 𝐺𝑐 = 𝑑𝑚(𝜌𝑐
−1 + 𝑗𝜔𝐶𝑗) and 𝑅 = 𝑅𝑆 𝑑𝑚⁄ , in which 𝑥 is the position coordinate in 

the test structure plane along a <10> direction, 𝐼 is the current flowing in the 

semiconductor under the contact, 𝑉 is the voltage in the semiconductor under the 

contact, 𝜔 is angular velocity, and 𝐶𝑗  is the specific metal-semiconductor contact 

capacitance. Note that the AC behavior of contact resistance may be important for 

the point contacts in our test structure because QSSPC contact recombination 

current measurements are typically done at a frequency of about 11 MHz [King 

1990]. 

For the sake of conciseness, the following notation is used: 

 𝜌′𝑐
−1 = 𝜌𝑐

−1 + 𝑗𝜔𝐶𝑗.             (3.4.1.4) 

Selected parameters from the present transfer length model are defined in Figure 

3.4.1.2. 

 

Figure 3.4.1.2. Schematic representation of one of the point contacts in a point contact-
based test structure for QSSPC contact recombination current measurements, 
including an indication of selected parameters from the present transfer length model.  

Whether or not the frequency dependence of contact resistance 𝜌𝑐
′  has to be taken 

into account obviously depends on the relative magnitude of the DC contact 

resistance 𝜌𝑐 and the angular frequency – junction capacitance product 𝜔𝐶𝑗 . H. H. 

Berger [Berger 1972] states the problem as follows: “Whether the frequency 

dependence of the contact has to be considered depends on the cut-off frequency 

𝜔𝑐 … [𝜔𝑐 = (𝜌𝑐𝐶𝑗)
−1

, red.]. By estimating 𝐶𝑗 , taking the silicon lattice constant … 

[≈ 0.5 𝑛𝑚, red.] as an absolute minimum for the depletion layer thickness and by 
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using experimentally determined 𝜌𝑐 values, this [cut-off, red.] frequency has been 

found to lie at least in the range of GHz for typical aluminum-silicon contacts. 

Therefore, for these the frequency dependence usually need not be considered. 

This might not be true for other metal-semiconductor pairs.”  

The problem with the particular line of reasoning pertaining the importance of the 

ac-behavior of contact resistance followed in [Berger 1972] is that typical 

aluminum-silicon contacts do not exist. This is the case for unpassivated 

aluminum-silicon contacts and it is a fortiori the case for passivated aluminum-

silicon contacts. 

A first reason why typical aluminum-silicon contacts do not exist is that the contact 

resistance changes dramatically with doping level for aluminum contacts on both 

n- and p-type silicon [Berger 1972b].  

Second, the metal-semiconductor contact’s space charge region capacitance 

depends on both the doping level and the built-in voltage [Sze 2007 p. 175]: 

1

𝐶𝑗
2 =

2[𝜓𝑏𝑖−𝑉(𝑥)−𝑘𝑇 𝑞⁄ ]

𝑞 𝑠𝑁𝐷
,                   (3.4.1.5) 

in which 𝜓𝑏𝑖 is the built-in potential, 𝑉𝑎𝑝𝑝 is the (local) potential difference between 

the semiconductor and the metal, 휀𝑠 is the semiconductor’s dielectric constant and 

all other parameters have been defined before. In our test structure, no voltage is 

deliberately applied between the semiconductor and point contacts. As a result, it 

is not unreasonable to assume that 𝑉𝑎𝑝𝑝 is small compared to 𝜓𝑏𝑖, and therefore: 

1

𝐶𝑗
2 ≈

2[𝜓𝑏𝑖−𝑘𝑇 𝑞⁄ ]

𝑞 𝑠𝑁𝐷
.             (3.4.1.6) 

The built-in potential 𝜓𝑏𝑖 depends on the metal work function and on charge 

trapping at interface states at the metal-semiconductor junction, with the latter 

influence often dominating the former influence. Such charge trapping at interface 

states can be very difficult to control. Therefore, 𝜓𝑏𝑖 is variable. 

We have now given a rough idea of how to analyze the relative importance of 

junction capacitance and DC contact resistance for the contacts under 

investigation in this dissertation. More specifically, the ideas developed in the 

previous paragraphs will be used in the experimental part of this chapter, section 

3.4.5, to estimate in which cases the consideration of the ac-contact resistance 

behavior is necessary or not. It will turn out that for unpassivated aluminum 

contacts on the investigated n+ diffusions, AC current transport across the metal-

semiconductor junction is estimated to be significant whereas for unpassivated 

aluminum contacts on the investigated p+ diffusions, only the DC component of 

the contact resistance is estimated to be significant.  
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For passivated contacts, the AC-behavior of contact resistance could be of 

particular importance: the DC-contact resistance of passivated contacts is often 

relatively high because of the resistance of the passivating layers between metal 

and semiconductor. Also, because these passivating layers are often very thin, 

the passivated contacts can still have a very high contact capacitance. As the cut-

off frequency 𝜔𝑐 from which the AC-behavior of contact resistance becomes of 

importance equals (𝜌𝑐𝐶𝑗)
−1

, this combination of high contact resistance and high 

contact capacitance results in a situation at which the AC-behavior of contact 

resistance becomes of importance at particularly low frequencies. 

With respect to the passivated contacts investigated in chapter 5, we note that the 

transfer length of the investigated passivated metal-insulator-semiconductor (MIS) 

contacts is at least as high as the transfer length of the unpassivated contacts. 

The contact size was the about same in all our experiments. Therefore, parasitic 

current flow through the point contacts is of no importance for the investigated 

passivated aluminum contacts on n+ silicon, but could have affected the 

measurements on the investigated passivated aluminum contacts on p+ silicon. 

After this digression on the motivation of including an AC-analysis of contact 

resistance, we return to the simultaneous solution of Equations 3.4.1.2-3.4.1.3 for 

a one dimensional model of a point contact in our test structure. We remind the 

reader that the most important parameters have been defined in Figure 3.4.1.2.  

The x-axis is chosen to have its origin in the middle of a contacted region. 

Substitution of Equation 3.4.1.2 in Equation 3.4.1.3 yields: 

𝛿2𝑉(𝑥)

𝛿𝑥2 −
𝑅𝑆

𝜌′𝑐
𝑉(𝑥) = 0                  (3.4.1.7) 

We call the voltage over the contacted area 𝑉𝑎 and without loss of generality, we 

choose the voltage at 𝑥 = −𝑑𝑚 2⁄  to be −𝑉𝑎/2. Solving Equation 3.4.1.7 with these 

boundary conditions yields for V(x): 

𝑉(𝑥) = −𝑉𝑎 2⁄ 𝑐𝑜𝑠ℎ (√𝑅𝑆 𝜌′𝑐⁄ (𝑥 − 𝑑𝑚 2⁄ )) −

𝑉𝑎[1+𝑐𝑜𝑠ℎ(√𝑅𝑆 𝜌′𝑐⁄ 𝑑𝑚)]

2𝑠𝑖𝑛ℎ(√𝑅𝑆 𝜌′𝑐⁄ 𝑑𝑚)
𝑠𝑖𝑛ℎ (√𝑅𝑆 𝜌′𝑐⁄ (𝑥 − 𝑑𝑚 2⁄ ))         (3.4.1.8) 

We substitute Equation 3.4.1.8 in Equation 3.4.1.2, work out the derivative, and 

evaluate the resulting equation at 𝑥 = −𝑑𝑚 2⁄  and use that 𝐼(−𝑑𝑚 2⁄ ) = 𝐼0, with 

𝐼0 the current flowing in/out of the contacted area. Also, we identify √𝜌′𝑐 𝑅𝑆⁄  as 𝐿𝑇, 

the contact transfer length. This yields the ratio of 𝑉𝑎 to 𝐼0 which is readily identified 

as the impedance of a contacted area: 

𝑉𝑎

𝐼0
= 𝑅𝑚𝑒𝑡 = 𝑅𝑆

𝐿𝑇

𝑑𝑚
 

2𝑠𝑖𝑛ℎ(𝑑𝑚 𝐿𝑇⁄ )

[1+𝑐𝑜𝑠ℎ(𝑑𝑚 𝐿𝑇⁄ )]
.               (3.4.1.9) 
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Equation 3.4.1.9 states that the resistance of point contacts in our test structure is 

only a function of the semiconductor’s sheet resistance 𝑅𝑆 and of the ratio of point 

contact size and the contact transfer length. For the experiments in the present 

dissertation, typical values of 𝑅𝑆 are in the range of 10 − 100Ω 𝑠𝑞𝑢𝑎𝑟𝑒⁄ , 𝑑𝑚 is 

typically around 15 𝜇𝑚 and 𝐿𝑇 is typically in the order of 10 − 100𝜇𝑚, although 

deviations from these ranges occur as well. 

The equivalent impedance of a unit cell in our test structure along a <10> direction 

is found from: 

𝑅𝑒𝑞 = 𝑅1//(2𝑅2 + 𝑅𝑚𝑒𝑡   )// 𝑅1,             (3.4.1.10) 

in which // denotes parallel circuit elements. We now combine Equations 3.4.1.9 

and 3.4.1.10 and use that for a test structure with circular point contacts, the 

contact fraction is given by 𝐶𝑚𝑒𝑡 = 𝜋𝑑𝑚
2 4−1𝑆−2. This yields: 

𝑆′𝑒𝑞  = 𝑆𝑠𝑄′            (3.4.1.11) 

in which 𝑆′𝑒𝑞 = 𝑅𝑒𝑞
−1, i.e. 𝑆′𝑒𝑞 is the admittance of a unit cell in our test structure 

in the presence of metal, 𝑆𝑠 is the conductance of the wafer under test in the 

absence of metal, and 𝑄′ is a factor which depends on 𝐶𝑚𝑒𝑡 and 𝑑𝑚 𝐿𝑇⁄ . 𝑄′ is given 

by: 

𝑄′ = 1 + 2√
𝐶𝑚𝑒𝑡

𝜋
[[1 − 2√

𝐶𝑚𝑒𝑡

𝜋
+ 4√

𝐶𝑚𝑒𝑡

𝜋

𝐿𝑇

𝑑𝑚
 

𝑠𝑖𝑛ℎ(𝑑𝑚 𝐿𝑇⁄ )

[1+𝑐𝑜𝑠ℎ(𝑑𝑚 𝐿𝑇⁄ )]
]

−1

− 1].                  (3.4.1.12) 

From Equation 3.4.1.11, 𝑄′ is the ratio 𝑆′𝑒𝑞 and 𝑆𝑠; i.e. 𝑄′ is a measure for the 

influence of current flow through the point contacts in a point contact lattice on a 

wafer’s in-plane admittance.  

The measured conductance is the norm of Equation 3.4.1.12. Using that 𝑆𝑠 is a 

real number: 

𝑆𝑒𝑞  = 𝑆𝑠𝑄,                        (3.4.1.13) 

with 𝑄 = |𝑄′|, and 𝑆𝑒𝑞 = |𝑆′𝑒𝑞|, in which the symbol | | denotes the norm of the 

quantity inside the vertical lines. Therefore, 𝑄 is a measure for the influence of a 

point contact lattice on a wafer’s in-plane conductance. Note that 𝑄 = 𝑄′ in DC, 

i.e. for 𝜔𝐶𝑗 ≪ 𝜌𝑐
−1. 

𝑄 depends on 𝐶𝑚𝑒𝑡 and the ratio of 𝑑𝑚 and 𝐿𝑇. 𝑄 is shown as a function of these 

parameters in Figure 3.4.1.3. In the limit of 𝐿𝑇 𝑑𝑚⁄ = 0, Equation 3.4.1.13 reduces 

to Equation 10 in [Deckers 2013].  

Also, note that 𝑄 equals one in the limit of transfer lengths much larger than the 

contact size, as long as adjacent point contacts do not touch, i.e. for 𝐶𝑚𝑒𝑡 < 𝜋 4⁄ : 

lim
𝐿𝑇 𝑑𝑚⁄ →∞

(𝑄) = 1.                         (3.4.1.14) 
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In fact, for the contact fractions shown in Figure 3.4.1.3, 𝑄 is only significantly 

different from one when 𝐿𝑇 𝑑𝑚⁄ < 1, which means that it is possible to design test 

structures such that current flow through the metal contacts does not influence the 

photoconductance measurement. It is quite remarkable that even for 𝐿𝑇 𝑑𝑚⁄ = 1, 

𝑄 is undescernable from one on the scale of Figure 3.4.1.3.  

 

Figure 3.4.1.3. 𝑄 in the <10> directions of a simple square lattice of circular contacts 

as a function of 𝐶𝑚𝑒𝑡 and 𝐿𝑇 𝑑𝑚⁄ , for DC (𝜔𝐶𝑗 ≪ 𝜌𝑐) [Deckers 2014]. 𝑄 is close to unity 

for high 𝐿𝑇 𝑑𝑚⁄  which means that current flow through the point contacts in our test 
structure negligibly influences the photoconductance measurement in this limit. 

The observation that 𝑄 ≈ 1 for 𝐿𝑇 𝑑𝑚⁄ > 1 is a very significant prediction because 

designing test structures in a way such that this condition is fulfilled allows for a 

very simple interpretation of the measurement results. In section 3.4.5, we show 

experimental data which support the prediction that current flow through the metal 

contacts does not influence the photoconductance measurement when 𝐿𝑇 𝑑𝑚⁄ >

1. Also, we give a specific example in the next paragraph. 

The example we consider is a test structure for the characterization of 

unpassivated aluminum contacts on a typical n+ diffusion used in our baseline IBC 

(Interdigitated Back Contact) solar cell process flow. The contacts have a contact 

resistance of 5.8 ∙ 10−4Ω ∙ 𝑐𝑚2, the junction has a sheet resistance of 29 Ω/𝑠𝑞𝑢𝑎𝑟𝑒 

and as a result, the contacts have a transfer length of 45 𝜇𝑚. Typical contact 
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openings in our test structure have a diameter of 15 𝜇𝑚, and we consider a test 

structure with a maximum contact fraction of 15%. For this specific example, 𝑄 is 

between 1 and 1.0018 for all contact fractions, which is identical to one for all 

practical purposes. Therefore, parasitic current flow through the point contacts 

instead of through the semiconductor does not constitute a parasitic effect for the 

specific example considered here. 

It is useful to note that current flow through the point contacts does not constitute 

a significant parasitic effect for 𝐿𝑇 𝑑𝑚⁄ > 1, independent of the direction in the test 

structure. This can be understood intuitively for test structures with circular point 

contacts, which we used in our experiments: the effect of metal on conductance 

in contacted areas is independent of orientation due to the circular symmetry. 

Equation 3.4.1.9, which describes this behavior, reduces to 𝑅𝑚𝑒𝑡 = 𝑅𝑆 in the limit 

of 𝑑𝑚 𝐿𝑇⁄ ≪ 1. Therefore, the observation that the presence of point contacts does 

not disrupt photoconductance measurements in this limit is true regardless of the 

direction in the two dimensional lattice of our test structure. This is true regardless 

of the contact fraction, as long as the contact fraction is sufficiently small such that 

adjacent contacts do not overlap. 

The exact form of 𝑄′ depends on the details of the test structure geometry. For 

example, consider a test structure that consists of simple square arrays of square 

metal dots, with the sides of the square contacts aligned with the <10> directions. 

For this structure, 𝑄′ for current flow along the <10> directions is given by:  

𝑄′𝑠𝑞 = 1 + √𝐶𝑚𝑒𝑡 [[1 + √𝐶𝑚𝑒𝑡 [
𝐿𝑇

𝑧
 

2𝑠𝑖𝑛ℎ(𝑧 𝐿𝑇⁄ )

[1+𝑐𝑜𝑠ℎ(𝑧 𝐿𝑇⁄ )]
− 1]]

−1

− 1],                     (3.4.1.15) 

in which 𝑧 is the length of the sides of the square contacts. Analogous to the case 

of simple square lattices of circular contacts, Equation 3.4.1.15 reduces to 𝑄
𝑠𝑞
′ =

1 in the limit of 𝑧 𝐿𝑇⁄  small. This indicates that the notion that the lattice of point 

contacts does not corrupt the photoconductance measurement in the limit of 

transfer lengths much bigger than contact size is true independent of the exact 

test structure geometry. Our discussion of linear test structures in 3.10 further 

corroborates this notion; please refer to Equation 3.10.2.6 in particular. 

3.4.2. Influence on Measured Injection Level 

 

The average injection level in the wafer’s quasi neutral bulk is related to the 

average photoconductivity by Equation 2.2.3.6, which is repeated here: 

∆𝜎𝑎 = 𝑞(𝜇𝑒 + 𝜇𝑝)∆𝑝𝑎.            (3.4.2.1) 
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When the injection level is extracted from a photoconductance measurement on 

our test structure, the influence of current flow through the point contacts on the 

photoconductance measurement is disregarded. Since this influence is 

disregarded, the measured photoconductivity and the measured injection level are 

found by an analogous equation: 

∆𝜎𝑒𝑞 = 𝑞(𝜇𝑒 + 𝜇𝑝)∆𝑝𝑒𝑞,                                   (3.4.2.2) 

in which ∆𝑝𝑒𝑞 is the measured injection level. 

The measured photoconductance is overestimated by a factor 𝑄 (Equation 

3.4.1.13) due to current flow through point contacts in our test structure. As the 

measured photoconductance is proportional to the measured average 

photoconductivity (see sections 2.2.1 and 2.2.2), the average photoconductivity is 

overestimated by the same factor: 

Δ𝜎𝑒𝑞  = Δ𝜎𝑎𝑄.                          (3.4.2.3) 

Substitution of Equations 3.4.2.1 and 3.4.2.2 in Equation 3.4.2.3 yields: 

∆𝑝𝑒𝑞  = 𝑄∆𝑝𝑎,                          (3.4.2.4) 

i.e. the measured injection level is overestimated compared to the injection level 

in the quasi neutral bulk by a factor 𝑄 due to the presence of current flow through 

the point contacts in our test structure. 

3.4.3. Influence on Measured Effective Lifetime 

 

In section 2.2.5, it was derived that for negligible current gradients, the continuity 

Equation in terms of the average minority carrier concentration in the wafer plane 

can be written as: 

1

𝜏𝑒𝑓𝑓
=

𝐺𝑎

∆𝑝𝑎
−

1

Δ𝑝𝑎

𝛿∆𝑝𝑎

𝛿𝑡
.                         (3.4.3.1) 

The following discussion is inspired by the work of Nagel et al. [Nagel 1999], but 

it is specifically applied to the analysis of the influence of currents flowing through 

contacts in 𝐽0,𝑚𝑒𝑡 test structures on extracted lifetimes. 

𝜏𝑒𝑓𝑓 is a parameter that describes all recombination processes in the wafer. 

Depending on the time rate of change of the excess minority carrier density 

compared to the generation rate, either a transient analysis (minority carrier 

lifetime much longer than the characteristic decay time of the generation term), a 

steady state analysis (the characteristic decay time of the generation term is much 

longer than minority carrier lifetime) or a generalized analysis (the in-between 

case) applies. We proceed to discuss errors in measured effective lifetimes due 

to errors in extracted injection levels. 
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Transient measurements 

When the generation term decays much faster than the characteristic time in which 

the minority carrier concentration changes, only the second term on the right hand 

side of Equation 3.4.3.1 is important. Combination of Equations 3.4.2.4 and 

3.4.3.1 readily yields the fact that metal contacts short part of the wafer has no 

influence on measured effective lifetimes, as long as 𝑄 is not injection level 

dependent (which is not expected to be the case). However, the injection level is 

underestimated, as explained before, which has an indirect effect since 

recombination currents are injection level dependent.  

Steady state measurements (QSSPC) 

In a steady state analysis, changes in excess minority carrier density are assumed 

to occur in much faster time scales than changes in the generation term. The 

measurement occurs in the timescale of changes in the generation term, and the 

minority carrier concentration adapts to changes in the generation term in much 

shorter timescales, which are not resolved. Therefore, only the first term on the 

right hand side of Equation 3.4.3.1 needs to be considered in the steady state 

regime. Inspection of Equations 3.4.2.4 and 3.4.3.1 readily yields: 

𝜏𝑒𝑞 = 𝜏𝑒𝑓𝑓𝑄.                          (3.4.3.2) 

As 𝑄 ≥ 1, the presence of point contacts results in over estimations of minority 

carrier lifetimes extracted from QSSPC measurements when 𝑄 is significantly 

different from one, or equivalently when 𝐿𝑇 𝑑𝑚⁄ < 1. 

Generalized analysis 

For a generalized analysis, combination of Equations 3.4.2.4 and 3.4.3.1 yields: 

𝜏𝑒𝑞
−1 =

𝐺

𝑄∆𝑝
−

1

Δ𝑝

𝛿∆𝑝

𝛿𝑡
;                         (3.4.3.3) 

that is, the effective lifetime is over estimated, but by less than a factor 𝑄.  

In conclusion, the effective lifetime measurement is not affected by current flow 

through the point contacts when 𝐿𝑇 𝑑𝑚⁄ > 1, irrespective of the type of 

photoconductance measurements; i.e. irrespective of whether steady-state, 

transient, or generalized photoconductance measurements are performed. 

3.4.4. Influence on Measured 𝐽0,𝑚𝑒𝑡 (QSSPC) 

 

In this section, the effect of injection level and effective lifetime over estimations 

on extracted contact saturation current densities is investigated for the case of 

(quasi) steady state photoconductance (QSSPC) measurements. First, it is 

recalled that contact saturation current densities are either extracted from the 
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slope of inverse effective lifetime as a function of contact fraction (the arbitrary 

injection level technique, Equation 3.2.2.7): 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏𝑢𝑙𝑘
+ 2𝐽0,𝑑𝑖𝑒𝑙

𝑁𝐷+Δ𝑝

𝑞𝑛𝑖
2𝑊

+ 𝐶𝑚𝑒𝑡[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]
𝑁𝐷+Δ𝑝

𝑞𝑛𝑖
2𝑊

,                     (3.4.4.1) 

or from the slope of the total saturation current density as a function of contact 

fraction (Equation 3.2.2.10): 

𝐽0,𝑡𝑜𝑡 = 2 𝐽0,𝑑𝑖𝑒𝑙 + 𝐶𝑚𝑒𝑡[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]                       (3.4.4.2) 

From Equation 3.4.2.4, injection levels measured using photoconductance 

measurements on our test structure are over estimated by a factor 𝑄: 

∆𝑝𝑒𝑞  = 𝑄∆𝑝𝑎.                          (3.4.4.3) 

In quasi steady state photoconductance (QSSPC) measurements, effective 

lifetimes are over estimated by the same factor: 

𝜏𝑒𝑞 = 𝜏𝑒𝑓𝑓𝑄.                          (3.4.4.4) 

This section is devoted to quantifying this over estimation. First, the 

underestimation of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 extracted using the arbitrary injection level 

technique, Equation 3.2.2.7, is investigated. Then, a similar analysis is applied to 

saturation current densities extracted using the high injection level technique, 

Equation 3.2.2.10. Finally, a comparison is made of the influence of current flow 

through metal contacts on saturation current densities extracted using these two 

methods. 

Arbitrary injection level extraction 

We first introduce a slight change of notation for simplicity. In the remainder of this 

section, a subscript “m” is used for measured quantity, and a subscript “r” is used 

for the actual physical quantity. 

For simplicity, we assume negligible bulk recombination. Since  𝐽0,𝑑𝑖𝑒𝑙 is extracted 

at 𝐶𝑚𝑒𝑡 = 0 and 𝑄 = 1 at 𝐶𝑚𝑒𝑡 = 0: 

 𝐽0,𝑑𝑖𝑒𝑙,𝑚 = 𝐽0,𝑑𝑖𝑒𝑙,𝑟,                          (3.4.4.5) 

in which 𝐽0,𝑑𝑖𝑒𝑙,𝑚 is the measured value of 𝐽0,𝑑𝑖𝑒𝑙 and 𝐽0,𝑑𝑖𝑒𝑙,𝑟 is the actual value of 

𝐽0,𝑑𝑖𝑒𝑙. We recall that 𝐽0,𝑑𝑖𝑒𝑙, as extracted from Equation 3.2.2.7, is overestimated 

when bulk recombination is not negligible. 

We now investigate how 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is influenced by current flow through point 

contacts. We make the simplifying assumption that 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is found from the 

derivative of inverse effective lifetime with respect to 𝐶𝑚𝑒𝑡 whereas in practice, we 

use a large 𝐶𝑚𝑒𝑡 range for 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 extraction because of enhanced numerical 

stability. Inspection of Equation 3.2.2.7 yields: 
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[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 =
𝑞𝑛𝑖

2𝑊

𝑁𝐷+∆𝑝𝑚

𝑑𝜏𝑚
−1

𝑑𝐶𝑚𝑒𝑡
,                        (3.4.4.6) 

in which [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 is the measured value of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙, ∆𝑝𝑚 is measured 

injection level and 𝜏𝑚 is measured effective lifetime. However, the injection level 

and effective lifetime are actually over estimated by a factor 𝑄. Substitution of 

Equations 3.4.4.3 and 3.4.4.4 in Equation 3.4.4.6 yields: 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 =
𝑞𝑛𝑖

2𝑊

𝑁𝐷+𝑄∆𝑝𝑟
[
1

𝑄

𝑑𝜏𝑟
−1

𝑑𝐶𝑚𝑒𝑡
−

1

𝑄2
 

𝑑𝑄

𝑑𝐶𝑚𝑒𝑡

1

𝜏𝑟
].                      (3.4.4.7) 

𝜏𝑟
−1 is equal to 𝜏𝑒𝑓𝑓

−1  as given in Equation 3.4.4.1. We use this information in 

combination with Equation 3.4.4.7 while assuming that bulk recombination is 

negligible compared to surface recombination. This last assumption is not 

essential to the point being made but it does greatly simplify the resulting equation, 

Equation 3.4.4.8. 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 =
1

𝑄

𝑁𝐷+Δ𝑝𝑟

𝑁𝐷+𝑄∆𝑝𝑟
[[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑟 −

1

𝑄
 

𝑑𝑄

𝑑𝐶𝑚𝑒𝑡
[2𝐽0,𝑑𝑖𝑒𝑙,𝑟 + 𝐶𝑚𝑒𝑡[𝐽0,𝑚𝑒𝑡 −

𝐽0,𝑑𝑖𝑒𝑙]𝑟]],                           (3.4.4.8) 

in which [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑟 is the actual value of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙. 

High injection 𝑱𝟎,𝒎𝒆𝒕 extraction 

We investigate the relation between the measured total saturation current density 

𝐽0,𝑚 and the actual saturation current density 𝐽0,𝑟 for any contact fraction. Applying 

Kane and Swanson’s [Kane 1985] method for  𝐽0 extraction, and using Equations 

3.4.4.3 and 3.4.4.4: 

𝐽0,𝑚 = 𝑞𝑛𝑖
2 𝑑1/𝜏𝑚

𝑑∆𝑝𝑚
=

𝐽0,𝑟

𝑄2 ,                         (3.4.4.9) 

in which 𝐽0,𝑚 is the total measured saturation current density and 𝐽0,𝑟 is the actual 

total saturation current density. 𝐽0,𝑑𝑖𝑒𝑙 is obtained from the value of 𝐽0,𝑚 at 𝐶𝑚𝑒𝑡 = 0, 

and 𝑄 = 1 at 𝐶𝑚𝑒𝑡 = 0 , which yields: 

𝐽0,𝑑𝑖𝑒𝑙,𝑚 = 𝐽0,𝑑𝑖𝑒𝑙,𝑟,                        (3.4.4.10) 

in which 𝐽0,𝑑𝑖𝑒𝑙,𝑚 is the measured value of 𝐽0,𝑑𝑖𝑒𝑙 and 𝐽0,𝑑𝑖𝑒𝑙,𝑟 is the actual value of 

𝐽0,𝑑𝑖𝑒𝑙,𝑟. We make the simplifying assumption that 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is found from the 

derivative of 𝐽0 with respect to 𝐶𝑚𝑒𝑡 whereas in practice, we use a large range of 

contact fractions because it results in enhanced numerical stability. Using 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 = 𝑑𝐽0,𝑚 𝑑𝐶𝑚𝑒𝑡⁄  yields:  

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 =
1

𝑄2 [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑟  
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−
2

𝑄3

𝑑𝑄

𝑑𝐶𝑚𝑒𝑡
[2𝐽0,𝑑𝑖𝑒𝑙,𝑟 + 𝐶𝑚𝑒𝑡[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑟].                     (3.4.4.11) 

Comparison between arbitrary and high injection level 𝑱𝟎,𝒎𝒆𝒕 extraction 

Since 𝑄 > 1 for 𝐶𝑚𝑒𝑡 > 0, both injection levels and effective lifetimes tend to be 

overestimated due to this parasitic effect. As 𝑄 is a monotonously increasing 

function with 𝐶𝑚𝑒𝑡, these overestimations are worse for higher contact fractions. 

As a result, the slope of inverse lifetime versus contact fraction is 

underestimated, and by Equation 3.4.4.8, this results in an underestimation of 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 as extracted by the arbitrary injection level technique, Equation 

3.2.2.7. A similar reasoning leads to the conclusion that also 𝐽0,𝑚𝑒𝑡 extracted 

using the high injection technique, Equation 3.2.2.10, is underestimated due to 

parasitic current flow through point contacts in our test structure. 

In figures 3.4.4.1 and 3.4.4.2, the effect of parasitic current flow through the point 

contacts is shown for 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 extracted using the arbitrary injection level 

technique, Equation 3.2.2.7; and the high injection level technique, Equation 

3.2.2.10. We used the following parameters in the simulations: the doping level 

was 1015𝑐𝑚−3, the injection level was 5 ∙ 1015𝑐𝑚−3, the actual value of 𝐽0,𝑚𝑒𝑡 was 

200 𝑓𝐴 𝑐𝑚2⁄  and the actual value of 𝐽0,𝑑𝑖𝑒𝑙 was 50 𝑓𝐴 𝑐𝑚2⁄ . We used the expression 

for 𝑄′ that corresponds to a simple square lattice of circular point contacts, 

Equation 3.4.1.12. The parasitic effect is worse for 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 extraction at 

higher contact fractions and for lower 𝐿𝑇 𝑑𝑚⁄  ratios. In extreme cases, extracted 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 values can even be negative. Fortunately, the figures clearly show 

that the parasitic effect can be avoided all together by making the contact size 

smaller than the transfer length because 𝑄 ≈ 1 and 𝑑𝑄 𝑑𝐶𝑚𝑒𝑡⁄ ≈ 0 in this case. 
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Figure 3.4.4.1. Effect of current flow through metal contacts instead of through the 
semiconductor on 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 extracted using the arbitrary injection level technique 

(Equation 3.2.2.7). The actual value of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is 150𝑓𝐴 ∙ 𝑐𝑚−2 [Deckers 2014]. 

We now compare the influence of current flow through metal contacts on 

saturation current densities extracted using Equations 3.2.2.7 and 3.2.2.10. 

Comparison of Equations 3.4.4.8 and 3.4.4.11 yields: 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚,𝐴𝐼
− [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚,𝐻𝐼

>
1

𝑄3  
𝑑𝑄

𝑑𝐶𝑚𝑒𝑡
[2𝐽0,𝑑𝑖𝑒𝑙,𝑟  + 𝐶𝑚𝑒𝑡[𝐽0,𝑚𝑒𝑡 −

𝐽0,𝑑𝑖𝑒𝑙]𝑟],                                 (3.4.4.12) 

in which the subscripts 𝐴𝐼 and 𝐻𝐼 denote values of [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 extracted 

using the arbitrary and high injection level techniques, respectively. In order to 

proof this, we required that 2𝑁𝐷 > 𝑄(𝑁𝐷 − ∆𝑝𝑟). This is always true in high injection 

and it is not relevant in low injection because Equation 3.2.2.10 should not be used 

in that regime. Since Equation 3.4.4.12 requires that [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚,𝐴𝐼
>

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚,𝐻𝐼
, this parasitic effect is less severe when Equation 3.2.2.7 is 

used compared to when Equation 3.2.2.10 is used for 𝐽0,𝑚𝑒𝑡 extraction. Therefore, 

this parasitic effect will tend to make 𝐽0,𝑚𝑒𝑡 extracted using the arbitrary injection 

level technique higher than 𝐽0,𝑚𝑒𝑡 extracted using the high injection technique.  
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Figure 3.4.4.2. Effect of current flow through metal contacts instead of through the 
semiconductor on 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 extracted using the high injection level technique 

(Equation 3.2.2.10). The actual value of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is 150 𝑓𝐴 ∙ 𝑐𝑚−2. 

3.4.5. Experimental 

 

We verify the applicability of our model by comparison with experiment. We focus 

on experimentally verifying the following predictions: 1) There is no parasitic effect 

associated with the presence of metal point contacts in our test structure when the 

transfer length is larger than the point contact size. 2) When the transfer length is 

smaller than the point contact size, extracted contact saturation current densities 

are underestimated. We defer an experimental comparison between contact 

saturation current densities extracted using the high injection and arbitrary 

injection techniques to a later chapter because this comparison also depends on 

injection level variations in the test structure’s quasi neutral bulk. 

We manufactured test structures for contact recombination current measurements 

on multiple wafers (n-type Czochralski silicon with a bulk resistivity around 4Ω ∙

𝑐𝑚). Either a boron emitter (sample a) or a phosphorous back surface field 

(samples b and c) was formed on both wafer sides using a BBr3 or POCl3 diffusion, 

respectively. Surface passivation and dopant drive-in was accomplished using 

thermal oxidation. After thermal oxidation, test structures were made according to 

the procedure outlined in section 3.3, with circular contact openings arranged in a 
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simple square lattice. Contact fractions between 0 and 20% were used. The metal 

contacts were 0.5 µm thick aluminum layers alloyed with 1% silicon. Effective 

lifetime measurements were done in QSSPC mode. As we showed before, this 

corresponds to a worst case scenario in terms of the effect of current flow through 

the point contacts on the photoconductance measurement. All saturation current 

densities were extracted assuming an intrinsic concentration of 7.4 ∙ 109𝑐𝑚−3. 

𝐽0,𝑑𝑖𝑒𝑙 was measured using Kane and Swanson’s method [Kane 1985], at an 

injection level of 1 ∙ 1016𝑐𝑚−3, and 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 was obtained from Equation 

3.2.2.7 at ∆𝑝 = 1 ∙ 1015𝑐𝑚−3. 

The experiment we show here is designed to show that current flow through point 

contacts does not distort the contact recombination current measurement when 

𝐿𝑇 𝑑𝑚⁄ > 1. A similar measurement has been shown in [Deckers 2013], but that 

particular experiment was done on a test structure with very small contact fractions 

of 0-2%. This resulted in only a very small trend of effective lifetime as a function 

of the contact fraction, which in turn resulted in a large uncertainty on the extracted 

contact recombination currents. Here, this issue has been overcome by using a 

significantly larger range of contact fractions, namely 0-20%. 

We compare contact saturation current densities in which the contact holes are 

either contacted (𝐽0,𝑚𝑒𝑡), or not (𝐽0,𝑜𝑝𝑒𝑛). For 𝐽0,𝑜𝑝𝑒𝑛 measurements, the exposed 

contact regions have a very high surface recombination velocity due to the lack of 

surface passivation, which mimics the recombination characteristics of the silicon-

metal interface. However, due to the absence of metal, any effects related to 

current flow through the metal contacts instead of through the semiconductor are 

avoided. Therefore, the comparison between these two types of measurements 

enables the evaluation of the effect of current flow through point contacts on 

saturation current densities extracted from photo-conductance measurements on 

our test structure.  

The high surface recombination velocity needed for 𝐽0,𝑜𝑝𝑒𝑛 measurements was 

achieved using a ten minute dip in a hot (90 − 120℃) SPM solution (1 H2O2 : 4 

H2SO4) prior to the effective lifetime measurements. This yields a poorly 

passivated surface, which was verified by effective lifetime measurements of 

150 𝜇𝑚 thick saw damage removed wafers with high bulk lifetime (at least 1ms at 

∆𝑝 = 1 ∙ 1015𝑐𝑚−3) that were given an SPM dip. The effective lifetime of these 

wafers was below the resolution of our lifetime tester (~1 𝜇𝑠) which yields an 

effective surface recombination velocity of at least 15000 𝑐𝑚 ∙ 𝑠−1. 

For sample a, 𝐽0,𝑚𝑒𝑡 was measured first. Then, the metal contacts were etched and 

𝐽0,𝑜𝑝𝑒𝑛 was subsequently measured. For samples b and c, 𝐽0,𝑜𝑝𝑒𝑛 was measured 

after contact hole opening, and 𝐽0,𝑚𝑒𝑡 was then measured after metallization. For 
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all samples, a forming gas anneal was performed after metallization. For samples 

b and c, a forming gas anneal was performed after contact opening as well.  

Experimentally measured contact saturation current densities are shown in Table 

3.4.5.1, corrected contact saturation current densities are shown in Table 3.4.5.2, 

and other relevant sample parameters are listed in Table 3.4.5.3. The indicated 

uncertainties are 95% confidence intervals indicating the precision of the 

measurements. Sample a has a boron diffusion forming n-p+ junctions on both 

sides of the wafer. Samples b and c have phosphorous diffusions forming n-n+ 

junctions on both sides.  

 

Sample 𝐽0,𝑜𝑝𝑒𝑛 − 𝐽0,𝑑𝑖𝑒𝑙 

(uncovered contact holes) 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 

(metal covered contact holes) 

a 680±55 584±32 

b 356±70 317±43 

c 308±63 326±54 

Table 3.4.5.1. Experimental data based on as-measured effective lifetimes and 
injection levels. A comparison is shown between the saturation current density of 

uncontacted and contacted contact openings, 𝐽0,𝑜𝑝𝑒𝑛 and 𝐽0,𝑚𝑒𝑡, respectively, in 𝑓𝐴 ∙

𝑐𝑚−2. 

 

Sample 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 

(using measured 𝐿𝑇) 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 

(assuming 𝐿𝑇 = 0) 

a 753±52 1374±221 

b 319±43 876±132 

c 328±55 793±113 

Table 3.4.5.2. Experimental data extracted from corrected effective lifetimes and 
injection levels. 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is extracted from effective lifetime measurements that 

were corrected according to Equations 3.4.2.4 and 3.4.3.2. In the first column, the 
actual transfer length (calculated using the DC contact resistance) was taken into 
account. In the second column, the transfer length was assumed to be zero. 

Sample 𝐽0,𝑑𝑖𝑒𝑙 𝜌𝑐 𝐿𝑇 𝑅𝑠ℎ𝑒𝑒𝑡 𝑑𝑚 

a 40 (4 ± 10) ∙ 10−5 6±9 106±5 17 

b 54 (1.9 ± 0.5) ∙ 10−3 66±8 43±2 16 

c 47 (9 ± 3) ∙ 10−4 46±6 43±1 15 
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Table 3.4.5.3. Various properties of samples a, b and c. The corresponding units are: 

[𝐽0,𝑑𝑖𝑒𝑙] = 𝑓𝐴/𝑐𝑚2, [𝜌𝑐] = 𝛺 ∙ 𝑐𝑚2, [𝐿𝑇] = 𝜇𝑚, [𝑅𝑠ℎ𝑒𝑒𝑡] = 𝛺/𝑠𝑞𝑢𝑎𝑟𝑒, [𝑑𝑚] = 𝜇𝑚. Error 

bars are 95% confidence intervals. 𝐽0,𝑑𝑖𝑒𝑙 was measured on test structures without 

metal. 

In Table 3.5.3.1, 𝐽0,𝑜𝑝𝑒𝑛 is compared to 𝐽0,𝑚𝑒𝑡 extracted from as-measured effective 

lifetimes and injection levels. For sample a, 𝐽0,𝑚𝑒𝑡 is significantly lower than 𝐽0,𝑜𝑝𝑒𝑛, 

but for samples b and c, 𝐽0,𝑚𝑒𝑡 is equal to 𝐽0,𝑜𝑝𝑒𝑛 within the experimental precision. 

This can be explained using our model. In table 3.4.5.3, we show 𝐿𝑇, 𝑅𝑆ℎ𝑒𝑒𝑡, 𝜌𝑐 

and 𝑑𝑚 for samples a, b and c. From table 3.4.5.3, sample a is the only sample 

for which 𝐿𝑇 𝑑𝑚⁄ < 1. Therefore, effective lifetimes and injection levels measured 

on contacted regions of sample a are over estimated. This over estimation is 

worse for higher contact fractions. Also, for our samples, and at the relevant 

injection levels, the effective lifetime was either constant or decreasing with 

injection level. As a result, the slope of inverse lifetime versus contact fraction is 

underestimated, and by Equation 3.4.4.8, this results in an underestimation of 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙. For samples b and c on the other hand, 𝐿𝑇 𝑑𝑚⁄ > 1 such that 𝑄 ≈ 1 

and current flow through the point contacts does not influence the photo 

conductance measurement.  

In Figure 3.4.5.1, experimentally measured inverse lifetimes are shown as a 

function of contact fraction for sample c, both in the presence and absence of 

metal contacts. The slope of 𝜏𝑒𝑓𝑓
−1  as a function of 𝐶𝑚𝑒𝑡 is identical for the 

measurements in the presence and absence of metal, which is consistent with the 

data in Table 3.4.5.1. 

The expressions we derived for 𝑄 can be used as a simple model for the effect of 

parasitic current flow on photoconductance measurements. Therefore, the derived 

expressions for 𝑄 can be used to correct measured effective lifetime and injection 

level data for the effect of parasitic current flow through the point contacts. 

Saturation current densities extracted from such corrected data are shown in 

Table 3.4.5.2. However, given the simplicity of the models, the corrections can 

only be expected to qualitatively agree with experiment when 𝑄 is significantly 

different than one. 
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Figure 3.4.5.1. Inverse effective lifetime at 𝟏 ∙ 𝟏𝟎𝟏𝟓𝒄𝒎−𝟑 as a function of contact 
fraction measured on test structures with contacted (squares) and uncontacted 

(circles) contact openings. The data are shown for sample c.  

In the first column of Table 3.4.5.2, the correction was done taking the contact’s 

actual transfer length into account. For samples b and c, 𝑄 ≈ 1 since 𝐿𝑇 𝑑𝑚⁄ > 1 

and as expected, the correction has negligible influence on the extracted value of 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙. For sample a, 𝐿𝑇 𝑑𝑚⁄ < 1 and as expected, the correction has 

significant influence on the extracted value of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙. However, application 

of the correction causes an over estimation compared to 𝐽0,𝑜𝑝𝑒𝑛 − 𝐽0,𝑑𝑖𝑒𝑙. As  

𝐽0,𝑜𝑝𝑒𝑛 − 𝐽0,𝑑𝑖𝑒𝑙 is a measure for the same recombination current as 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙, 

but 𝐽0,𝑜𝑝𝑒𝑛 − 𝐽0,𝑑𝑖𝑒𝑙 is (due to the absence of metal) not influenced by parasitic 

current flow through the point contacts, we can conclude from experiment that our 

model for 𝑄 yields an overestimation of the effect of parasitic current flow through 

point contacts on the photoconductance measurements. In other words, our 

models correctly predict that 𝑄 ≈ 1 when 𝐿𝑇 𝑑𝑚⁄ > 1 but the expressions for 𝑄 only 

yield qualitative measures for the effect of parasitic current flow on 

photoconductance measurements when 𝐿𝑇 𝑑𝑚⁄ < 1 and 𝑄 is significantly bigger 

than one. 

In the second column in Table 3.4.5.2, saturation current densities are shown 

which were extracted from effective lifetime data that were corrected for current 

flow through the point contacts assuming the contact’s transfer length is zero. In 
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other words, 𝑄 was calculated assuming 𝐿𝑇 = 0. Measured effective lifetimes and 

injection levels were corrected using this particular expression for 𝑄, and the 

saturation current densities extracted from these corrected data are shown in the 

second column in Table 3.4.5.2. The correction factor is much larger in this case, 

and this causes 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 to be significantly overestimated when this 

correction factor is used. Note that this is the correction factor which was proposed 

in [Deckers 2013]. We can conclude that this expression for the correction factor 

should not be used to correct effective lifetime – injection level data measured on 

our test structure. Instead, test structures must be designed such that the effect of 

parasitic current flow on the photoconductance measurement is negligible. 

Note that the DC contact resistance was used for the calculation of the correction 

factors. As discussed elaborately in section 3.4.1, this is only valid when 𝜔𝜌𝑐𝐶𝑗 ≪

1 (note that 𝜔 is the angular frequency at which the photoconductance 

measurement is done, 𝜌𝑐 is the contact resistance of the metal-semiconductor 

contact and 𝐶𝑗  is the junction capacitance of the metal-semiconductor junction). 

To check this assumption, we calculated the space charge capacitance of a metal-

semiconductor junction (Equation 3.4.1.6) using a built-in voltage of 0.6 eV for 

aluminum on n-type silicon, taken from experimental barrier heights from [Van 

Overstraeten 2000, p. VII-8]. The built-in voltage for aluminum on p-type silicon 

was taken to be 0.5 eV, which was calculated from the barrier height on n-type 

silicon and the rule of thumb which states that the barrier heights on n- and p-type 

silicon add up to the band gap. The surface doping level of sample a (p-type) was 

ca. 1 ∙ 1019𝑐𝑚−3 and for samples b and c (n-type), it was ca. 3 ∙ 1019𝑐𝑚−3. For a 

measurement frequency of 11 MHz (which is a typical measurement frequency for 

QSSPC measurements taken from [King 1990]), this yields 𝜔𝜌𝑐𝐶𝑗 = 0.06 for 

sample a, 2.9 for sample b, and 1.3 for sample c. Therefore, using the DC analysis 

is only valid for sample a. However, the AC transfer lengths at 11 MHz for samples 

b and c were still estimated to be 39 and 36 𝜇𝑚 respectively, which is still 

significantly bigger than the corresponding point contact diameters of 17 and 15 

𝜇𝑚, respectively. Therefore, 𝐿𝑇 𝑑𝑚⁄ > 1 and 𝑄 ≈ 1 for samples b and c, also in 

AC, which explains why 𝐽0,𝑚𝑒𝑡 ≈ 𝐽0,𝑜𝑝𝑒𝑛 for these samples. 
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3.4.6. Conclusions 

 

In conclusion, closed form analytical expressions were derived for parasitic effects 

related to current flow through metal point contacts on effective lifetimes and 

injection levels from photoconductance measurements in the context of our test 

structure. The model predicts that parasitic effects related to current flow through 

the point contacts in the test structure are only significant when 𝐿𝑇 𝑑𝑚⁄ < 1. This 

means that when test structures are designed such that the contact’s transfer 

length is larger than the contact size, metal contacts do not cause parasitic effects 

in the photoconductance measurement. We verified this prediction experimentally. 
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3.5. In-plane injection level variations1 

 

Recombination currents are strongly injection level dependent. Therefore, 

injection level and lifetime measurements performed on regions with different 𝐶𝑚𝑒𝑡 

must be performed at the same injection level when they are used for the 

extraction of contact recombination characteristics using Equation 3.2.2.7. For the 

same reason, it is absolutely essential that the injection level is approximately 

constant throughout the quasi neutral bulk of a test structure area with a given 

contact fraction for a simple interpretation of the measurement results to apply. 

We first show that injection levels become constant on a relative basis in the limit 

of high minority carrier diffusion lengths 𝐿𝐷 and small effective surface 

recombination velocities 𝑆. Then, we use a one-dimensional model to investigate 

minority carrier variations in the wafer plane and their effect on extracted lifetimes 

in a simple context. 

3.5.1. Requirements for constant excess carrier densities – 

general case 

 

We consider injection level variations in the bulk of an n-type wafer for an arbitrary 

test structure geometry. An analogous analysis has been done for 

photoconductance measurements on blanket test structures, that is the one-

dimensional case, in [Cuevas 1999]. In our present analysis, we provide proof for 

the constancy of injection levels under certain conditions in a much more general 

case. This is useful in the context of our test structure because injection levels can 

vary in three dimensions, and not just one. We use the continuity equation and 

combine it with the current equation to yield the following well known expression: 

−𝑞𝜇𝑝∇ [𝑝𝐸 −
𝑘𝑇

𝑞
∇𝑝] + 𝑞[𝐺 − 𝑅] = 𝑞

𝛿𝑝

𝛿𝑡
,           (3.5.1.1) 

in which 𝑝 is minority carrier (hole) concentration, ∇ is the del operator, q is 

elementary charge, 𝜇𝑝 is minority carrier mobility, 𝐸 is the electric field, 𝑘 is 

Boltzmann’s constant, 𝑇 is temperature, 𝑅 is the volumetric recombination rate, 𝐺 

is the volumetric generation rate, and 𝑡 is time. As argued in section 2.2.5, the field 

term is of no importance in the wafer’s bulk during a photoconductance 

measurement. Also, we assume that the timescale in which minority carrier 

concentrations change (that is the effective minority carrier lifetime) is much 

                                                 
1 This section is based on [Deckers 2014b]. 
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shorter than the timescale on which the measurement is done, which is equivalent 

to assuming steady state. This yields: 

𝐷𝑝∇
2𝑝 + 𝐺 − 𝑅 = 0,             (3.5.1.2) 

in which 𝐷𝑝 = 𝜇𝑝 𝑘𝑇 𝑞⁄ . We describe bulk recombination with an effective lifetime 

𝜏𝑏, and identify the minority carrier diffusion length 𝐿𝐷 = √𝐷𝑝𝜏𝑏. Reordering yields:  

∇2𝑝

𝑝−𝑝0−𝜏𝑏𝐺
=

1

𝐿𝐷
2 ,             (3.5.1.3) 

with 𝑝0 the equilibrium minority carrier concentration. For a uniform generation rate 

𝐺, the quantity 𝑝 − 𝑝0 − 𝜏𝑏𝐺 is the amount by which the excess carrier 

concentration differs from the value it would have in the absence of edge effects. 

It is, for all intents and purposes, the amount of driving force for spatial minority 

carrier gradient variations. Therefore, the Laplacian of 𝑝 gets small on a relative 

basis (per unit driving force) in the limit of large 𝐿𝐷. As a result, relative changes 

in ∇𝑝 become small in the limit of large 𝐿𝐷.  

In order to investigate the requirements for small minority carrier concentration 

gradients, we consider the boundary conditions. At any boundary during a 

photoconductance measurement, current continuity, the assumption of only a 

diffusion current flowing to the surface and the description of surface 

recombination using an effective surface recombination velocity 𝑆 yields the 

following well-known boundary condition for Equation 3.5.1.3: 

𝐷𝑝∇𝑝 ∙ �⃗� = 𝑆(𝑝 − 𝑝0),            (3.5.1.4) 

in which �⃗�  is an outward pointing unit vector perpendicular to the surface, and “∙” 

denotes the dot product. Reordering Equation 3.5.1.4, and using 𝑝 − 𝑝0 ≈ 𝑝 yields: 

𝐷𝑝∇𝑝∙�⃗� 

𝑝
= 𝑆.             (3.5.1.5) 

Therefore, the gradient of the minority carrier concentration perpendicular to any 

surface becomes smaller on a relative basis as that surface gets better passivated 

(small S). Since any finite volume is bounded from all sides by surfaces, this 

constraint is applied to the minority carrier gradient in any arbitrary direction. We 

now combine this observation with the previously derived notion that relative 

changes in minority carrier concentration gradient become small for 𝐿𝐷 large. This 

yields that on a relative basis, minority carrier concentrations become 

approximately constant for low 𝑆 and high 𝐿𝐷, independent of the exact test 

structure geometry. 

3.5.2. One dimensional model for in-plane injection level 

variations 
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In order to investigate under which conditions minority carrier concentrations can 

be considered to be constant in practice, we use a simple model. It is linear 

analogue of our test structure for the extraction of contact recombination 

characteristics using QSSPC. Linear test structures are shortly discussed in 

section 3.10.2. The model is sufficiently elaborate to qualitatively capture some of 

the essential physics of the actual test structure but it is simple enough to allow 

for analytical solutions for the minority carrier concentrations. The closed form 

expressions we obtain allow for a clear and intuitive interpretation of the effects of 

non-constant injection levels in the test structure. Also, as we will show in section 

3.5.4, our model shows excellent agreement with experimental 

photoluminescence measurements on interdigitated back contact (IBC) solar 

cells. 

 

Figure 3.5.2.1. Cross section of a one-dimensional model of our test structure. This 
model is used as the basis for our calculations of in-plane excess carrier density 
variations. 

Our one dimensional model consists of an infinite array of long contact fingers with 

width 𝑑𝑚 on a passivated wafer. The contacts are separated by fully passivated 

areas with width 𝑑𝑝. A cross section of this model structure in the direction 

perpendicular to the contact lines is drawn in Figure 3.5.2.1.  

Also, the bulk diffusion length is assumed to be much larger than the wafer 

thickness 𝑊. In this case, minority carrier concentrations are approximately 

constant over the wafer thickness. This is a commonly used assumption in the 

extraction of saturation current densities on blanket structures. This assumption 

and the consequences of its breakdown are discussed in [Cuevas 1999] in the 

context of saturation current density extraction from QSSPC measurements on 

blanket test structures for a number of simple cases. From our preceding 

discussion, and from our discussion in section 2.3, we can conclude that the 
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assumption of constant injection levels over a wafer’s thickness is also more 

accurate for 𝑆1 and 𝑆2 small. 

Within the scope of the further discussion in the present section, we assume 

constant injection levels over the wafer thickness. Out-of-plane injection level 

variations are discussed in section 3.6. 

In the model that we introduce in this section, the recombination characteristics of 

passivated areas and contacted areas are described by effective lifetimes 𝜏𝑝 and 

𝜏𝑚, respectively. 𝜏𝑝 and 𝜏𝑚 are effective lifetimes which lump all recombination 

current components in the bulk and at the surfaces: 𝜏𝑚
−1 = 𝜏𝑏

−1 + (𝑆𝑚𝑒𝑡 + 𝑆𝑑𝑖𝑒𝑙)𝑊
−1 

and 𝜏𝑝
−1 = 𝜏𝑏

−1 + 2𝑆𝑑𝑖𝑒𝑙𝑊
−1, with 𝜏𝑏 bulk lifetime, 𝑆𝑑𝑖𝑒𝑙 effective surface 

recombination velocity of passivated surfaces, and 𝑆𝑚𝑒𝑡 effective surface 

recombination velocity of contacted surfaces. 

For simplicity, we limit ourselves to a steady-state analysis. From a basic mass 

balance, the current equation and the assumption of quasi neutrality, it follows that 

finding the minority carrier concentration in the test structure plane amounts to 

concurrently solving Equations 3.5.2.1 (for 𝑝 in contacted areas) and 3.5.1.7 (for 

𝑝 in passivated areas). For contacted areas: 

−𝐿𝐷,𝑚
2 𝑑2𝑝𝑚

𝑑𝑥′2 + 𝑝𝑚 − 𝑝0 − 𝜏𝑚𝐺 = 0,           (3.5.2.1) 

in which 𝐿𝐷,𝑚 is an effective diffusion length in contacted areas, 𝑝𝑚 is the minority 

carrier concentration in contacted areas and τm is the effective lifetime in contacted 

areas. The 𝑥′ coordinate is used for simplicity in contacted areas. It is defined such 

that 𝑥′ = 0 at the left hand side of contacted areas and 𝑥′ = 𝑑𝑚 (contacted area 

width) on the right hand side of contacted areas. A similar equation holds for the 

passivated areas: 

−𝐿𝐷,𝑝
2 𝑑2𝑝𝑝

𝑑𝑥2 + 𝑝𝑝 − 𝑝0 − 𝜏𝑝𝐺 = 0,           (3.5.2.2) 

in which 𝐿𝐷,𝑝 is the effective diffusion length in passivated areas, 𝑝𝑝 is minority 

carrier concentration in passivated areas and 𝜏𝑝 is the effective lifetime in 

passivated areas. The 𝑥 coordinate is used for simplicity in passivated parts. It is 

defined such that 𝑥 = 0 at the left hand side of a passivated area and 𝑥 = 𝑑𝑝 

(passivated area width) at the right hand side of a passivated area. Note that 𝑥 is 

related to 𝑥′ by: 

 𝑥 = 𝑥′ +
𝑑𝑚+𝑑𝑝

2
.              (3.5.2.3) 

Because of translational symmetry, minority carrier concentrations are identical in 

all contacted and passivated areas. Therefore, we do not need to distinguish 

between different contacted and passivated areas in our equations. Due to mirror 
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symmetry around the center of contacted and passivated patches the solutions of 

Equations 3.5.2.1 and 3.5.2.2 are symmetric around the center of contacted and 

passivated areas, respectively. Therefore, they can be written in the general form: 

𝑝𝑚 = 𝐶𝑎𝑐𝑜𝑠ℎ((𝑥′ − 𝑑𝑚/2)𝐿𝑚
−1) + 𝑝0 + 𝜏𝑚𝐺,          (3.5.2.4) 

𝑝𝑝 = 𝐶𝑏𝑐𝑜𝑠ℎ ((𝑥 − 𝑑𝑝/2)𝐿𝑝
−1) + 𝑝0 + 𝜏𝑝𝐺,                       (3.5.2.5) 

with 𝑑𝑝 passivated area width and 𝑑𝑚 contacted area width. Boundary conditions 

determine the constants 𝐶𝑎 and 𝐶𝑏 in Equations 3.5.2.4 and 3.5.2.5. The first set 

of boundary conditions arises from requiring charge carrier density continuity at 

the boundaries between contacted and passivated areas: 

𝑝𝑚( 𝑥′ = 0) = 𝑝𝑝 (𝑥 = 𝑑𝑝) ,                        (3.5.2.6) 

𝑝𝑚( 𝑥′ = 𝑑𝑚) = 𝑝𝑝 (𝑥 = 0) .                        (3.5.2.7) 

Because of mirror symmetry around the center of contacted and passivated areas, 

these boundary conditions are equivalent. The second set of boundary conditions 

arises from the requirement of current density continuity at the boundaries 

between contacted and passivated areas: 

𝑑𝑝𝑚

𝑑𝑥′
( 𝑥′ = 0) =

𝑑𝑝𝑝

𝑑𝑥
 (𝑥 = 𝑑𝑝) ,                        (3.5.2.8) 

𝑑𝑝𝑚

𝑑𝑥′
( 𝑥′ = 𝑑𝑚) =

𝑑𝑝𝑝

𝑑𝑥
 (𝑥 = 0).                        (3.5.2.9) 

Again, mirror symmetry causes these boundary conditions to be equivalent. With 

boundary conditions 3.5.2.6-3.5.2.9, the solutions to Equations 3.5.2.1 and 3.5.2.2 

are found to be: 

𝑝𝑚 =
𝐺0(𝜏𝑝−𝜏𝑚)𝑐𝑜𝑠ℎ(

𝑥′−𝑑𝑚/2

𝐿𝑚
)

𝐿𝑝

𝐿𝑚

𝑠𝑖𝑛ℎ(
𝑑𝑚
2𝐿𝑚

)

𝑡𝑎𝑛ℎ(
𝑑𝑝
2𝐿𝑝

)

+𝑐𝑜𝑠ℎ(
𝑑𝑚
2𝐿𝑚

)

+ 𝑝0 + 𝜏𝑚𝐺,                     (3.5.2.10) 

𝑝𝑝 =
𝐺0(𝜏𝑚−𝜏𝑝) cosh(

𝑥−𝑑𝑝/2

𝐿𝑝
)

𝐿𝑚
𝐿𝑝

𝑠𝑖𝑛ℎ(
𝑑𝑝
2𝐿𝑝

)

𝑡𝑎𝑛ℎ(
𝑑𝑚
2𝐿𝑚

)
+𝑐𝑜𝑠ℎ(

𝑑𝑝

2𝐿𝑝
)

+ 𝑝0 + 𝜏𝑝𝐺.                     (3.5.2.11) 

We provide two numerical examples to elucidate the physical interpretation of 

Equations 3.5.2.10 and 3.5.2.11. In the first example (Figure 3.5.2.2), we consider 

the ratio of the minimum and maximum minority carrier concentration for various 

contacted area diffusion lengths. The minimum minority carrier concentration is 

achieved in the center of contacted areas and the maximum minority carrier 

concentration is achieved in the center of passivated areas. In our simulation: 𝜏𝑝 =

200𝜇𝑠, 𝑑𝑚 = 15𝜇𝑚, 𝑑𝑝 = 100𝜇𝑚, and 𝐷𝑝 = 12𝑐𝑚2𝑠−1. For 𝐿𝑚 ≫ 𝑑𝑚, the minority 

carrier concentration is constant throughout the test structure. However, for 𝐿𝑚 of 



106 

 

order 𝑑𝑚 or smaller, the minority carrier concentration varies strongly in the test 

structure plane.  

 

Figure 3.5.2.2. Ratio of the minimum minority carrier concentration in the contacted 
areas and the maximum minority carrier concentration in the passivated areas. The 

parameters used in the simulation were: 𝜏𝑝 = 200𝜇𝑠, 𝑑𝑚 = 15𝜇𝑚, 𝑑𝑝 = 100𝜇𝑚. 

The second example (Figure 3.5.2.3) tells a similar story as the first in a different 

way. This time, we vary both 𝜏𝑝 and 𝜏𝑚 simultaneously and we plot normalized 

minority carrier concentrations for three different scenarios. Normalized minority 

carrier concentrations are defined as 𝑝 𝑝𝑚𝑎𝑥⁄ , with 𝑝𝑚𝑎𝑥 the maximum minority 

carrier concentration for a given scenario. For high minority carrier lifetimes (high 

diffusion lengths), the injection level is approximately constant in the test structure 

plane, for low minority carrier lifetimes (low diffusion lengths), there are significant 

injection level variations. Note that the results we obtain are reminiscent of 

electrical shading effects in IBC (Interdigitated Back Contact) silicon solar cells 

(see for example [Hermle 2008, Kluska 2010]). In section 3.5.4, we show the 

applicability of our one dimensional model to the study of injection level variations 

in IBC solar cells.  

Our results are also in line with the ‘scaling effect’ of effective lifetimes observed 

in [Schöfthaler 1994], in which microwave-detected photoconductance decay 

measurements were performed on samples with lattices of point contacts. 
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Therefore, the qualitative observations made in this section can be extrapolated 

to the point-contact based test structures at the heart of this dissertation. 

 

 

Figure 3.5.2.3. Injection level variations in the direction perpendicular to the metal 
contact fingers, for several combinations of minority carrier lifetimes in the passivated 
regions and in the contacted regions. The origin of the position coordinate is the 
boundary between a passivated and a contacted area. Subsequent maxima (minima) 
are centers of passivated (contacted) areas. Simulation for 𝑑𝑚 = 15𝜇𝑚 and 𝑑𝑝 =

100𝜇𝑚. 

3.5.3. One dimensional model: limiting cases 

 

We now investigate Equations 3.5.2.10 and 3.5.2.11 in a number of interesting 

limiting cases. First, we take the limit of these equations for all diffusion lengths 

much larger than the relevant characteristic feature sizes, that is 𝐿𝑚 ≫ 𝑑𝑚 and 

𝐿𝑝 ≫ 𝑑𝑝. A first order Taylor series expansion in 𝑑𝑚 𝐿𝑚⁄  and 𝑑𝑝 𝐿𝑝⁄  readily yields: 

 𝑝𝑚 − 𝑝0 = 𝐺0 [
1

𝜏𝑝
+ 𝐶𝑚𝑒𝑡 [

1

𝜏𝑚
−

1

𝜏𝑝
]]

−1

= 𝑝𝑝 − 𝑝0.                      (3.5.3.1) 

Therefore, the injection level is constant in the wafer plane in the limit of 𝐿𝑚 ≫ 𝑑𝑚 

and 𝐿𝑝 ≫ 𝑑𝑝. This the desirable case because in this limit, the expression for the 

excess carrier density reduces to a very simple form, namely Equation 3.5.3.1. 
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This form is equivalent to the expressions for the extraction of contact 

recombination characteristics proposed in [Deckers 2013] (Equations 3.2.2.7 and 

3.2.2.10).  

In the limit of 𝐿𝑚 ≫ 𝑑𝑚 and 𝐿𝑝 ≫ 𝑑𝑝, the measurement interpretation is very 

straightforward. For example, the measurement may be interpreted in terms of 

effective surface recombination velocities of contacted and passivated areas, 𝑆𝑚𝑒𝑡 

and 𝑆𝑑𝑖𝑒𝑙: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏
+

2𝑆𝑑𝑖𝑒𝑙

𝑊
+

𝐶𝑚𝑒𝑡

𝑊
[𝑆𝑚𝑒𝑡 − 𝑆𝑑𝑖𝑒𝑙],                       (3.5.3.2) 

in which 𝜏𝑏 is bulk effective lifetime, and 𝜏𝑒𝑓𝑓 is the overall effective lifetime which 

is measured in the QSSPC measurement. 

The other limit we investigate is the limit of diffusion lengths much smaller than 

the relevant characteristic feature sizes. We first consider Equation 3.5.2.10, take 

the limit of 𝑑𝑚 ≫ 𝐿𝑚, and reorder: 

𝑝𝑚 − 𝑝0 =
𝐺0𝐿𝑚(𝜏𝑝−𝜏𝑚)

𝐿𝑝𝑐𝑜𝑡𝑎𝑛ℎ(
𝑑𝑝

2𝐿𝑝
)+𝐿𝑚

𝑐𝑜𝑠ℎ(
𝑥′−𝑑𝑚/2

𝐿𝑚
)

𝑒𝑥𝑝(
𝑑𝑚
2𝐿𝑚

)
+ 𝜏𝑚𝐺0.                       (3.5.3.3) 

The maximum value of the 𝑐𝑜𝑠ℎ([𝑥′ − 𝑑𝑚/2] 𝐿𝑚⁄ ) factor is reached at the edges 

of the contacted regions, where it is approximately equal to 𝑒𝑥𝑝(𝑑𝑚 2𝐿𝑚⁄ ) for 𝐿𝑚 ≪

𝑑𝑚. However, when 𝐿𝑚 ≪ 𝑑𝑚, the cosh factor becomes much smaller than 

𝑒𝑥𝑝(𝑑𝑚 2𝐿𝑚⁄ ) even at relatively small distances from the edge of the contacted 

areas. Therefore, the ratio of 𝑐𝑜𝑠ℎ((𝑥′ − 𝑑𝑚/2) 𝐿𝑚⁄ ) to 𝑒𝑥𝑝(𝑑𝑚 (2𝐿𝑚)⁄ ) is 

exponentially smaller than one in the entire contacted area except very close near 

the contact edges. The other factors in the first term do not diverge as 𝑑𝑚 𝐿𝑚⁄  goes 

to zero. Therefore, the first term in Equation 3.5.3.3 is negligible compared to the 

second term in most of the contacted area. As a result, the excess minority carrier 

concentration in the contacted area is given by: 

𝑝𝑚 − 𝑝0 = 𝜏𝑚𝐺0,                          (3.5.3.4) 

which is (not surprisingly) equal to the steady state excess minority carrier 

concentration in a uniformly contacted semiconducting slap under illumination. 

This means that the minority carrier concentration in the contacted area is not 

influenced by the region outside the contacts. This is illustrated in Figure 3.5.3.1. 

An analogous derivation yields for the minority carrier concentration in the 

passivated areas in the limit of 𝐿𝑝 ≪ 𝑑𝑝: 

𝑝𝑝 − 𝑝0 = 𝜏𝑝𝐺0,                          (3.5.3.5) 

that is the excess minority carrier concentration in the passivated areas is the 

same as what would be expected for an infinitely large passivated area. Therefore, 
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in the limits of 𝐿𝑚 ≪ 𝑑𝑚 and 𝐿𝑝 ≪ 𝑑𝑝 respectively, contacted areas are not 

influenced by passivated areas and vice versa. Also, the injection level is constant 

throughout each area separately. In this limit, and assuming 𝐿𝑇 ≫ 𝑑𝑚, with 𝐿𝑇 the 

contact’s transfer length, the measured injection level from a photoconductance 

measurement in the x-direction would be the area-weighed harmonic average of 

the injection levels in contacted and passivated areas. This is found from a lumped 

circuit analysis, the relation between photoconductance and injection level, and 

Equations 3.5.3.4 and 3.5.3.5. On the other hand, when 𝐿𝑇 ≪ 𝑑𝑚, the 

photoconductance measurement would not be influenced at all by the minority 

carrier properties in the contacted areas because they would be fully shorted by 

the metal contacts. In intermediate cases, the injection level is given by Equations 

3.5.2.10 and 3.5.2.11, and the measured injection level is a complicated function 

of the diffusion lengths, contact transfer length and characteristic feature sizes. 

 

Figure 3.5.3.1. Minority carrier concentration as a function of position in contacted 
areas. Minority carrier concentration is normalized to the minority carrier concentration 
at the edge of contacted areas. Position is normalized to contacted area width. 

Parameters used in the simulation were: 𝐺0 = 1.05 ∙ 1019𝑐𝑚−3𝑠−1, 𝜏𝑝 = 100𝜇𝑠, 𝜏𝑚 =

1𝜇𝑠, 𝐷𝑝 = 12𝑐𝑚2 ∙ 𝑠−1, 𝑝0 = 7.7 ∙ 104𝑐𝑚−3. Contacted area width is varied. 
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Note that the limits of effective diffusion lengths much smaller and much larger 

than the relevant characteristic sizes are analogous to the small-scale and large-

scale limits identified in [Schöfthaler 1994], respectively. 

In conclusions, the observations made in this section strongly justify the design 

rule that all characteristic feature sizes must be much smaller than the relevant 

diffusion lengths. 

3.5.4. Experimental 

We performed steady state photoluminescence (PL) imaging measurements on 

finished IBC (interdigitated back contact) solar cells to experimentally validate our 

model calculations. The structure and manufacturing process of these solar cells 

is described in section 1.4.2. In Table 3.5.4.1, we summarize several key 

performance parameters of the investigated samples. 

Sample 𝑉𝑜𝑐  [𝑚𝑉] 𝐽𝑠𝑐  [𝑚𝐴 ∙ 𝑐𝑚−2] 𝐹𝐹 [%] 𝜂 [%] 

a 690 41.0 80.4 22.7 

b 687 41.5 80.2 22.9 

Table 3.5.4.1. Key performance parameters of the samples used for validation of our 
one dimensional model (in-house measurements). Sample a has a low BSF contact 
fraction (2%), and sample b has a high BSF contact fraction (8%). 

The solar cells have an asymmetrical structure consisting of an oxide passivated 

lowly doped front surface field on the front, and alternating highly doped emitter 

and back surface field (BSF) regions on the back. Both regions are contacted by 

point contacts, but the individual point contacts are small and very closely spaced, 

such that the corresponding contact recombination current can be lumped 

together with the recombination current of oxide passivated BSF and emitter 

areas. As a result, the recombination properties of the BSF and emitter regions 

can be described by the corresponding effective lifetimes. In addition, the BSF has 

a significantly higher 𝐽0 than the emitter. Therefore, the interdigitated BSF and 

emitter areas form alternating regions with low and high effective lifetime, such 

that this structure corresponds to the structure modelled in our one dimensional 

model. 

We performed photoluminescence measurements on such a structure. Since the 

radiative band-to-band recombination rate is proportional to the pn product, the 

photoluminescence (PL) signal coming from any small wafer area is proportional 

to the average pn product over the wafer thickness in that area. Therefore, the 

ratio of the PL signal at two different locations equals the ratio of the average pn 

product at those locations.  
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The use of infrared light for carrier excitation during photoluminescence imaging 

results in a uniform carrier generation rate, and the use of high lifetime wafers and 

adequate surface passivation ensures that the assumption of constant minority 

carrier concentrations over wafer thickness is reasonable. Therefore, during 

photoluminescence measurements the minority carrier concentration in the BSF 

and emitter fingers of our IBC cells can be described using Equations 3.5.2.10 and 

3.5.2.11, with the low-lifetime BSF regions analogous to contacted regions, and 

the high lifetime emitter regions analogous to passivated regions. This allows the 

comparison of experimental photoluminescence data to model calculations.  

Figure 3.5.4.1 shows such a comparison for two samples that are identical except 

for their BSF contact fraction. Sample a has a low BSF contact fraction (2%), and 

sample b has a high BSF contact fraction (8%). The symbols in Figure 3.5.4.1 are 

experimental data, the solid lines are simulations using our one dimensional model 

that have been calibrated to fit the experimental data. The only fitting parameters 

that were used were 𝜏𝑚 (here: effective lifetime of the BSF region) and 𝜏𝑝 (here: 

effective lifetime of the emitter region). For both samples, 𝜏𝑝 was found to be 1 

ms, which a reasonable value, and it is consistent with the fact that the emitter 

was identical for both samples. 𝜏𝑚 was 700 𝜇𝑠 for sample a and 550 𝜇𝑠 for sample 

b, which is consistent with the fact that our BSF has a higher saturation current 

density than our emitter. It is also consistent with sample a having a smaller BSF 

contact fraction than sample b and that consequentially, sample a has a lower 

BSF saturation current density than sample b. Therefore, we have proved that our 

model shows excellent agreement with experiment.  
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Figure 1 3.5.4.1. Normalized pn product as a function of position. The inset shows a 
photoluminescence image of sample a. The origin of the position coordinate is chosen 
to be the center of a BSF region. The symbols are experimental data, the lines are 
simulations from our one dimensional model that have been calibrated to fit the 
experimental data.  

3.5.5. Conclusions 

 

In conclusion, we analyzed injection level variations in test structures for the 

extraction of recombination characteristics of metal contacts on semiconducting 

substrates from photoconductance (QSSPC) measurements. We first made a very 

general derivation to show that injection levels are constant in the limit of small 

effective surface recombination velocities and large minority carrier diffusion 

lengths. The usefulness of this treatment lies in it showing how our method works 

best for high lifetime wafers with low surface recombination currents, irrespective 

of test structure geometry. Then, we used a simple one dimensional model to 

analyze minority carrier concentration variations in a practical setting, in the 

context of test structures for contact recombination current extraction from 

photoconductance measurements.  

We showed how the injection level becomes constant in the wafer plane when 

effective diffusion lengths are much larger than the relevant characteristic feature 

sizes. Also, we discussed how minority carrier concentrations vary with position 
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when this limit is not satisfied, and we qualitatively described how such injection 

level variations influence the photoconductance measurement depending on the 

ratio of contact transfer length and contact size.  

Because these results are based on a one dimensional model, they are only 

expected to qualitatively agree with experiments on test structures based on two 

dimensional lattices of point contacts. However, the simplicity of the expressions 

we derive from the one dimensional model make them useful tools for 

understanding the physics of point contact based test structures for the extraction 

of the recombination characteristics of metal contacts on semiconducting 

substrates from photoconductance measurements. In addition, the modelled 

structure accurately reflects the structure of the linear test structures described in 

section 3.10 such that the developed models could be directly applied to the 

analysis of such linear test structures. Finally, the excellent fit of our one 

dimensional model with experimental photoluminescence data suggests that it 

could also be a useful tool to study injection level variations in IBC silicon solar 

cells. 
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3.6. Out-of-plane injection level variations 

3.6.1. Theory 

 

As we have stressed before, recombination currents at the surfaces of silicon 

wafers depend on the excess carrier density at the surface. Therefore, the 

constancy of injection levels in the wafer bulk is a critical requirement in the context 

of QSSPC measurements on our test structure. It is only in the case of uniformly 

constant injection levels throughout the test structure bulk that the measurements 

can be easily interpreted because only in this case, “the” injection level is well 

defined. Roughly speaking, injection levels may vary either over wafer thickness 

or in the wafer plane. We discussed in-plane injection levels in section 3.5. The 

effect of out-of-plane injection level variations in blanket test structures during 

QSSPC measurements is discussed in [Cuevas 1999]. In this chapter, we 

investigate out-of-plane injection level variations in the context of our test 

structure. 

In typical test structures, the design rules laid out in the previous section are 

followed such that the contacted area size and the contact area spacing are much 

smaller than the effective diffusion lengths in contacted and passivated areas, 

respectively. For a representative example for the experimental structures 

considered in the present dissertation, wafer thickness is about 150 𝜇𝑚, the 

effective lifetime in passivated areas is in the order of 1 ms and the effective 

lifetime in contacted areas is in the order of 0.1 ms. This corresponds to effective 

hole diffusion lengths in passivated areas of order 1 mm and to effective hole 

diffusion lengths in contacted areas of order 300 µm. Typically, the contact area 

spacing is in the order of 100 µm or less, and the size of the point contacts is 

typically around 15 µm.1 Accordingly, the effective diffusion lengths in contacted 

and passivated areas are much larger than the size of the contacted areas. 

Extrapolating the findings of section 3.5 to test structures based on simple square 

lattices of point contacts, we can conclude that in-plane excess carrier density 

variations are mitigated in this typical example. However, from the simulations in 

section 2.3, out-of-plane excess carrier density variations may be significant in this 

typical example, especially for large effective surface recombination velocities 

(e.g. because of large contact fractions and/or high injection levels) and/or for 

asymmetric test structures (as used in the present dissertation). 

                                                 
1 Note that the contact area spacing is smaller for higher contact fractions in the test 

structures used in this dissertation. Also, for the lithography-based test structures, 

the diameter of the circular contacts was kept fixed at approximately 15 µm. 
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The choice for asymmetric, single side contacted test structures, was primarily 

made because of difficulties related to the alignment of features on opposite sides 

of a wafer. Also, the generation profile changes with changing contact fraction for 

two-side contacted test structures, which complicates the measurement 

interpretation. In addition, partial shading in 2 side contacted test structures could 

introduce additional in-plane excess carrier density variations due to 

inhomogeneous in-plane excess carrier density generation profiles. 

We now discuss the influence of injection level variations on extracted saturation 

current densities for typical test structures, with properly designed contact size 

and pitch such that in-plane injection level variations are avoided. The test 

structure is based on a passivated wafer. One side of the wafer, denoted front (f), 

is passivated and the other side, denoted back (b), is partly passivated and partly 

contacted. The passivation is imperfect though such that there is still some 

recombination in the passivated areas; as is the case with, for example, the 

passivation of silicon surfaces with thermal silicon oxide layers. We express 

surface recombination currents in terms of saturation current densities and the pn 

product.  

First, we consider the steady state recombination current in passivated and 

contacted areas separately. Note that because we assume constant in-plane 

excess carrier concentrations, and we because we consider a quasi-neutral 

region, only current transport in the out-of-plane direction needs to be considered.  

Following a basic mass balance, the steady state recombination current in 

passivated areas is given by: 

𝐽𝑅,𝑑𝑖𝑒𝑙 =
𝑞∆𝑝𝑎𝑊

𝜏𝑝
= 𝑞 ∫ 𝑅𝐵𝑊

𝑑𝑥 + 𝑞𝑆𝑑𝑖𝑒𝑙∆𝑝(𝑓) +  𝑞𝑆𝑑𝑖𝑒𝑙∆𝑝(𝑏),        (3.6.1.1) 

in which ∆𝑝𝑎 is the average carrier concentration over the wafer thickness, 𝜏𝑝 is 

the effective lifetime in passivated areas, 𝑅𝐵 is the volumetric bulk recombination 

rate, and 𝑆𝑑𝑖𝑒𝑙 is the effective surface recombination velocity at the passivated 

surfaces. The 𝑥-direction is the out-of-plane direction. 

Using Equation 2.2.4.5,  

∫ 𝑅𝐵𝑊
𝑑𝑥 ≈ 𝑊

∆𝑝𝑎

𝜏𝑏
.            (3.6.1.2) 

A combination of Equations 3.6.1.1 and 3.6.1.2 yields: 

1

𝜏𝑝
=

1

𝜏𝑏
+

𝑆𝑑𝑖𝑒𝑙

𝑊

∆𝑝(𝑓)+ ∆𝑝(𝑏)

∆𝑝𝑎
.            (3.6.1.3) 

Again following a basic mass balance, the steady-state recombination current in 

contacted areas is given by: 



116 

 

𝐽𝑅,𝑚𝑒𝑡 =
𝑞∆𝑝𝑎𝑊

𝜏𝑚
= 𝑞 ∫ 𝑅𝐵𝑊

𝑑𝑥 + 𝑞𝑆𝑑𝑖𝑒𝑙∆𝑝(𝑓) +  𝑞𝑆𝑚𝑒𝑡∆𝑝(𝑏),        (3.6.1.4) 

which can be rewritten as: 

1

𝜏𝑚
=

1

𝜏𝑏
+

𝑆𝑑𝑖𝑒𝑙∆𝑝(𝑓)+ 𝑆𝑚𝑒𝑡∆𝑝(𝑏)

∆𝑝𝑎𝑊
.           (3.6.1.5) 

The recombination current in the test structure is the area-weighted average of 

the recombination current in contacted and passivated areas: 

𝐽𝑅,𝑡𝑜𝑡 =
𝑞∆𝑝𝑎𝑊

𝜏𝑒𝑓𝑓
= 𝐽𝑅,𝑑𝑖𝑒𝑙 + 𝐶𝑚𝑒𝑡[𝐽𝑅,𝑚𝑒𝑡 − 𝐽𝑅,𝑑𝑖𝑒𝑙],         (3.6.1.6) 

in which 𝜏𝑒𝑓𝑓 is the effective lifetime describing the recombination behavior of the 

entire test structure.  

Combination of Equations 3.6.1.1 to 3.6.1.6 yields: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑝
+ 𝐶𝑚𝑒𝑡 [

1

𝜏𝑚
−

1

𝜏𝑝
],            (3.6.1.7) 

which has the same form as Equation 3.2.3.2.  

Effective surface recombination velocities 𝑆𝑒𝑓𝑓 can, in some cases, be more 

elegantly written as saturation current densities 𝐽0 over a wider range of injection 

levels. This is for example the case for the description of recombination currents 

in contacted or passivated diffused junctions. Combination of Equations 2.1.2.24 

and 2.1.2.29 yields the following relation between 𝑆𝑒𝑓𝑓 and 𝐽0: 

𝑆𝑒𝑓𝑓 = 𝐽0
∆𝑝(𝑁𝐷+∆𝑝)

𝑞𝑛𝑖
2 ,            (3.6.1.8) 

in which ∆𝑝 denotes the recombination current at the relevant surface. 

Combination of Equations 3.6.1.3, 3.6.1.6, 3.6.1.7, and 3.6.1.8 now yields:  

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏
+ 𝐽0,𝑑𝑖𝑒𝑙 [

Δ𝑝(𝑓)

Δ𝑝𝑎

𝑁𝐷+Δ𝑝(𝑓)

𝑞𝑛𝑖
2𝑊

+
Δ𝑝(𝑏)

Δ𝑝𝑎

𝑁𝐷+Δ𝑝(𝑏)

𝑞𝑛𝑖
2𝑊

]  

+𝐶𝑚𝑒𝑡[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]
Δ𝑝(𝑏)

Δ𝑝𝑎

𝑁𝐷+Δ𝑝(𝑏)

𝑞𝑛𝑖
2𝑊

.           (3.6.1.9) 

Note that we used that the average injection level Δ𝑝𝑎 equals the measured 

injection level ∆𝑝𝑚, which is used in defining the steady state effective lifetime 

(𝜏𝑒𝑓𝑓 ≡ ∆𝑝𝑚 𝐺⁄ ), with 𝐺 the generation rate. Δ𝑝(𝑓) is the injection level at the front, 

Δ𝑝(𝑏) is the injection level at the back and all other symbols have been defined 

before. 

We now assume for simplicity that the recombination current is dominated by 

recombination in the junctions (𝜏𝑏
−1 negligible), and we use the following notation: 

a subscript 𝑚 denotes a measured quantity, a subscript 𝑟 denotes the actual 

quantity, the suffix {𝐴𝐼} denotes an arbitrary injection level measurement 

(application of Equation 3.2.2.7), and the suffix {𝐻𝐼} denotes a high injection level 
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measurement (application of Equation 3.2.2.10). Using the arbitrary injection level 

technique (Equation 3.2.2.7), the measured value of 𝐽0,𝑑𝑖𝑒𝑙 is found as: 

𝐽0,𝑑𝑖𝑒𝑙,𝑚{𝐴𝐼} =
𝑞𝑛𝑖

2𝑊

2(𝑁𝐷+Δ𝑝𝑎)
𝜏𝑒𝑓𝑓

−1 (𝐶𝑚𝑒𝑡 = 0),        (3.6.1.10) 

and therefore: 

𝐽0,𝑑𝑖𝑒𝑙,𝑚

𝐽0,𝑑𝑖𝑒𝑙,𝑟
{𝐴𝐼} =

𝑝𝑛(𝑓)+𝑝𝑛(𝑏)

2𝑝𝑛𝑎
,          (3.6.1.11) 

in which 𝑝𝑛𝑎 = Δ𝑝𝑎(𝑁𝐷 + Δ𝑝𝑎𝑣), 𝑝𝑛(𝑓) is the pn product at the front surface and 

𝑝𝑛(𝑏) is the pn product at the back surface. Using the high injection level 

technique, 𝐽0,𝑑𝑖𝑒𝑙 is found as: 

𝐽0,𝑑𝑖𝑒𝑙{𝐻𝐼} =
𝑞𝑛𝑖

2𝑊

2

𝑑𝜏𝑚
−1

𝑑∆𝑝𝑎
(𝐶𝑚𝑒𝑡 = 0),         (3.6.1.12) 

and therefore: 

𝐽0,𝑑𝑖𝑒𝑙,𝑚

𝐽0,𝑑𝑖𝑒𝑙,𝑟
{𝐻𝐼} =

𝑑

𝑑∆𝑝𝑎
[
𝑝𝑛(𝑓)+𝑝𝑛(𝑏)

2∆𝑝𝑎
].           (3.6.1.13) 

We now discuss how 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is influenced by non-constant injection levels. 

We make the simplifying assumption that 𝐽0,𝑑𝑖𝑒𝑙 is sufficiently small such that the 

change in the term comprising 𝐽0,𝑑𝑖𝑒𝑙 of Equation 3.6.1.9 with 𝐶𝑚𝑒𝑡 (because the 

injection level ratios vary with 𝐶𝑚𝑒𝑡) has negligible influence on the slope of 𝜏𝑒𝑓𝑓
−1  

as a function of 𝐶𝑚𝑒𝑡. Using the arbitrary injection level technique (Equation 

3.2.2.7), 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is found from: 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚
{𝐴𝐼} =

𝑞𝑛𝑖
2𝑊

𝑁𝐷+Δ𝑝𝑎

𝑑𝜏𝑒𝑓𝑓
−1

𝑑𝐶𝑚𝑒𝑡
,        (3.6.1.14) 

which yields: 

[𝐽0,𝑚𝑒𝑡−𝐽0,𝑑𝑖𝑒𝑙]𝑚

[𝐽0,𝑚𝑒𝑡−𝐽0,𝑑𝑖𝑒𝑙]𝑟

{𝐴𝐼} =
𝑝𝑛(𝑏)

𝑝𝑛𝑎
,           (3.6.1.15) 

For the high injection level technique (Equation 3.2.2.10): 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚
{𝐻𝐼} = 𝑞𝑛𝑖

2𝑊
𝑑

𝑑𝐶𝑚𝑒𝑡
[
𝑑𝜏𝑒𝑓𝑓

−1

𝑑∆𝑝𝑎
],         (3.6.1.16) 

and therefore: 

[𝐽0,𝑚𝑒𝑡−𝐽0,𝑑𝑖𝑒𝑙]𝑚

[𝐽0,𝑚𝑒𝑡−𝐽0,𝑑𝑖𝑒𝑙]𝑟

{𝐻𝐼} =
𝑑

𝑑∆𝑝𝑎
[
𝑝𝑛(𝑏)

Δ𝑝𝑎
].         (3.6.1.17) 

A critical observation derived from this analysis is that saturation current densities 

extracted using the high injection and arbitrary injection techniques are different 

when injection levels are not constant over the wafer thickness.  

In order to evaluate the effect of non-constant injection levels on extracted 

saturation current densities, we solve for the minority carrier concentration over 
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the wafer thickness using Equation 2.3.2, which we repeat here for ease of 

reference: 

 𝐿𝐷
2 𝑑2𝑝

𝑑𝑥2
− 𝑝 + 𝑝0 + 𝜏𝑏𝐺 = 0,                       (3.6.1.18) 

with 𝑥 the position coordinate perpendicular to the wafer plane. The boundary 

conditions are the statement that recombination currents at surfaces equal 

diffusion currents flowing towards those surfaces: 

𝐽𝑅 = 𝐽0𝑝𝑛 𝑞𝑛𝑖
2⁄ = 𝑞𝐷𝑝∇𝑝 ∙ �⃗� ,          (3.6.1.19) 

in which �⃗�  is an outward-pointing unit vector normal to the surface.  

Solving Equation 3.6.1.18 with boundary condition 3.6.1.19 applied to both 

surfaces (while also substituting the appropriate saturation current density) allows 

plotting  𝑝𝑛(𝑏) 𝑝𝑛𝑎⁄  (Figure 3.6.1.1) and 𝑑 𝑑∆𝑝𝑎⁄ [𝑝𝑛(𝑏) Δ𝑝𝑎⁄ ]  (Figure 3.6.1.2) as 

a function of Δ𝑝𝑎. By comparison with Equations 3.6.1.15 and 3.6.1.17, these are 

the ratios of the measured and actual values of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 for extraction with 

the arbitrary injection level technique and for extraction with the high injection level 

technique, respectively. Note that we made the approximation that 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 

is found from the derivative of inverse effective lifetime with respect to 𝐶𝑚𝑒𝑡 

whereas in practice, we use a large 𝐶𝑚𝑒𝑡 range for 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 fitting because of 

enhanced numerical stability.  

In the simulations, we take 𝐽0,𝑑𝑖𝑒𝑙 = 0 such that  𝐽0,𝑓 = 0, with 𝐽0,𝑓 the saturation 

current density at the front surface. Also,  𝐽0,𝑏 = 𝐶𝑚𝑒𝑡𝐽0,𝑚𝑒𝑡 is varied, with 𝐽0,𝑏 the 

saturation current density at the back surface. Other parameters used in the 

simulations are: 𝑊 = 160𝜇𝑚, 𝑛𝑖 = 7.4 ∙ 109𝑐𝑚−3, 𝑁𝐷 = 1 ∙ 1015𝑐𝑚−3, 𝜏𝑏 = 1𝑚𝑠, 

and 𝐷𝑝 = 12𝑐𝑚2𝑠−1. Note that we merely show 𝑑 𝑑∆𝑝𝑎⁄ [𝑝𝑛(𝑏) Δ𝑝𝑎⁄ ] at relatively 

low injection levels for illustrative purposes and we do not intend to suggest that 

Kane and Swanson’s method for 𝐽0 extraction [Kane 1985] should be used at 

injection levels where Shockley-Read-Hall recombination may significantly affect 

the injection level dependence of the effective lifetime. 
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Figure 3.6.1.1.  𝑛𝑝(𝑤) 𝑛𝑝𝑎⁄ , which equals [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑟⁄ {𝐴𝐼}, as a 

function of ∆𝑝𝑎, for various values of 𝐽0,𝑏. 

 

Figure 3.6.1.2. 𝑑[𝑛𝑝(𝑤)/∆𝑝𝑎] 𝑑∆𝑝𝑎⁄ =[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚 [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑟⁄ {𝐻𝐼}, as a 

function of the average injection level ∆𝑝𝑎, for various values of 𝐽0,𝑏. 

Figures 3.6.1.1 and 3.6.1.2 show very similar trends. First, parasitic effects due to 

injection level variations over the wafer thickness are more severe for higher 𝐽0,𝑏, 
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which is consistent with the notion that injection level variations are more 

pronounced for higher effective surface recombination velocities (see section 2.3). 

Therefore this parasitic effect can be reduced by reducing the contact fraction (and 

thereby reducing 𝐽0,𝑏). Also, this parasitic effect is more severe at higher injection 

levels. This is related to effective surface recombination velocities of junctions 

characterized by constant saturation current densities and unit ideality factor going 

up with injection level as 𝑆𝑒𝑓𝑓 = 𝐽0𝑞
−1𝑛𝑖

−2(𝑁𝐷 + ∆𝑝), with ∆𝑝 the excess carrier 

concentration at the surface of interest. Finally, note that the vertical scale in 

Figure 3.6.1.1 is different from the vertical scale in Figure 3.6.1.2. A comparison 

between figures 3.6.1.1 and 3.6.1.2 clearly shows that the effect of injection level 

variations is generally more severe when saturation current densities are 

extracted using the high injection level technique, Equation 3.2.2.10, compared to 

when they are extracted using the arbitrary injection level technique, Equation 

3.2.2.7. 

In conclusion, non-ideal effects due to injection level variations cause 

underestimations of saturation current densities. These parasitic effects are more 

pronounced at high injection levels compared to low injection levels and saturation 

current densities extracted using the high injection level technique, Equation 

3.2.2.10, are more prone to these parasitic effects than saturation current 

densities extracted using the arbitrary injection level technique, Equation 3.2.7. 

We show that non-ideal effects due to injection level variations over the wafer 

thickness can be reduced by reducing the contact fraction, and by extracting 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 at lower injection levels. From our discussion in sections 2.3 and 

3.5.1, they can also be reduced by using thinner wafers. 

3.6.2. Experimental 

 

In Table 3.6.2.1, we show saturation current densities extracted on three samples 

with the same emitters, using the arbitrary injection level technique (Equation 

3.2.2.7) and the high injection level technique (Equation 3.2.2.10). Measurements 

are shown for wafers in which oxide openings were covered with metal and for the 

same wafers after the metal layer had been etched. For the samples without metal, 

the exposed contact regions have a very high surface recombination velocity 

due to the lack of surface passivation, which mimics the recombination 

characteristics of the silicon-metal interface. However, due to the absence of 

metal, any parasitic effects related to current flow through the metal contacts 

instead of through the semiconductor are avoided. In that sense, this 

experiment is similar to the one presented in section 3.4.5, but the present 

focus is the effect of non-constant injection levels over the wafer thickness 
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rather than the effect of current flow through point contacts. The notation AI 

means that saturation current densities are extracted using the arbitrary injection 

technique, Equation 3.2.2.7. The notation HI means that saturation current 

densities are extracted using the high injection level technique, Equation 3.2.2.10. 

Measurements were done on samples in which oxide openings were covered with 

aluminum layers and on samples in which the aluminum layers were etched. 

First note that there is significant spread in the contact saturation current density 

measurements. This spread is not expected to be related to variability in the 

emitter diffusion process. It is instead thought to be related to contact fraction-

related errors. As we will show in section 3.9, the contact opening fraction has to 

be known accurately in order to allow for the reliable extraction of contact 

saturation current densities.  

 
Table 3.6.2.1. Saturation current density measurements on three n-type silicon wafers 
with the same emitter, extracted assuming an intrinsic concentration of 7.401 ∙
109𝑐𝑚−3. All saturation current densities were extracted at an injection level of 6 ∙
1015𝑐𝑚−3. 

𝐽0,𝑚𝑒𝑡, or equivalently 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙, extracted on samples with metal is consistently 

lower than 𝐽0,𝑚𝑒𝑡 extracted on samples without metal. This can be explained that 

for aluminum contacts on the emitters in these samples, the contact’s transfer 

length was smaller than the contact diameter. Therefore, the effect of current flow 

through the point contacts is not negligible, which has been explained in section 

3.4. 
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Also, 𝐽0,𝑚𝑒𝑡 extracted using the high injection level technique is consistently lower 

than 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 extracted using the arbitrary injection level technique. This is 

explained from the simulations in section 3.6.1: Figures 3.6.2.1 and 3.6.2.2 clearly 

show that excess carrier density variations over the wafer thickness result in more 

severe 𝐽0,𝑚𝑒𝑡 underestimations when the high injection technique is used. In 

section 3.4, we predicted that current flow through point contacts also results in 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚,𝐴𝐼
> [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚,𝐻𝐼

. Therefore, it would be expected that the 

difference between [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚,𝐴𝐼
 and [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]𝑚,𝐻𝐼

 would be larger for 

contacted samples than for uncontacted samples. However, the data in Table 

3.6.2.1 do not support this prediction, which is suspected to be related to the 

uncertainty in the measurements being too large for this effect to be visible in the 

experiment. 

Finally, 𝐽0,𝑑𝑖𝑒𝑙 extracted using the arbitrary injection level technique is consistently 

larger than 𝐽0,𝑑𝑖𝑒𝑙 extracted using the high injection level technique. This is 

suggested to be primarily due to 𝐽0,𝑑𝑖𝑒𝑙 extracted using the arbitrary injection level 

technique being an upper bound on  𝐽0,𝑑𝑖𝑒𝑙 because it has a contribution of bulk 

recombination. 

In Figure 3.6.2.1, we show 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 for two samples. Sample a has a relatively 

shallow emitter with low surface concentration at both wafer surfaces, similar to 

samples a, b and c in Table 3.6.2.1. Therefore, sample a has a high 𝐽0,𝑚𝑒𝑡. Sample 

b has a relatively deep back surface field with a high surface concentration at both 

wafer surfaces. Therefore, sample b has a relatively low 𝐽0,𝑚𝑒𝑡. 𝐽0,𝑑𝑖𝑒𝑙 is 41𝑓𝐴 ∙ 𝑐𝑚−2 

for sample a and 55 𝑓𝐴 ∙ 𝑐𝑚−2 for sample b, as extracted by Kane and Swanson’s 

method [Kane 1985] at an injection level of 1 ∙ 1016𝑐𝑚−3. 
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Figure 3.6.2.1. 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 as a function of the injection level. 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 was 

extracted from effective lifetime data using the arbitrary injection technique, Equation 
3.2.2.7. 𝐽0,𝑚𝑒𝑡 test structures were made on n-type wafers. Samples a and b feature a 

shallow boron emitter and a deep phosphorous back surface field, respectively.  

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 decreases strongly with increasing injection level for sample a. By 

comparison with Figure 3.6.1.1, this is the hallmark injection level dependence 

introduced by non-constant injection levels. For sample b, 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 also 

decreases with the injection level, but the decrease is significantly less 

pronounced than for sample a. This is related to the 𝐽0,𝑚𝑒𝑡 being significantly lower 

for sample b. As a result, there are less injection level variations in the quasi 

neutral wafer bulk, and less associated artificial injection level dependence of 

extracted saturation current densities. In conclusion, the theory and experiments 

presented in this section show that the 𝐽0,𝑚𝑒𝑡 test structure proposed in [Deckers 

2013] work better for lower 𝐽0,𝑚𝑒𝑡, and that 𝐽0,𝑚𝑒𝑡 (actually 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙) is 

preferably extracted using the arbitrary injection level technique (Equation 3.2.2.7) 

at low injection levels. 
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3.7. Bulk doping level 

 

In this section, we investigate the consequence of using incorrect bulk doping 

levels for the extraction of saturation current densities using the arbitrary and high 

injection level techniques, Equations 3.2.2.7 and 3.2.2.10 respectively. Since 

Equation 3.2.2.7 depends explicitly on the bulk doping level, it turns out that 

accurate knowledge of the bulk doping level is an essential prerequisite for the 

extraction of sensible contact saturation current densities using the arbitrary 

injection technique, Equation 3.2.2.7. We shall show that contact saturation 

current densities extracted using the high injection technique, Equation 3.2.2.10, 

are significantly less influenced by the use of incorrect bulk doping levels.  

In our discussion, we disregard the fact that using incorrect doping levels results 

in the use of incorrect mobility during effective lifetime measurements, which does 

result in errors in measured injection levels and effective lifetimes. However, this 

effect is much smaller than the effect of incorrect doping levels on saturation 

current densities extracted using Equation 3.2.2.7 since the dependence of 

mobility on the doping level is only minor in the relevant doping level range 

(~1015𝑐𝑚−3)  [Li 1978, Masetti 1983]. 

Consider two contact saturation current densities 𝐽0,𝑚𝑒𝑡,1 and 𝐽0,𝑚𝑒𝑡,2 extracted 

using the arbitrary injection level technique, Equation 3.2.2.7. Both contact 

saturation current densities represent the same recombination current with unit 

ideality factor, but they have been extracted using different assumed doping levels 

𝑁𝐷,1 and 𝑁𝐷,2, respectively. From Equation 3.2.2.7, it is readily found that: 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]1 =
𝑞𝑛𝑖

2𝑊

𝑁𝐷,1+∆𝑝

𝑑𝜏𝑒𝑓𝑓
−1

𝑑𝐶𝑚𝑒𝑡
,              (3.7.1) 

in which [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]1 is the value for 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 that was extracted assuming 

a bulk doping level 𝑁𝐷,1. [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]2 is found analogously: 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]2 =
𝑞𝑛𝑖

2𝑊

𝑁𝐷,2+∆𝑝

𝑑𝜏𝑒𝑓𝑓
−1

𝑑𝐶𝑚𝑒𝑡
.              (3.7.2) 

Division of Equation 3.7.1 by Equation 3.7.2 then yields: 

[𝐽0,𝑚𝑒𝑡−𝐽0,𝑑𝑖𝑒𝑙]1

[𝐽0,𝑚𝑒𝑡−𝐽0,𝑑𝑖𝑒𝑙]2

=
∆𝑝+𝑁𝐷,1

∆𝑝+𝑁𝐷,2
.               (3.7.3) 

From Equation 3.7.3, we can draw the following conclusions regarding the use of 

incorrect doping levels in the extraction of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 using Equation 3.2.2.7: 

[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]1 = [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]2 in the high injection limit but [𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]1 =
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[𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙]2 𝑁𝐷,1 𝑁𝐷,2⁄  in the low injection limit. As a result, artificial injection 

level dependence is introduced in the intermediary regime. 

For samples with negligible bulk recombination, Equation 3.2.2.7 can also be used 

to extract 𝐽0,𝑑𝑖𝑒𝑙 as a function of the injection level. Following a derivation 

analogous to the derivation of Equation 3.7.3, it follows that the same artificial 

injection level dependence is introduced in 𝐽0,𝑑𝑖𝑒𝑙 when the incorrect bulk doping 

level is used. 

The assumed doping level during 𝐽0 extraction does not influence saturation 

current densities extracted using Equation 3.2.10, except through the dependence 

of mobility on the doping level. This effect is much less significant since, as 

mentioned before, the doping dependence of mobility is not very significant in the 

relevant bulk doping level range (~1015𝑐𝑚−3) [Li 1978, Masetti 1983]. The reason 

for this relative bulk doping independence of saturation current densities extracted 

using Equation 3.2.10 is that the slope inverse lifetime versus injection level is not 

directly influenced by the assumed bulk doping level. 

 

Figure 3.7.1. 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 extracted using Equation 3.2.2.7 assuming a variety of bulk 

doping levels. The actual doping level is 1015𝑐𝑚−3, the actual value of 𝐽0,𝑑𝑖𝑒𝑙 is 50𝑓𝐴 ∙

𝑐𝑚−2, and the actual value of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is 150𝑓𝐴 ∙ 𝑐𝑚−2. 

In Figure 3.7.1, the effect of the assumption of incorrect doping levels on 𝐽0 

extraction using Equation 3.2.2.7 is demonstrated for a number of assumed bulk 
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doping levels 𝑁𝐷,𝐴. We simulated effective lifetimes as a function of injection level 

for a wafer with an actual bulk doping level of 1015𝑐𝑚−3. The actual value of 𝐽0,𝑑𝑖𝑒𝑙 

is 50 𝑓𝐴 ∙ 𝑐𝑚−2 and the actual value of 𝐽0,𝑚𝑒𝑡 is 200 𝑓𝐴 ∙ 𝑐𝑚−2. Bulk recombination 

was taken to be negligible. As expected, the 𝐽0,𝑚𝑒𝑡 measurement is not corrupted 

when the correct doping level is used. When the doping level is over estimated, 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is underestimated at low injection levels and vice versa. The 

assumed doping level has no influence on 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 in the high injection limit, 

which is consistent with Equation 3.7.3. In Figure 3.7.2, we show that the same 

artificial injection level dependence is introduced in 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 and 𝐽0,𝑑𝑖𝑒𝑙 when 

bulk recombination is negligible such that 𝐽0,𝑑𝑖𝑒𝑙 can be extracted using Equation 

3.2.2.7.  

 

Figure 2.7.2. 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 and 𝐽0,𝑑𝑖𝑒𝑙 extracted using Equation 3.2.2.7 assuming a 

doping level of 5 ∙ 1014𝑐𝑚−3 whereas the actual doping level is 1 ∙ 1015𝑐𝑚−3. Note that 
the artificially introduced injection dependence of both 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 and 𝐽0,𝑑𝑖𝑒𝑙 is given 

by Equation 3.7.3.  
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3.8. Ideality factor1 

 

In this dissertation, Equations 3.2.2.7 and 3.2.2.10; the arbitrary and high injection 

techniques, respectively; have been used almost exclusively for the description of 

recombination currents in contacted junctions. The validity of Equations 3.2.2.7 

and 3.2.2.10 is limited to the case of junction saturation current densities featuring 

unit ideality factors. However, the assumption of unit ideality factors is by no 

means strictly necessary for the applicability of our method. In fact, at the heart of 

our method lies the more general Equation 3.2.2.4 (𝑅 =  𝑅𝑏𝑢𝑙𝑘 + 2𝑅𝑑𝑖𝑒𝑙 +

𝐶𝑚𝑒𝑡[𝑅𝑚𝑒𝑡 − 𝑅𝑑𝑖𝑒𝑙]), which is simply the statement that the total recombination rate 

in the 𝐽0,𝑚𝑒𝑡 test structure is the area-weighed recombination rate in contacted and 

passivated areas. In this section, we study the application of our method to the 

characterization of contact recombination currents with non-unit ideality factors. 

3.8.1. Local ideality factor 

 

Specifically at low injection levels, space charge region recombination may be a 

significant part of the total junction recombination current 𝐽𝑅, resulting in ideality 

factors that are bigger than one. The presence of space charge region 

recombination is commonly modelled using the well-known two-diode model. In 

the two-diode model, the recombination current is modelled using two diodes in 

parallel. One diode has a unit ideality factor, and the other has an ideality factor 2, 

such that the recombination current 𝐽𝑅 can be written as: 

𝐽𝑅 = 𝐽0,1 𝑒𝑥𝑝 (
𝑞𝑉

𝑘𝑇
) + 𝐽0,2 𝑒𝑥𝑝 (

𝑞𝑉

2𝑘𝑇
),           (3.8.1.1) 

in which 𝐽0,1 is the saturation current density that corresponds to the recombination 

current with unit ideality factor, 𝐽0,2 is the saturation current density that 

corresponds to the recombination current with ideality factor 2, and all other 

symbols have been defined before. With Equation 2.1.2.14, i.e. the relation 

between the pn product and the quasi Fermi level splitting, Equation 3.8.1.1 

becomes: 

𝐽𝑅 = 𝐽0,1
∆𝑝(𝑁𝐷+∆𝑝)

𝑛𝑖
2 + 𝐽0,2√

∆𝑝(𝑁𝐷+∆𝑝)

𝑛𝑖
2 .           (3.8.1.2) 

Equation 3.8.1.1 can be rewritten in terms of a single exponential by introducing a 

function 𝑚 which is defined such that: 

                                                 
1 This section is partly based on [Chen 2014] 



128 

 

𝐽𝑅 = 𝐽0,𝑚 𝑒𝑥𝑝
𝑞𝑉

𝑚𝑘𝑇
.             (3.8.1.3) 

𝑚 is the ideality factor which is a function of 𝑉, and 𝐽0,𝑚 is a constant. For a junction 

recombination current that consists partly of a diffusion current and partly of a 

space charge recombination current, 1 ≤ 𝑚 ≤ 2. Equation 3.8.1.3 can also be 

rewritten in terms of the pn product: 

𝐽𝑅 = 𝐽0,𝑚 [
∆𝑝(𝑁𝐷+∆𝑝)

𝑛𝑖
2 ]

1

𝑚
.            (3.8.1.4) 

The junction recombination current is assumed to have a unit ideality factor in 

Equation 3.2.2.7: 

𝐽𝑅 = 𝐽0,1
∆𝑝(𝑁𝐷+∆𝑝)

𝑛𝑖
2 .            (3.8.1.5) 

Combination of Equations 3.8.1.4 and 3.8.1.5 yields: 

𝐽0,1 = 𝐽0,𝑚 [
∆𝑝(𝑁𝐷+∆𝑝)

𝑛𝑖
2 ]

1−𝑚

𝑚
.            (3.8.1.6) 

When 𝑚 > 1, the exponent in Equation 3.8.1.6 is negative and 𝐽0,1 is found to 

decrease with increasing injection level. This is illustrated in Figure 3.8.1.1. 

 

Figure 3.8.1.1. Normalized saturation current density as a function of the injection level, 
for recombination currents with ideality factors 𝑚 which are greater or equal than one. 

The saturation current density was normalized at an injection level of 1 ∙ 1014𝑐𝑚−3. 

In [Chen 2014], the observation that larger-than-unity ideality factors can give rise 

to seemingly decreasing saturation current densities was used for the 

interpretation of damage introduced during contact opening using laser ablation. 

Experimentally extracted contact saturation current densities from [Chen 2014] 
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are shown in Figure 3.8.1.2 and details on the laser ablation process can be found 

this reference. 

 

Figure 3.8.1.2. Contact saturation current densities for laser-opened contacts on 
Boron-diffused junctions (for the exact doping profile, refer to the emitter profile in 
Figure 4.1.1). The number next to the curves indicate the laser energy applied during 

ablation of the contact openings, in 𝐽 𝑐𝑚2⁄ . A sample with contact openings defined 
using lithography (the bottom curve) is shown as a reference, reproduced and adapted 
with permission from [Chen 2014]. The saturation current densities in this graph are 

reported for 𝑛𝑖 = 9.7 ∙ 109 𝑐𝑚−3. 

The contact recombination current data shown in Figure 3.8.1.2 are shown for 

laser-opened and lithography-opened samples which underwent identical 

processing except for the contact opening step. The data relay that contact 

saturation current densities for the investigated laser-opened contacts are higher 

than contact saturation current densities for contacts opened using our baseline 

lithography process. In addition, there is a range of laser energies (0.84-2.4 𝐽 𝑐𝑚2⁄ ) 

which yield similar contact recombination currents. Applied energies which are 

higher than this particular range result in higher contact recombination current 

densities, which indicates increased damage caused by the laser ablation process 

at higher energies.  

In addition, the injection level dependence of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is much higher for the 

highest applied laser energies (3.6-4.68 𝐽 𝑐𝑚2⁄ ) compared to the lower laser 

energies. As discussed before, this could be related to space charge region 

recombination resulting in higher-than-one ideality factors. However, it could also 

be an artifact related to non-constant injection levels over the wafer thickness, 

which has been discussed in section 3.6. Despite this reservation, it should be 
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noted that excess carrier density variations over wafer thickness cannot explain 

the cross-over of curves in Figure 3.8.12. The crossing over of the 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 

curves seems to be a peculiar effect likely related to the presence significant space 

charge region recombination. 

3.8.2. Two-diode fit of contact recombination currents 

 

In this section, the application of a two-diode to the interpretation of recombination 

currents in junctions near surfaces is described. Reordering of Equation 3.8.1.2, 

and using 𝐽𝑅 = 𝑞∆𝑝 𝜏𝑒𝑓𝑓⁄  when the junction recombination current is dominating 

yields an equation of the form: 

𝑦 = 𝐽0,1𝑥 + 𝐽0,2,             (3.8.2.1) 

in which  

𝑦 =
𝑞∆𝑝

𝜏𝑒𝑓𝑓
[
∆𝑝(𝑁𝐷+∆𝑝)

𝑛𝑖
2 ]

−1 2⁄

,            (3.8.8.2) 

𝑥 = √
∆𝑝(𝑁𝐷+∆𝑝)

𝑛𝑖
2 .             (3.8.2.3) 

When applied to the contact recombination term of Equation 3.2.2.4, these 

expressions could be a useful tool to assess the 𝐽0,1 and 𝐽0,2 components of contact 

recombination current losses.  

However, injection level variations over the wafer thickness may complicate the 

use of Equations 3.8.2.1-3.8.2.3 for benchmarking the importance of space charge 

region and diffusion current contributions to the total contact recombination 

current. Non-constant injection levels due to large contact saturation current 

densities result in artificially induced injection level dependence of extracted 

saturation current densities, as derived in section 3.6. Recombination currents 

with 𝑚 > 1 result in similar injection level dependence of 𝐽0,1 extracted using 

Equation 3.2.2.7. This may render the effect of recombination currents with 𝑚 > 1 

indistinguishable from the effect of injection level variations, which significantly 

limits the applicability of Equations 3.8.2.1-3.8.2.3 to contacts with low effective 

surface recombination velocities such that the injection level is approximately 

constant. Most contact saturation current densities extracted in [Chen 2014] were 

very large. Therefore, it is likely that the corresponding measurements suffer from 

𝐽0,𝑚𝑒𝑡 underestimations associated with non-uniform excess carrier densities 

which are difficult to separate from the hallmark injection level dependence 

introduced by non-unit ideality factors. This explains why we did not apply 

Equations 3.8.2.1-3.8.2.3 to the quantitative analysis of contact recombination 

currents in [Chen 2014]. 
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3.9. Contact fraction 

 

Typical 𝐽0,𝑚𝑒𝑡 test structures studied in this dissertation feature circular contacts 

arranged in a simple square lattice on an otherwise perfectly passivated wafer. 

The contact fraction is varied by changing the pitch. Since contact recombination 

currents are extracted from the slope of the recombination current plotted against 

the contact fraction, errors in contact fraction result in errors in extracted saturation 

current densities. Even though this issue is of a technological kind, and is not of 

principle interest, we include it here because understanding the issue at hand goes 

a long way to understanding the spread in the extracted contact saturation current 

densities. For example, the 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 values for samples b and c in Table 

3.4.5.1 are supposed to be identical, however the extracted values are not exactly 

identical. This is probably due to errors in measured contact diameters on the test 

structures. Therefore, the discussion of the issue of contact fraction errors is 

particularly relevant, even though it could be considered to be a merely 

technological issue at first sight.  

We focus our present discussion on typical errors incurred in photolithography 

defined contacts. This is motivated by the fact that most experimentally obtained 

contact recombination current measurements presented in this dissertation are 

obtained on lithographically defined test structures. 

For lithographically defined test structures, the most significant source of errors in 

the contact fraction is the contact diameter which is not easy to control. In the 

discussion of these difficulties, we focus on the positive resist case since positive 

resist was used during the experiments presented in this thesis. The negative 

resist case is found by analogy.  

A first source of difficulties in contact diameter control is related to the lithography 

process itself, in which there is a trade-off in resist thickness, illumination dose 

and development time: sufficient illumination and development is needed to 

develop all resist in the illuminated areas over the entire, rough solar cell wafer, 

but too much illumination and development leads to over-development. In 

addition, thicker resist layers are preferable to ensure uniform coverage of the 

rough solar cell wafer, whereas thin resist layers help to increase the pattern 

resolution. Second, there is also a trade-off during the etching of contact openings 

in the oxide passivation layers: sufficient etching is needed such that the contacts 

are opened over the entire wafer area, but too long etching leads to over etch. 

Both over etching and over development result in contact diameters that are larger 

than the design diameter. However, these effects do not influence the pitch.  
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We now proceed to the derivation of errors in extracted contact saturation current 

densities from effective lifetime measurements on 𝐽0,𝑚𝑒𝑡 test structures caused by 

poor contact diameter control. The contact diameter error is described by a relative 

error 휀 which is defined such that: 

𝑑𝑚 = 𝑑𝑚,0(1 + 휀),               (3.9.1) 

in which 𝑑𝑚 is the actual contact diameter in the final test structure, and 𝑑𝑚,0 is the 

contact diameter value assumed in the extraction of contact recombination 

currents from effective lifetime measurements. 

For a simple square lattice of circular contacts, the contact fraction 𝐶𝑚𝑒𝑡 is related 

to the contact diameter 𝑑𝑚 and the pitch 𝑆 as: 

𝐶𝑚𝑒𝑡 =
𝜋𝑑𝑚

2

4𝑆2
,                 (3.9.2) 

or in terms of 𝑑𝑚,0: 

𝐶𝑚𝑒𝑡 = (1 + 휀)2 𝜋𝑑𝑚,0
2

4𝑆2 .               (3.9.3) 

Since (1 + 휀)2 = 1 + 2휀 + 𝑂(휀2), with 𝑂(휀𝑥) denoting terms containing 휀 to the 

power 𝑥 and higher, small errors in the contact diameter 𝑑𝑚 result in errors in the 

contact fraction 𝐶𝑚𝑒𝑡 that are approximately twice as large. For 𝐽0,𝑚𝑒𝑡 obtained from 

fits of inverse lifetime versus contact fraction (Equation 3.2.2.7), 𝐽0,𝑚𝑒𝑡 is found 

from: 

𝐽0,𝑚𝑒𝑡 =
𝑞𝑛𝑖

2𝑊

𝑁𝐷+∆𝑝

𝑑𝜏𝑒𝑓𝑓
−1

𝑑𝐶𝑚𝑒𝑡
,               (3.9.4) 

or in terms of 𝑑𝑚,0: 

𝐽0,𝑚𝑒𝑡 = (1 + 휀)−2 𝑞𝑛𝑖
2𝑊

𝑁𝐷+∆𝑝

𝑑𝜏𝑒𝑓𝑓
−1

𝑑𝐶𝑚𝑒𝑡,0
= (1 + 휀)−2𝐽0,𝑚𝑒𝑡,0,            (3.9.5) 

in which 𝐶𝑚𝑒𝑡,0 = 𝜋𝑑𝑚,0
2 4𝑆2⁄ , and 𝐽0,𝑚𝑒𝑡,0 is defined as: 

𝐽0,𝑚𝑒𝑡,0 =
𝑞𝑛𝑖

2𝑊

𝑁𝐷+∆𝑝

𝑑𝜏𝑒𝑓𝑓
−1

𝑑𝐶𝑚𝑒𝑡,0
.               (3.9.6) 

Since (1 + 휀)−2 = 1 − 2휀 + 𝑂(휀2), relative errors in the contact diameter due to 

over (under) etch result in 𝐽0,𝑚𝑒𝑡 values which are under (over) estimated by a 

factor that is approximately twice as large. 

For 𝐽0,𝑚𝑒𝑡 extracted from linear fits of 𝐽0,𝑡𝑜𝑡 as a function of the contact fraction 

(Equation 3.2.2.10), an analogous reasoning yields that the same errors are 

introduced through contact diameters errors during 𝐽0,𝑚𝑒𝑡 extraction.  

As a numerical example, consider a typical test structure used in our experiments. 

It has a design contact diameter of 15 𝜇𝑚. In an optimistic scenario, the increase 

in contact diameter due to over development and over etch is about 1 𝜇𝑚, or 6.7%. 
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If this over etch would not be taken into account, the corresponding error in 𝐽0,𝑚𝑒𝑡 

would be 12.1%. Therefore, over etch has to be taken into account when contact 

recombination characteristics are extracted from lithographically defined test 

structures. This has been done in the present dissertation.   
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3.10. Alternative test structure embodiments 

 

In this dissertation, we have focused on test structures based on lattices of point 

contacts. In this section, we suggest alternative embodiments of our test structure 

for contact recombination current measurements. These alternative embodiments 

are based on areas comprising thin contact fingers. The electrical current which is 

forced through the test structure during the photoconductance measurement is 

designed to flow perpendicular to the thin contact fingers. 

Test structures based on lattices of point contacts have the advantage that they 

can be used for effective lifetime measurements using radio wave detected 

“contactless” photoconductance measurements, i.e. Sinton QSSPC lifetime 

testers [Sinton 1996] can be used. However, test structures based on lattices of 

point contacts also feature some limitations. In section 3.10.1, we discuss these 

limitations. In sections 3.10.2 and 3.10.3, we discuss alternative embodiments of 

our test structure, which allow to overcome these limitations.  

However, the equipment for measuring the alternative test structure embodiments 

does not exist yet. Therefore, we limit ourselves in this dissertation to a brief, 

theoretical description of these test structures and their design rules. The required 

equipment is very similar to that for suns-Voc measurements [Sinton 2000]. In fact, 

as will become clear in sections 3.10.2 and 3.10.3, the hardware differences are 

related to the means for forcing currents between the test structure’s outer 

contacts and measuring voltages on intermediate contacts. Evidently the data 

processing software has to be adapted as well. 

3.10.1. Limitations of point contact based test structures 

 

The contact recombination current depends in some contacting technologies on 

the precise morphology of the contact. One example are pulsed laser ablation-

opened contacts in which the contact openings have a continuous line shape 

[Thuy 2014]. Such continuous line-shaped contact openings are for example 

useful in the context of plated nickel-copper contacts in which continuous contact 

between fingers and the silicon substrate is desirable because of improved contact 

adhesion [Tous 2014]. For pulsed-laser ablated contact openings, the continuous 

line shape of the contact openings is created by firing strong and short bursts of 

highly absorbed light at the dielectric covered silicon surface. The laser energy is 

absorbed in the silicon, near the silicon-dielectric interface. Subject to the 

absorbed laser energy, the silicon near the silicon-dielectric interface sublimates, 

evaporates or is converted to a plasma which causes a significant thermal 

expansion of the silicon near the silicon-dielectric interface. This causes a local 
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removal (ablation) of the dielectric layer. As a side-effect of the ablation process, 

damage in the form of various defects is introduced in- and around the contact 

opening. We refer to the regions where the ablation process resulted in the 

removal of dielectric layers as the ablated regions. We refer to the regions which 

were damaged by the laser ablation process but for which the dielectric layer was 

not removed as the heat-affected zone.  

Line-shaped contact openings can be formed by using, for example, a pulsed 

laser. In each laser pulse, an ablated area and the associated heat-affected-zone 

are created. A line shaped contact is then formed by configuring the laser pulses 

such that adjacent ablated areas partially overlap. This is schematically shown for 

six partly overlapping laser pulses in figure 3.10.1.1. Regions in which the laser 

pulses do not overlap are referred to once-ablated areas whereas regions in which 

the laser pulses overlap are referred to as twice-ablated areas. The ablation 

process damages the ablated area, and therefore results in an increased 

recombination current in laser-opened contacts compared to lithography-opened 

contacts (see section 3.8). Because twice-ablated areas are subject to more 

damage, the recombination current density in twice-ablated areas is larger than 

the recombination current density in once-ablated areas. In addition, the heat 

affected zones associated with overlapping contact openings may overlap as well, 

which can also result in an influence on the associated recombination 

characteristic. 

 

Figure 3.10.1.1. Schematic representation of a line-shaped contact opening made 
using pulsed laser ablation, featuring six partly overlapping contact openings. The 
white area within the surrounding line indicates non-ablated areas, which were 
nevertheless damaged during the ablation process; the heat-affected area. The light 
gray areas are ablated regions which were affected by a single laser pulse. The darker 
gray areas are ablated regions which were affected by two laser pulses, and are 
therefore more severely damaged than the areas which were affected by only one laser 
pulse. 

Because the partial overlap of the ablated regions shown in Figure 3.10.1.1, and 

interactions in the heat affected zone, affect the contact recombination current, 

the point-contact based test structures studied throughout most of this dissertation 

are not ideally suited for the characterization of the contact recombination current 
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of the above line-shaped contact. Also, line-shaped contact are not compatible 

with QCCPC lifetime testers [Sinton 1996] because the line-shaped contacts 

would tend to short the underlying semiconductor, provided that the contact 

transfer length would be smaller than the length of the line-shaped contacts. This 

would make the measurement less sensitive to the properties of the wafer, which 

is evidently undesirable. 

One possible alternative for the study of unpassivated contacts as in Figure 

3.10.1.1, would be to characterize the contacts in the absence of metal, and simply 

providing a very poor surface passivation in the contacted regions. However, for 

some contacts, such as plated Nickel-Copper contacts, the metal deposition 

process itself can passivate defects in the laser-ablated contact openings [Tous 

2014]. Because etching the metal layers prior to the characterization amounts to 

significant additional work, and because this process may influence the contact 

recombination current under investigation, it would be useful to modify the point-

contact based test structures to allow for the characterization of line-shaped 

contacts.  

Note that, in the field of passivated contacts, the entire contact stack should be 

present during contact characterization because interactions between the different 

layers in the contact passivation stack may significantly affect the contact 

recombination current. 

A second, less important limitation of point contact based test structures is that 

rigorous modelling of our test structures based on lattices of point contacts tends 

to be complicated due to the three dimensional nature of the test structures. 

Rigorous modelling challenges include: three dimensional excess carrier density 

variations, the effect of three dimensional excess carrier density variations on in-

plane photoconductance, and the effect of current flow through the point contacts 

on the photoconductance measurements, given the presence of three dimensional 

excess carrier density variations. 

Another minor disadvantage of point contact based test structures is that the 

measurements can be relatively time consuming when performed manually. This 

is due to the fact that several separate photoconductance measurements have to 

be done for every measurement of contact recombination characteristics. Each 

photoconductance measurement requires careful aligning of the QSSPC 

measurement coil on the area under test. Manual alignment can take up to a 

minute for a single photoconductance measurement. Photoconductance 

measurements on multiple areas are required in order to obtain sufficient data 

points for a reliable linear fit of the inverse effective lifetime or the total saturation 

current density as a function of the contact fraction. A typical test structure features 

nine areas with different contact fractions. As a result, the total measurement time 
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needed for the characterization of a single wafer can easily be up to ten minutes. 

This disadvantage could be overcome by designing a measurement stage on 

which multiple photoconductance measurements can be done at the same time. 

We finally draw the attention to a disadvantage of the use of radio wave detection 

in the contacts of contact recombination current extraction from photoconductance 

measurements. The radio waves that are used for the detection of the 

photoconductance have a typical frequency around 11 MHz. The contact 

resistance at these high frequencies can be smaller than the DC contact 

resistance, due to the effect of the metal-semiconductor junction capacitance. This 

is an undesirable effect because the higher the contact resistance, the higher the 

transfer length, and the less parasitic current flow through the metal contacts 

instead of through the semiconductor affects the contact recombination current 

measurement. In other words: when the DC contact resistance is higher than the 

AC contact resistance, parasitic effects related to current flow through the contacts 

could be reduced by performing DC contact recombination current measurements  

We believe that this issue could be an important factor to take into account when 

characterizing passivated contacts: the DC-contact resistance of passivated 

contacts is often relatively high because of the resistance of the passivating layers 

between metal and semiconductor. Also, because these passivating layers are 

often very thin, the passivated contacts can still have a very high contact 

capacitance. As the cut-off frequency 𝜔𝑐 form which the AC-behavior of contact 

resistance becomes of importance equals (𝜌𝑐𝐶𝑗)
−1

, this combination of high 

contact resistance and high contact capacitance results in a situation at which the 

AC-behavior of contact resistance becomes of importance at particularly low 

frequencies. 

We have included a qualitative discussion of the AC contact resistance of selected 

unpassivated aluminum contacts on n+ and p+ silicon in the last paragraph of 

section 3.4.5; we found that parasitic current flow through the point contacts is of 

no importance for the investigated aluminum contacts on n+ silicon, but we found 

that it is an important parasitic for the investigated aluminum contacts on p+ 

silicon. With respect to the passivated contacts investigated in chapter 5, we note 

that the transfer length of the investigated passivated metal-insulator-

semiconductor (MIS) contacts is at least as high as the transfer length of the 

unpassivated contacts. The contact size was about the same in all our 

experiments. Therefore, parasitic current flow through the point contacts is of no 

importance for the investigated passivated aluminum contacts on n+ silicon, but 

could have affected the measurements on some investigated passivated 

aluminum contacts on p+ silicon, especially those featuring no, or a small number 

of ALD Al2O3 layers. 
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3.10.2. Linear test structures & DC measurements 

 

Said disadvantages could be overcome through the use of (quasi) DC 

photoconductance measurements on the linear test structure schematically drawn 

in Figure 3.10.2.1.  

 

Figure 3.10.2.1. A linear test structure for contact recombination current 
measurements. Panel a) shows different areas under test (dashed areas) with differing 
contact fractions between contact pads. The contact pads are numbered as “contact 
(x,y)”, with x and y numbers to indicate the areas under test adjacent to the bus bar. 
The test structure is illuminated from the non-contacted side. Panel b) shows a close-
up of one area with a given contact fraction. The area consists of long fingers parallel 
to the bus bars, and thus perpendicular to the direction of current flow.  

The linear test structure consists of several areas under test between parallel 

contact pads. Each area under test consists of equally spaced, parallel fingers. 

The fingers are also parallel to the contact pads. Every area under test has a 

different contact fraction, more specifically, the nth area has a contact fraction 

𝐶𝑚𝑒𝑡,𝑛. The contact fraction is varied by changing the pitch 𝑆. Every finger has a 

width 𝑤. In the linear test structure, bus bars are used as contacts to force currents 

and measure voltages. The current is forced to flow between the outer contacts. 

Voltages are measured on intermediate contacts, similar to the set-up of a four-

point-probe measurement, as shown in 3.10.2.2. All areas between two 
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intermediate contact pads feature different contact fractions, as shown in Figure 

3.10.2.1. 

 

Figure 3.10.2.2. Macro cross sectional view of a linear test structure, showing that 
current flow is forced between two outer contact pads, and that voltages are measured 
on intermediate contact pads, analogous to the set-up in a four-point-probe 
measurement. 

Because of translational symmetry in the direction of the fingers, the differential 

equations governing excess carrier density variations and current flow only 

depend on position in two directions: the direction perpendicular to the wafer 

plane, and the direction in the wafer plane, perpendicular to the contact fingers. 

Therefore, the analysis of excess carrier density and current flow is greatly 

simplified in this linear test structure compared to test structures based on two 

dimensional lattices of point contacts. 

Influence of contact fingers on conductivity 

Current flow in one area in our linear test structure, in the direction perpendicular 

to the contact fingers, can be described by a series circuit of the resistances of 

contacted areas and fully passivated areas: 

𝑅𝑒𝑞 = 𝑅𝑚𝑒𝑡 + 𝑅𝑝𝑎𝑠𝑠,          (3.10.2.1) 

in which 𝑅𝑒𝑞 is the resistance of a unit cell (one passivated area and one contacted 

area) in the linear test structure, 𝑅𝑚𝑒𝑡 is the resistance of a contacted area in the 

linear test structure, and 𝑅𝑝𝑎𝑠𝑠 is the resistance of a passivated area in the linear 

test structure. Note that the photoconductance measurement occurs in DC for 

linear test structures, such that the use of resistance instead of impedance is 

warranted. 𝑅𝑚𝑒𝑡 is found through a derivation analogous to that of Equation 

3.4.1.9: 

𝑅𝑚𝑒𝑡 = 𝑅𝑆
𝐿𝑇

𝑤
 

2𝑠𝑖𝑛ℎ(𝑤 𝐿𝑇⁄ )

[1+𝑐𝑜𝑠ℎ(𝑤 𝐿𝑇⁄ )]

𝑤

𝑙
,              (3.10.2.2) 

in which 𝐿𝑇 is the contact’s transfer length, 𝑅𝑆 is the semiconductors’ sheet 

resistance, 𝑤 is the finger width, and 𝑙 is finger length. The resistance of a 

passivated area is: 

𝑅𝑝𝑎𝑠𝑠 = 𝑅𝑆
𝑆

𝑙
.           (3.10.2.3) 

For a linear test structure, the contact fraction is: 
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𝐶𝑚𝑒𝑡 =
𝑤

𝑆+𝑤
           (3.10.2.4) 

Combination of Equations 3.10.2.1 through 3.10.2.4 yields: 

𝑆𝑒𝑞,𝑙  = 𝑆𝑠𝑄𝑙,            (3.10.2.5) 

in which, analogous to the derivation in section 3.4, 𝑆𝑒𝑞 = [𝑅𝑚𝑒𝑡
𝑤

𝑙
]
−1

, 𝑆𝑠 = 𝑅𝑠
−1, and 

𝑄𝑙 is: 

𝑄𝑙 = [1 + 𝐶𝑚𝑒𝑡 [2
𝐿𝑇

𝑤

 𝑠𝑖𝑛ℎ(𝑤 𝐿𝑇⁄ )

1+𝑐𝑜𝑠ℎ(𝑤 𝐿𝑇⁄ )
− 1]]

−1

.                           (3.10.2.6) 

The influence of the point contacts on measured conductivities, injection levels, 

effective lifetimes and contact recombination characteristics, is found as in section 

3.4, with 𝑄 substituted by 𝑄𝑙. Taking the appropriate limit, it is found that 𝑄𝑙 = 1 for 

𝐿𝑇 ≫ 𝑤. Therefore, it is possible to design this test structure such that the 

presence of the metal fingers does not disrupt the photoconductance 

measurement. 

Design rules 

As in test structures based on lattices of point contacts, all characteristic feature 

sizes in the area under test must be much smaller than the respective effective 

diffusion lengths. This requirement arises from the fact that excess carrier 

densities must be constant throughout the quasi neutral bulk. In addition, from 

sections 3.5 and 3.6, excess carrier densities are also more constant for small 

effective surface recombination velocities.  

From our previous discussion, 𝑄𝑙 = 1 for 𝐿𝑇 ≫ 𝑤. Therefore, the finger width must 

be designed to be (much) smaller than the contact’s transfer length. 

The contact pads must be at the same electrical potential as the underlying 

semiconductor. This can be accomplished by forcing current through two outer 

contact pads, and measuring voltages on inner contact pads, as shown in Figure 

3.10.2.2.  

For single side contacted test structures, the measurement is ideally performed 

such that the semiconductor side without contacts is illuminated. This has two 

advantages. First and most important: it ensures a uniform generation rate, which 

aids achieving uniform excess carrier densities. Second, it has the advantage that 

shading does not have to be taken into account in calculating the generation rate 

in each area under test.  

Two side contacted test structures have the advantage that excess carrier 

densities over the wafer thickness are more constant compared to single-side 

contacted test structures (see section 2.3). However, two side contacted test 

structures have the disadvantage that the generation profile is less constant in the 
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wafer plane due to shading, which can result in more severe in-plane excess 

carrier density variations. In addition, two side contacted test structures have the 

disadvantage that the exact amount of shading has to be known, and has to be 

taken into account in the calculation of the generation rate. Therefore, the finger 

width, including any overlap with the passivation layer outside the contact 

openings, must be accurately known. 

The distance between two bus bars must be much larger than the effective 

diffusion length of the area under test such that the effect of excess carrier density 

variations at the edges of the test structure is negligible. 

For linear test structures embedded in a much larger wafer, the length of the 

fingers must be much larger than the distance between two bus bars to minimize 

edge effects. These edge effects arise from the fact that at the edges of a linear 

test structure, part of the current between various bus bars inadvertently flows 

through the wafer, next to the fingers. This effect can be minimized on a relative 

basis by making the fingers much larger than the test structure size in the direction 

perpendicular to the wafer fingers. 

Evidently, current flow outside the areas under test can be avoided by dicing the 

test structure out of the wafer. However, the resulting surface at the edges 

influences the minority carrier concentration near the edges, for a distance of the 

order of magnitude of the effective diffusion length in the area under test. 

Therefore, the finger length of the test structure must be much larger than the 

effective diffusion length in the area under test. For similar reasons, this 

requirement is also applicable to test structures embedded in a larger wafer. 

3.10.3. Circular test structures 

 

Edge effects due to the finite length of contact fingers can be avoided altogether 

by using circular test structures instead of linear test structures. This is similar to 

the use of circular transfer length method (TLM) test structures instead of linear 

TLM test structures to avoid edge effects in contact resistance measurements. 

Apart from design rules related to the finite finger length, similar design rules apply 

as for the linear case. A top view of a circular test structure is sketched in Figure 

3.10.3.1. The operation of this test structure is analogous to the operation of the 

linear test structure. Current is forced to flow between the inner and outer bus bar. 

The voltages on intermediate bus bars are measured to obtain the voltage drops 

across the various areas under tests. Following an analysis similar to the analysis 

of cTLM measurements (see e.g. [Schroder 2006]), the sheet resistance of the 

semiconductor is obtained in the dark and under illumination. From the 

semiconductor’s sheet resistance, the excess carrier density (averaged over the 
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wafer thickness) is obtained; and using an additional light intensity measurement 

with a reference photodiode, the effective lifetime is obtained. This results in 

effective lifetime measurements as a function of contact fraction, from which the 

contact recombination characteristics are obtained following the analysis 

introduced in section 3.2. 

 
Figure 3.10.3.1. Schematic representation of a circular test structure. 
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3.11. Conclusions 

 

In conclusion, we developed a photocondutance-based method for the 

characterization of contact recombination currents. This method is based on 

photoconductance measurements on different regions, having different contact 

fractions, on a dedicated test structure. A general description of the test structure 

and of its design rules is given in the introduction to this chapter. 

In section 3.1, we discussed the State-of-the-Art with respect to the contact 

recombination current characterization methods at disposal of the experimentalist. 

We argued why, despite the merits of these characterization methods, the 

development of a new characterization method would be useful. 

In section 3.2, we discuss the essence of our characterization method. In this 

chapter, we make the ansatz of constant excess carrier densities throughout the 

quasi neutral bulk. We also make the ansatz that the only influence of the point 

contacts in the test structure is the introduction of a recombining surface 

associated with the silicon-contact interface. These a-priori assumptions yield 

idealized expressions (Equations 3.2.2.7 and 3.2.2.10) which can be used for 

contact recombination current extraction from photoconductance measurements 

on properly designed test structures. Equation 3.2.2.7 is commonly referred to as 

the arbitrary injection technique and Equation 3.2.2.10 is commonly referred to as 

the high injection technique. 

A typical process flow for test structure manufacture is given in section 3.3. 

Design rules for proper test structure design summarized in the beginning of this 

chapter and are derived in sections 3.3 to 3.6. In short, the characteristic size of 

individual contacts in our test structure must be smaller than the contact’s transfer 

length (section 3.4). In addition, all characteristic sizes must be much smaller than 

the relevant effective diffusion lengths (sections 3.4-3.6). Finally, the test structure 

is preferably applied to the characterization of contacts with low contact 

recombination currents (section 3.6). Failure to adhere to these design rules 

results in underestimations of extracted contact saturation current densities. 

Accurate knowledge of the bulk doping level is required for the extraction of 

sensible contact saturation current densities using the arbitrary injection 

technique, Equation 3.2.2.7, but is less critical for contact saturation current 

extraction using the high injection technique, Equation 3.2.2.10. This is discussed 

in section 3.7. 

In this dissertation, the focus lies on contact recombination currents with unit 

ideality factor. The application of our characterization method to the 

characterization of contact recombination currents with higher-than-unity ideality 
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factors is discussed in section 3.8. However, this must be done with care since 

parasitic effects related to non-homogeneous excess carrier densities roughly 

mimic the injection level dependence caused by larger-than-unity ideality factors. 

Accurate knowledge of the contact fraction is essential for the extraction of 

sensible saturation currents with our test structure. Related errors are discussed 

in section 3.9. 

For some contacting technologies, the characterization of line-shaped contacts as 

opposed to point-shaped contacts is desirable. Alternative test structure 

embodiments which allow for the characterization of line-shaped contacts are 

discussed in section 3.10. 

When DC contact resistance is smaller than AC contact resistance, as is 

suspected to be the case for many passivated contacts, parasitic effects related 

to current flow through the contacts instead of through the wafer can be avoided 

by performing DC measurements instead of AC measurements. The test 

structures proposed in section 3.10 are suitable for DC contact recombination 

current measurements. 
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4. Optimization of IBC solar cells without 
contact passivation 

 

In this chapter, point contact based test structures are applied to the optimization 

of n+ diffusions which are used as back surface fields (BSF) in interdigitated back 

contact (IBC) silicon solar cells. In addition, various front surface field (FSF) 

oxidations are investigated. The figures of merit we investigate are the saturation 

current density of the passivated BSF and FSF, the saturation current density of 

the contacted BSF, and the contact resistance of the BSF contacts. This n+ 

diffused region optimization has been done in an attempt to reduce recombination 

currents in non-contacted areas in imec’s IBC silicon solar cells to a level at which 

a meaningful improvement of the total recombination current can be expected 

through the introduction of passivated contacts. 

A schematic drawing of an IBC silicon solar cell is shown in Figure 4.1. The emitter, 

FSF and BSF is indicated in this picture. 

 

Figure 4.1. Schematic representation of an IBC silicon solar cell featuring diffused 
junctions, as investigated in the present chapter. 

The use of the 𝐽0,𝑚𝑒𝑡 test structure proposed in [Deckers 2013] for a classical 

junction optimization problem allows for further experimental confirmation of the 

characterization method. Indeed, the consistency of the trends observed between 

process parameters, contact resistance, contact saturation current density and 

saturation current density of the passivated junction is a strong experimental 

confirmation of this novel characterization method.  

Furthermore, the point contact based test structure is an elegant way to measure 

contact recombination currents, and test structure manufacture is done in parallel 

with the manufacture of the cTLM test structures for contact recombination current 

measurements. The only additional processing steps that are needed for 𝐽0,𝑚𝑒𝑡 test 

structure manufacture is the etching of metal, oxide, and diffused layers at the end 
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of the process to allow for a measurement of the bulk wafer resistivity, which is 

done for the purpose of bulk doping level extraction (see section 3.7). 

The back surface field is chosen as the object of our contacted junction 

optimization even though the power losses at the emitter contacts are estimated 

to overshadow the recombination losses at the BSF contacts [Verlinden 2012]. 

This is done for two distinct reasons. First, the BSF processing is done after 

emitter diffusion (see section 1.4.2). Therefore, the thermal budget applied during 

BSF formation influences the emitter diffusion. As a result, the BSF must be 

optimized before the emitter can be optimized. The second reason for focusing on 

BSF optimization rather than emitter optimization is related to the fact that this 

diffused junction optimization was performed as a prelude to the introduction of 

Al2O3-passivated aluminum contacts in the solar cell flow. As will be shown in 

chapter 5, Al2O3 tunnel barriers have been found to only passivate aluminum 

contacts on n+ silicon, and not aluminum contacts on p+ silicon. 

The junction optimization process is carried out starting from an existing diffusion 

profile, and then making motivated alterations in steps. This optimization of n+ 

diffused regions has three branches. The first branch is modifying the POCl3 

diffusion parameters: diffusion and drive-in time and temperature. The second 

branch is an investigation of two different back surface field oxidations: a dry 

oxidation (with O2 as the oxidizing species) and a wet oxidation (featuring H2O as 

the oxidizing species). The wet oxidation is carried out at a lower temperature than 

the dry oxidation. In the third and final branch of the n+ diffused region optimization, 

is lowering the front surface field (FSF) oxidation temperature. The details are 

discussed in the next sections. 

Finally, an optimum set of process parameters is selected and verified through 

integration in an IBC silicon solar flow. This yielded 23.5% efficient IBC solar cells, 

which is an 0.2% absolute efficiency improvement compared to imec’s best 

baseline efficiency of 23.3% (in-house measurements). The clear agreement 

between cell results and photoconductance-based (contact) saturation current 

density measurements provides a sound verification of the characterization 

method proposed in [Deckers 2013]; and further refined in this dissertation, and in 

[Deckers 2014, Deckers 2014b]. 
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4.1. Back surface field diffusion and oxidation 

 

As performed in the present dissertation, the formation of a highly doped region 

comprises two main steps. The first main step is the deposition of a dopant source 

on the wafer surface, which we refer to as the deposition step. The second main 

step in the highly doped region formation is dopant drive-in. 

The deposition step occurs in a diffusion furnace, and in the case of POCl3 diffused 

junctions, the dopant source is a phosphosilicate glass (PSG). For the POCl3 

diffused junctions investigated in the present dissertation, all POCl3 depositions 

were done for about 20 minutes at temperatures between 800 and 900℃. 

The drive-in step was partly done in the diffusion furnace during the deposition 

step and, for some junctions, during a subsequent anneal in the diffusion furnace, 

at the deposition step temperature. Then, the PSG was etched, the wafers were 

cleaned (using an SPM – rinse – diluted aqueous HF/HCl – rinse – spin-dry 

procedure), and the wafers were consecutively processed in an oxidation furnace. 

During oxidation, a passivating oxide was formed and the dopants were further 

driven in. For the BSF oxidations discussed here, the passivating oxide was either 

a dry oxide formed using a 40 minute oxidation at 975℃, or the passivating oxide 

was a wet oxide formed using a 40 minute oxidation at 900℃. In a dry oxidation, 

the oxidizing species is O2. In a wet oxidation, the oxidizing species is H2O. 

The baseline back surface field has the following figures of merit: 𝐽0,𝑑𝑖𝑒𝑙 = 50 𝑓𝐴 ∙

𝑐𝑚−2, 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 = 230 𝑓𝐴 ∙ 𝑐𝑚2, and for aluminum BSF contacts, 𝜌𝑐 = 5.8 ∙

10−4Ω ∙ 𝑐𝑚2. The oxide used for baseline back surface field passivation is formed 

via dry oxidation for 40 minutes at 975℃ and is ca. 70 𝑛𝑚 thick. 𝐽0,𝑑𝑖𝑒𝑙 was 

measured using Kane and Swanson’s method on a passivated wafer, 𝐽0,𝑚𝑒𝑡 −

𝐽0,𝑑𝑖𝑒𝑙 = was measured at ∆𝑝 = 1 ∙ 1015𝑐𝑚−3 using our test structure, and 𝜌𝑐 was 

measured using circular transfer length measurements (cTLM). The oxide 

thickness was measured using single-wavelength ellipsometry. All measurements 

were done at room temperature. 

All other back surface fields discussed in this section were made through the 

perturbation of one or more of the process parameters of the baseline back 

surface field.  

Note that all saturation current densities reported in this thesis which are extracted 

from photoconductance measurements, are measured at room temperature and 

are reported assuming 𝑛𝑖 = 7.4 ∙ 109𝑐𝑚−3. The exact value of the intrinsic carrier 

concentration 𝑛𝑖 used for reporting saturation current densities is immaterial as 
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reworking reported saturation current densities obtained from QSSPC 

measurements to other 𝑛𝑖 is readily feasible, as explained in section 3.2.4. 

The SIMS profile for the baseline back surface field (BSF) is shown in Figure 4.1.1, 

along with the SIMS profiels for the baseline emitter and front surface field (FSF). 

All SIMS profiles are shown after dopant drive-in using thermal oxidation; and at 

the end of process, i.e. after the entire solar cell manufacturing process according 

to section 1.4.2 has been completed. The specification “at the end of process” is 

important because in our IBC silicon solar cell process, the emitter is formed 

before the BSF, and the BSF is formed before the FSF. Therefore, the emitter’s 

dopant profile in a finished solar cell is not just determined by the emitter depositon 

and drive-in characteristics, but also by the thermal budget associated with BSF 

and FSF formation. Similarly, the BSF profile is influenced by the thermal budget 

encountered during FSF formation. As a result, the specification “at the end of 

process” is critical.  

 

Figure 4.1.1. SIMS profiles for the BSF (phosphorous), emitter (boron) and FSF 
(phosphorous) as used in imec’s lithography-based baseline IBC silicon solar cell 
process (December 2013), at end-of-process conditions. The BSF and FSF diffusions 
investigated in this chapter are perturbations on the baseline BSF and FSF profile 
shown here. 

As these saturation current densities are measured on dedicated test-structures 

instead of finished solar cells, the reporting at end-of-process conditions implies 

that the thermal budget associated with further process steps had to be simulated 
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in some way. The steps for which thermal budges simulation was necessary can 

be readily read from Figure 1.4.2.1. For each step, thermal budget simulation 

implies simply putting the respective wafers in a furnace at the appropriate 

temperatures and for the appropriate times, in the appropriate atmosphere. 

For the reported emitter saturation current densities, the thermal budget 

associated with BSF and FSF formation was simulated. For the reported BSF 

saturation current densities, the thermal budget associated with FSF formation 

was simulated. FSF formation was the last process step such that thermal budget 

simulation was not necessary in that case. For the sake of completeness, we add 

that the baseline FSF was formed using a process that featured a POCl3 

deposition step between 800 and 900ºC, and a dry oxidation at 975 ºC. 

In Figure 4.1.2, a plot of sheet resistance 𝑅𝑠ℎ𝑒𝑒𝑡 as a function of contact resistance 

𝜌𝑐 is shown for a number of investigated n+ diffused back surface fields. 𝜌𝑐 and 

𝑅𝑠ℎ𝑒𝑒𝑡 were measured at the end of the process on cTLM test structures on n-type 

wafers. Note that the reported sheet resistances incorporate the effect of two n+ 

diffusions (one on each wafer side) and the effect of bulk conductivity. 

 
Figure 4.1.2. BSF sheet resistance as a function of BSF contact resistance. Each 
diffusion is represented by a unique symbol. Closed symbols represent junctions which 
were passivated, and further driven in, during a dry thermal oxidation. Open symbols 
represent junctions which were passivated, and further driven in, during a wet thermal 
oxidation. 

For diffused junctions, the contact resistance of metal-semiconductor contacts is 

in one-to-one correspondence with the surface doping concentration; high (low) 

contact resistance corresponds to low (high) surface doping [Berger 1972b]. In 

addition, since conductivity is roughly proportional to carrier concentration, high 
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(low) sheet resistance corresponds to a low (high) integrated doping profile in the 

n+ diffused region. As a result, the plot of sheet resistance versus contact 

resistance in Figure 4.1.2 is equivalent to a plot of the integrated doping profile 

versus surface concentration. 

In Figure 4.1.3, 𝐽0,𝑑𝑖𝑒𝑙 and 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 are shown as a function of 𝜌𝑐 for Al:1%Si 

contacts on diffused n+ silicon junctions. In Figures 4.1.2 and 4.1.3, identical 

symbols refer to the same sample. The trend of increasing sheet resistance, 

decreasing 𝐽0,𝑑𝑖𝑒𝑙, and increasing 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 with increasing contact resistance 

is consistent with Gaussian profiles with various depths and surface 

concentrations. Within the narrow scope of the present experiment, deep (shallow) 

profiles with high (low) surface concentrations correspond to n+ diffusions with low 

(high) 𝜌𝑐, low (high) 𝑅𝑠ℎ𝑒𝑒𝑡, low (high) 𝐽0,𝑑𝑖𝑒𝑙, and high (low) 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙. Note that 

these trends only apply to the narrow range of doping profiles used in our BSF 

experiments, and are not claimed to be general. This narrow range of doping 

profiles resulted from the fact that the investigated back surface fields were 

investigated as perturbations on a previously optimized back surface field. The 

optimization of a diffused BSF features a trade-off between 𝐽0,𝑚𝑒𝑡, 𝐽0,𝑑𝑖𝑒𝑙 and 𝜌𝑐. A 

very detailed discussion of 𝐽0,𝑚𝑒𝑡 and 𝐽0,𝑑𝑖𝑒𝑙 as a function of the surface 

concentration the diffusion depth for a much wider range of both phosphorous and 

boron diffusions can be found in [King 1990]. A discussion of contact resistance 

as a function of surface concentration for aluminum – silicon contacts can be found 

in [Berger 1972b]. 

Figure 4.1.3. shows a clear trade-off between contact resistance and contact 

saturation current density on the one hand, and saturation current density in 

passivated areas on the other hand. A reasonable trade-off are the diffusions that 

yield a contact resistance around 1 𝑚Ω ∙ 𝑐𝑚2. One of those back surface fields 

features a wet oxide. It has the following figures of merit: 𝜌𝑐 = 1 𝑚Ω ∙ 𝑐𝑚2, 𝐽0,𝑚𝑒𝑡 −

𝐽0,𝑑𝑖𝑒𝑙 = 235 𝑓𝐴 ∙ cm−2, and 𝐽0,𝑑𝑖𝑒𝑙 = 33 𝑓𝐴 ∙ cm−2. Also, the thermal oxide of this 

back surface field has a thickness of around 300 nm, as opposed to oxide 

thicknesses of only ~60 nm for the dry oxides in this experiment. The wet oxide’s 

higher thickness is advantageous since passivating silicon oxide layers between 

aluminum back contacts and the silicon substrate should be at least 100 nm thick 

for optimal back reflectance [Duerinckx 2014]. 
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Figure 4.1.3. 𝐽0,𝑑𝑖𝑒𝑙 and 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 as a function of 𝜌𝑐. Saturation current densities 

were extracted from a fit of inverse lifetime versus contact fraction at an injection level 

of 1 ∙ 1015𝑐𝑚−3. Extraction of 𝐽0,𝑑𝑖𝑒𝑙 using Kane and Swanson’s [Kane 1985] method 

yielded values which are identical within ~10% to the values reported here. 
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4.2. Front surface field oxidation 

 

In a subsequent experiment, the front surface field oxidation temperature was 

lowered by up to 120°C compared to the baseline front surface field oxidation 

temperature of 975°C, i.e. our front surface field oxidation experiments were 

executed in the temperature range of 855-975°C. The front surface field oxidation 

time, 20 minutes, was kept constant. Also, all gas flows were unaltered in this 

experiment. 

The primary effect of this decreased oxidation temperature was a reduction in the 

front surface field oxide thickness from ~20 𝑛𝑚 to ~6 𝑛𝑚. The front surface field 

saturation current density was not affected; it was around 10 𝑓𝐴 ∙ 𝑐𝑚2 for all front 

surface field oxidation temperatures. 

The thinner front surface field oxide is very beneficial from an optical point of view 

as the ~20 𝑛𝑚 thick passivating front surface field oxide in the baseline process 

is an optically parasitic layer in the SiNx anti-reflective coating – SiO2 passivation 

layer – silicon wafer stack at the front of the baseline IBC solar cells, resulting in 

increased front reflectance. The optically parasitic action of the SiO2 passivation 

layer is related to the SiNx layer used as an anti-reflective coating having a higher 

index of refraction than the intermediate SiO2 layer. Therefore, the SiO2 layer 

disrupts the graded-index effect associated with the SiNx anti-reflective coating. 

Conversely, the ~6 𝑛𝑚 thick passivation layer formed in a reduced-temperature 

front surface field oxidation has a negligible optical parasitic effect [Zielinski 2014].  

Lowering the FSF oxidation temperature also lowers the thermal budget that the 

n+ BSF receives during device manufacture. In fact, for the n+ diffused regions with 

wet oxide passivation layers, the thermal budget is determined by the front surface 

field diffusion which occurs after the back surface field diffusion and oxidation (see 

section 1.4.2). 

The thermal budget influences the doping profile steepness: exposing the 

diffusions to high temperatures for long periods tends to smear out the dopant 

concentration through diffusion of dopant species in the silicon lattice. Therefore, 

lowering the thermal budget allows to make doping profiles steeper, which can 

result in lower 𝐽0,𝑑𝑖𝑒𝑙 but higher 𝐽0,𝑚𝑒𝑡 for the same surface concentration; or in lower 

𝜌𝑐 for the same integrated dopant concentration. Upon lowering the front surface 

field oxidation temperature by 120°C, the BSF contact resistance was lowered 

slightly to less than 0.9 𝑚Ω ∙ 𝑐𝑚2, as opposed to 1 𝑚Ω ∙ 𝑐𝑚2 for back surface fields 

exposed to the baseline front surface field oxidation. The back surface field’s 𝐽0,𝑑𝑖𝑒𝑙 

and 𝐽0,𝑚𝑒𝑡 were not notably affected by lowering the FSF oxidation temperature. 

This could be attributable to one or a combination of the following effects: first, the 
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trends in  𝐽0,𝑑𝑖𝑒𝑙 and/or 𝐽0,𝑚𝑒𝑡 with varying FSF oxidation temperature could be 

smaller than the precision and/or accuracy of our experiments; second, the BSF’s 

thickness and surface concentration could be changing simultaneously when the 

FSF oxidation temperature is varied such that the BSF’s shape (i.e. the BSF’s 

thickness and depth) changes on an iso-𝐽0,𝑑𝑖𝑒𝑙 and/or iso-𝐽0,𝑚𝑒𝑡 curve, see [King 

1990]. 
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4.3. Integration  

 

A combination of a standard BSF diffusion, wet BSF oxidation and low 

temperature dry FSF oxidation was integrated in 2 cm x 2 cm lab-type IBC cells 

on n-type Czochralski silicon substrates made according to the baseline flow 

discussed in section 1.4.2. A comparison of solar cells manufactured according to 

the baseline process, and solar cells featuring the adapted BSF and FSF 

oxidations is shown in table 4.3.1.  

 

Best cell 𝐽𝑆𝐶  [𝑚𝐴 ∙ 𝑐𝑚−2] 𝑉𝑂𝐶  [𝑚𝑉] 𝐹𝐹 [%] 𝜂 [%] 

Baseline 41.7 690 81.2 23.3 

Modified oxidations 41.8 694 81.1 23.5 

Table 4.3.1. Comparison of the best baseline solar cell and the best solar cell featuring 
a wet BSF oxidation, and a low-temperature dry FSF oxidation.  

The cells with modified BSF and FSF oxidations have a higher open circuit 

voltage, which is related to the significantly improved 𝐽0,𝑑𝑖𝑒𝑙 of the BSF whereas 

𝐽0,𝑚𝑒𝑡 is unchanged: 𝐽0,𝑑𝑖𝑒𝑙 = 33 𝑓𝐴 ∙ 𝑐𝑚−2 for cells with modified BSF and FSF 

oxidation versus 50 𝑓𝐴 ∙ 𝑐𝑚−2 for baseline cells; 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 was 235 𝑓𝐴 ∙ 𝑐𝑚−2 

in both cases. Also, the cells with modified BSF and FSF oxidations have a higher 

short circuit current density. As argued below, we can attribute this short circuit 

current improvement to a combination of improved front reflectance and improved 

back reflectance. 

Whether or not the back surface in a solar cell contributes to the measured 

reflectance at a given wavelength depends on the extinction coefficient of the 

incident light at that wavelength. The extinction length of a material is the 

characteristic distance over which most of the light traveling in that material is 

absorbed. The extinction length in silicon is only a few nanometers in the low 

wavelength range (around 300 nm), whereas it is hundreds of meters and more at 

high wavelengths, close to silicon’s band gap (around 1100 nm) [Rajkanan 1979]. 

Because any low wavelength light that penetrates the silicon solar cell is absorbed 

close to the front surface, low wavelength light only probes the front reflectance of 

silicon solar cells. Conversely, high wavelength light is absorbed weakly, and can 

reflect from the back surface of silicon solar cells, and can escape through the 

front surface again. Therefore, high wavelength light can be used to probe both 

the front and back reflectance of silicon solar cells. 

At low wavelengths (the left panel in Figure 4.3.1), the reflectance for cells with 

modified BSF and FSF oxidations is lower, which indicates improved front 
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reflectance due to the thinner FSF-passivating SiO2 layer. At high wavelengths 

(the right panel in Figure 4.3.1), the reflectance is higher for the cells with modified 

BSF and FSF oxidations, which indicates improved reflectance related to the 

thicker back surface field oxide. 

 

 

Figure 4.3.1. Reflectivity as a function of wavelength for a baseline solar cell, and for 
a solar cell featuring a wet BSF oxide and a thin, low temperature dry FSF oxide. The 
reflectivity is shown for low and high wavelengths in the left and right panels, 
respectively. The reflectivity in the intermediate wavelength region is identical for both 
samples and is not shown here. 

The improved front and back reflectance result in better absorption of the incident 

light and this translates in improved current. The external quantum efficiency 

(EQE) is a spectrally resolved measure of this current improvement: it is the ratio 

of the number of minority carriers collected under short circuit conditions to the 

number of incident photons, as a function of the wavelength. The external 

quantum efficiency of a baseline solar cell and a solar cell with modified BSF and 

FSF oxidations is shown in Figure 4.3.2. The improved front and back reflectance 

result in EQE improvements in the low-wavelength and the high-wavelength 

regions, respectively. 

Another a-priori possibility for the improved short circuit current in the solar cells 

with is modified BSF and FSF oxidations is reduced electrical shading due to the 

improved BSF saturation current density. Electrical shading is a recombination-

related effect resulting in sub-optimal carrier collection above BSF regions in IBC 

silicon solar cells [Hermle 2008, Kluska 2010].  
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Figure 4.3.2. EQE for a solar cell with the baseline BSF and FSF oxidations, and for a 
solar cell with modified BSF and FSF oxidations. The low wavelength region is shown 
in the left panel and the high wavelength region is shown in the right panel. The EQE 
in the intermediate region is identical, and close to 100% for both cells. 

In order to investigate the possibility that part of the current gain upon introducing 

modified BSF and FSF oxidations is due to reduced electrical shading losses, light 

beam induced current (LBIC) measurements were performed, featuring laser light 

with a wavelength of 800 nm. The reflectance of baseline and optimized solar cells 

was identical at this wavelength. Therefore, the LBIC measurement can be directly 

used to compare minority carrier collection in baseline and optimized cells since 

LBIC measurements are direct measurements of the carrier collection efficiency 

as a function of position.  

The LBIC measurements, shown in Figure 4.3.3, show no difference in the carrier 

collection efficiency between baseline cells and cells with adapted BSF and FSF 

oxidations, which rules out the possibility of electrical shading effects lying at the 

basis of the observed difference in short circuit current density between baseline 

cells and cells with modified BSF and FSF oxidations. Therefore, the current gain 

observed upon modifying the front- and back surface field oxidations is due to a 

combination of improved front reflectance and improved back reflectance; as 

opposed to being due to reduced electrical shading. 

In conclusion, the use of our 𝐽0,𝑚𝑒𝑡 test structure for a classical junction 

optimization problem allowed for further experimental confirmation of the 

characterization method proposed in this dissertation. Indeed, the consistency of 

the trends between contact resistance, contact saturation current density and 

saturation current density of the passivated junction is a strong experimental 

confirmation of this novel characterization method. 
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Figure 4.3.3. Normalized LBIC (Light Beam Induced Current) signal as a function of 
position, in arbitrary units; for IBC solar cells with imec’s baseline BSF and FSF oxide, 
and for IBC solar cells with the new BSF and FSF oxide that was developed in the 
context of this thesis. Both solar cells have a nominal BSF contact fraction of 0.22%, 
relative to the total area. 
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5. Al2O3-passivated aluminum contacts 
on silicon 

 

Efficient surface passivation is one of the enablers of high efficiency photovoltaic 

devices. Surface passivation schemes can be roughly divided into two categories. 

The first category is the passivation of non-contacted surfaces, i.e. the case in 

which no electrical current flows through the passivation layer. The second 

category is the passivation of contacted surfaces. For the passivation of contacted 

surfaces, passivation layers are applied between semiconductor and metal 

contact, and the passivation layer is designed to allow for electrical current to pass 

through while inhibiting minority carrier recombination at the metal-semiconductor 

interface. Both Plasma Enhanced Physical Vapor Deposition (PECVD) and 

Atomic layer deposited (ALD) Aluminum oxide (Al2O3) have proven to successfully 

passivate non-contacted silicon surfaces, see e.g. [Saint-Cast 2010]. Surface 

passivation is commonly attributed to a combination of chemical passivation 

(removal of surface states from the band gap; primarily related to dangling bond 

saturation), and field-effect passivation; related to Al2O3 generally being a 

negatively charged dielectric. The charge state of Plasma Enhanced Chemical 

Vapor Deposition (PECVD) aluminum oxide passivation layers on silicon may be 

influenced by the injection of electrons or holes from the silicon substrate through 

the application of a bias voltage [Töfflinger 2014]. 

Al2O3 is also used in conjunction with other dielectrics to form passivating stacks 

for highly doped silicon. For example, Al2O3-TiO3 stacks have been found to 

successfully passivate non-contacted boron-diffused emitter surfaces [Suh 2014]. 

Al2Ox-SiNx stacks were found to adequately passivate both non-contacted n+ and 

p+ silicon in [Richter 2014]. 

The previous paragraphs relate to the use of ALD Al2O3 for the passivation of 

uncontacted surfaces. ALD Al2O3 has also gained significant interest for use as a 

passivation layer of metal contacts on silicon, see e.g. [Zielke 2011]. In this 

chapter, thin dielectric Al2O3 layers grown using thermal atomic layer deposition 

(ALD) are investigated for the passivation of the interface between aluminum 

contacts and n+ or p+ silicon. Specific attention is paid to the effect of the surface 

treatment prior to the formation of Al2O3 contact passivation layers: HF-last and 

HNO3-last ALD Al2O3 contact passivation layers are investigated. ALD Al2O3 

contact passivation layers are found to effectively passivate aluminum contacts on 

n+ silicon surfaces, but they are found to be ineffective at passivating aluminum 

contacts on p+ silicon surfaces. In addition, it is found that pin-holes associated 

with HF-last ALD Al2O3 contact passivation layers can improve the trade-off 
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between contact resistance and contact recombination associated with passivated 

contacts. 

A schematic representation of an IBC silicon solar cell featuring MIS passivated 

BSF contacts is shown in Figure 5.1. The magnified area shows the passivated 

BSF contact which consists of a tunnel dielectric – metal stack on n+ silicon. For 

the passivated contacts investigated in the present dissertation, the tunnel 

dielectric consists of a SiOx-Al2O3 stack, which may or may not be perforated. 

 

Figure 5.1. Schematic representation of an IBC silicon solar cell featuring passivated 
BSF contacts, in which the BSF contacts have been passivated using an MIS structure. 
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5.1. Effective lifetime and morphology1 

 

In this section, we first discuss the passivation of n- and p-type silicon by thin 

aluminum oxide layers. We use contactless effective lifetime (QSSPC) 

measurements on symmetrical test structures to investigate the passivation 

quality. In particular, we investigate the effect of surface conditioning on the 

surface passivation quality. We conclude this section by discussing the 

morphology of thin Al2O3 layers in passivated aluminum contacts on silicon. 

5.1.1. Effective lifetime 

 

Effective lifetimes 𝜏𝑒𝑓𝑓 are measured using quasi steady state photo conductance 

(QSSPC) measurements at room temperature. Effective lifetimes were measured 

on 160-170 µm thick, chemically polished, n- and p-type Czochralski silicon wafers 

passivated with thin Al2O3 passivation layers on both sides. The resistivity of the 

p-type wafers was ca. 2 Ω ∙ 𝑐𝑚, the resistivity of the n-type wafers was between 

0.8 and 5 Ω ∙ 𝑐𝑚. The bulk lifetime 𝜏𝑏 of these wafers is at least 800 𝜇𝑠 for the p-

type wafers and at least 1200 𝜇𝑠 for the n-type wafers, at an injection level of 1 ∙

1015𝑐𝑚−3. The bulk lifetime 𝜏𝑏 is at least two times higher than the observed 

effective lifetimes 𝜏𝑒𝑓𝑓 of Al2O3 passivated wafers. As a result, the 𝜏𝑒𝑓𝑓 reported 

here are good measures for the effective surface recombination velocity 𝑆𝑒𝑓𝑓 at 

the Al2O3 passivated silicon surface. 

The closed symbols in Figure 5.1.1.1 are effective lifetimes of HF-last Al2O3 

passivated wafers as a function of the number of ALD cycles. Effective lifetimes 

strongly increase with the number of ALD cycles: effective lifetimes range from ca. 

10 µs for 3 ALD cycles to ca. 400 𝜇𝑠 for 25 ALD cycles. Remarkably, no significant 

difference in effective lifetimes was found between n- and p-type wafers 

passivated with the same number of ALD Al2O3 cycles. Since the n- and p-type 

wafers have about the same thickness and recombination in both types of wafers 

is dominated by surface recombination, this is a clear indication that the surface 

recombination velocity is independent of doping type, for the specific case 

considered in our experiment. The results of these effective lifetime tests are 

consistent with observations made in the literature [Loozen 2012]. Note that this 

is a remarkable observation since Al2O3 is well known to be a negatively charged 

dielectric and highly asymmetric electron and hole capture cross sections have 

                                                 
1This section is partly based on [Deckers 2014c]. 
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been reported for traps at the Al2O3-Si interface [Werner 2012]. The identical 

effective lifetimes on n- and p-type silicon can be explained as by acknowledging 

that even just the oxide charge density at the SiOx- Al2O3 interface (−4 ∙ 1011𝑐𝑚−2) 

[Rothschild 2010] is sufficient to cause inversion at the silicon surface of the lowly 

doped (ca. 1 ∙ 1015𝑐𝑚−3) n-type wafers (see e.g. [Van Overstraeten 2000]). The 

surface of the p-type wafers is in accumulation as holes are attracted to the 

surface by the negative oxide charge. Therefore, holes are the majority carriers at 

the dielectric-silicon interface for both n- and p-type wafers, for the lowly doped 

wafers under investigation in this section. Note that in the following sections, we 

will be investigating contact recombination currents for wafers with a much higher 

surface doping concentration for which this is probably not the case. 

 
Figure 5.1.1.1. Effective lifetime of n- and p-type wafers passivated with thin Al2O3 
layers, as a function of the number of ALD cycles. The Al2O3 layers were deposited 
shortly after either an HF dip or shortly after a dip in azeotropic HNO3 at room 
temperature. 

The open symbols in Figure 5.1.1.1 are effective lifetimes for Al2O3-passivated 

wafers, for Al2O3 layers deposited shortly after a dip in azeotropic HNO3 at room 

temperature. The closed symbols in Figure 5.1.1.1 are effective lifetimes for Al2O3-

passivated wafers, for Al2O3 layers deposited shortly after a dip in a diluted 

aqueous HF-HCl mixture at room temperature. 
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By comparison of the open and closed symbols in Figure 5.1.1.1, the effective 

lifetime is much higher for HNO3-last wafers compared to HF-last wafers for the 

same number of ALD cycles. This is related to HF-last wafers being hydrophobic 

(i.e. featuring Si-H terminated surfaces) and HNO3-last being hydrophilic (i.e. 

featuring Si-O-H terminated surfaces). ALD Al2O3 growth on hydrogen terminated 

silicon surfaces is well-known to result in non-uniform island growth, see e.g. 

[Vermang 2012]. This results in partially unpassivated surfaces for silicon wafers 

passivated with few ALD Al2O3 layers on HF-last surfaces. Conversely, the layer 

growth is smooth on the HNO3-last silicon surfaces, which results in uniform 

layers, with uniform passivation. 

5.1.2. Morphology 

 

Figure 5.1.2.1 shows TEM micrographs of passivated aluminum contacts 

consisting of thin Al2O3 layers between silicon and aluminum. All Al2O3 layers 

shown in Figure 5.1.2.1 were grown in 7 ALD Al2O3 cycles and have a thickness 

of approximately 2 nm. The Al2O3 were grown on HF-last and HNO3-last highly 

doped n+ and p+ silicon surfaces. The highly doped n+ and p+ silicon surfaces were 

formed using the BSF and emitter diffusion shown in Figure 4.1.1. 

In Figure 5.1.2.1 a, the case of aluminum contacts passivated by Al2O3 on HF-last 

n+ silicon, significant roughness in the form of small pyramids is observed. In 

between the pyramids, there is also significant short-range roughness. In Figure 

5.1.2.1 c, the case of aluminum contacts passivated by Al2O3 on HNO3-last n+ 

silicon, no pyramids are detected but there is short range roughness present which 

looks similar to the intra-pyramid roughness which is present for aluminum 

contacts passivated by Al2O3 on HF-last silicon (Figure 5.1.2.1 a). 

For Al2O3 passivated contacts on p+ silicon, both for Al2O3 on HF-last (Figure 

5.1.2.1 b) and HNO3-last (Figure 5.1.2.1 d) p+ silicon, the contact interface is much 

smoother compared to the interface of passivated n+ silicon contacts. In the case 

of contacts passivated with Al2O3 on HF-last p+ silicon (Figure 5.1.2.1 b), nano 

pyramids are present, but they are smaller and their density is much lower than in 

the case of Al2O3 passivated contacts on HF-last n+ silicon. The smoothest contact 

interface is found for Al2O3 passivated HNO3-last p+ silicon contacts. In this case, 

the entire interface is comparatively flat and no nano pyramids are present. 
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Figure 5.1.2.1. TEM micrographs of passivated contacts featuring thin Al2O3 layers 
between silicon and aluminum. All Al2O3 layers shown in this picture were grown using 
7 thermal ALD cycles. The different pictures show passivated contacts on hydrophobic 
(HF-last) or hydrophilic (HNO3-last) silicon with different doping types (p+ or n+). a) 
Al2O3 on HF-last n+ Si, b) Al2O3 on HF-last p+ Si, c) Al2O3 on HNO3-last n+ Si, d) Al2O3 
on HNO3-last p+ Si. 
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A close-up of the pyramids found for the Al2O3 tunnel layers on HF-last n+ silicon 

is shown in Figure 5.1.2.2. The pyramids are epitaxial Si but contain a high density 

of stacking faults and nanotwins. They most likely grew during the final forming 

gas anneal which is done after metal patterning. There is no dielectric stack on 

the pyramid’s sides.  

The silicon source for the epitaxial nano pyramids is the aluminum contact, which 

is actually 99% aluminum and 1% silicon. A solid solution of 1% silicon in 

aluminum is supersaturated at a temperature of 400°C [Murray 1984], which is the 

forming gas anneal temperature at the end of the process. This super saturation 

causes silicon to precipitate, preferably at low activation energy nucleation sides 

such as pin-holes in the thin ALD Al2O3 layers between the aluminum contact and 

a HF-last silicon wafer. The absence of epitaxial pyramids on HNO3-last silicon is 

consistent with the growth of uniform, pinhole-free ALD Al2O3 layers on HNO3-last 

silicon. 

 
Figure 5.1.2.2. Close-up TEM micrograph of two nano pyramids found for Al2O3 tunnel 
layers on HF-last n+ silicon. The small white bar in the lower left corner indicates the 
scale (5 nm). 

The contact interface for both HF-last and HNO3-last contacts on n+ silicon 

features micro roughness in between the epitaxial nano pyramids, whereas no 

such roughness is observed for the contact interfaces on p+ silicon. This could be 

due to interface reactions during wafer cleaning; all wafers went through a RCA 

cleaning process immediately after saw damage removal. Specifically the SC1 
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step for a (1 NH4OH : 1 H2O2 : 5 H2O) ratio, which has been used in this work, has 

been found to cause significant surface roughness in the context of pre-gate 

oxidation cleans during the manufacture of CMOS integrated circuits [Meuris 

1992].  

During the TEM measurement, the surface roughness of n+ silicon surfaces is 

projected in the viewing direction. This projection causes the Al2O3 layer to be 

harder to observe and it is therefore difficult to determine the oxide layer thickness. 

Nevertheless, in the Al2O3 layers in Figure 5.1.2.1, a bright/gray/dark contrast is 

seen at the silicon- aluminum interface. The dark contrast is due to Ga 

contamination of the FIB (Focused Ion Beam) used during sample preparation. 

The bright/gray contrast cannot be interpreted in terms of composition since the 

bright contrast is likely caused by a focus effect at the rough interface. It is only 

possible to determine the total, combined, thickness of SiO2 and Al2O3 stack from 

the total thickness of the bright-gray contrast, which is approximately 2 nm for the 

layers shown in Figure 5.1.2.1. 

In order to determine the thickness of the ALD Al2O3 layers as a function of the 

number of ALD cycles, we use single wavelength ellipsometry at a wavelength of 

633 nm on mirror polished boron doped Czochralski silicon wafers with a resistivity 

higher than 1 Ω∙cm. The index of refraction of as-grown Al2O3 layers under 

investigation is taken to be 1.62, which is a result obtained from ellipsometry on 

thick Al2O3 layers. All thickness measurements were done with the purpose of 

obtaining a rough estimate of the layers’ thickness. The thicknesses were 

extracted assuming that the only layer between silicon and the atmosphere was 

Al2O3, which is evidently an approximation since we did not take into account the 

thin SiOx layer between Al2O3 and silicon. However, since the index of refraction 

of quartz is 1.54 at 633 nm [Ghosh 1999], which is close to the refractive index of 

as-grown Al2O3, we estimate that the relative error on the dielectric stack’s 

physical thickness that results from making this approximation is less than 5%, 

even if the entire stack would consist of SiO2 instead of Al2O3.  

Figure 5.1.2.3 shows the thickness of Al2O3 layers deposited on mirror polished p-

Si surfaces shortly after an HF-dip, as a function of the number of ALD cycles. For 

a low number of ALD cycles, these thicknesses are significantly thicker than 

expected from steady state growth rate measurements on thick layers, which yield 

a steady state growth rate of 0.137 nm/cycle. Also, the relative thickness 

discrepancy is the highest for the thinnest Al2O3 layers. This can be explained by 

the well-known presence of a thin SiOx layer between Al2O3 and silicon, see e.g. 

[Bersch 2008, Simoen 2011]. This thin SiOx layer could be formed either at room 

temperature in the atmosphere between HF dip and loading or while heating the 

wafers in the load lock of our ALD tool prior to deposition. Note that for ellipsometry 
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measurements on silicon wafers immediately after an HF dip, an 0.6 nm thick layer 

was measured assuming the index of refraction used in our Al2O3 thickness 

measurements. Therefore, we cannot exclude a significant relative error for our 

thickness measurements, especially for thickness measurements of the thinnest 

Al2O3 layers. 

Also note that oxide thicknesses which are measured using different techniques 

do not correspond exactly. The measurement techniques reported in this section 

are: ellipsometry measurements on thick ALD Al2O3 layers and extrapolation to 

very thin layers, TEM measurements, and ellipsometry measurements on very thin 

layers. These discrepancies are suspected to be related to specific flaws of the 

respective measurement techniques, some of which have been discussed before.  

 

 
Figure 5.1.2.3. Passivation layer thickness from single wavelength ellipsometry as a 
function of the number of ALD cycles. 
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5.2. Contact recombination 

 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  was extracted at each injection level from a linear fit of inverse 

effective lifetime as a function of the contact fraction (Equation 3.2.2.7). The 

investigated contact recombination currents are shown for ALD Al2O3-passivated 

aluminum contacts on highly doped n+ and p+ silicon junctions. The corresponding 

doping profiles are the BSF and emitter profiles shown in Figure 4.1.1 for n+ and 

p+ silicon, respectively. 

 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  is shown in Figures 5.2.1 and 5.2.2 as a function of the excess 

carrier density (∆𝑝) for HF-last Al2O3:Al contacts with various numbers of ALD 

Al2O3 cycles. In Figures 5.2.3 and 5.2.4, 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙 is shown as a function of ∆𝑝 

for HNO3-last Al2O3:Al contacts for several ALD Al2O3 cycles. Note that 𝐽0,𝑚𝑒𝑡 −

𝐽0,𝑑𝑖𝑒𝑙  for the unpassivated BSF contact is lower than 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  for the 

unpassivated emitter contact. Also, 𝐽0,𝑑𝑖𝑒𝑙  is ~40 𝑓𝐴 ∙ 𝑐𝑚2 for the unpasisvated 

BSF and 𝐽0,𝑑𝑖𝑒𝑙  is ~50 𝑓𝐴 ∙ 𝑐𝑚2, as obtained from Kane and Swanson’s method on 

two-side passivated wafers. 

 

Figure 5.2.1.  𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  as a function of injection level, for different numbers of 

Al2O3 ALD cycles on HF-last silicon for BSF (n+ Si) contacts  
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Figure 5.2.1 shows 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  for HF-last Al2O3:Al contacts on a 45 Ω/square 

n-n+ junction (phosphorous doped), with a surface concentration of 3 ∙ 1019𝑐𝑚−3. 

𝐽0,𝑑𝑖𝑒𝑙  was smaller than 50 𝑓𝐴 ∙ 𝑐𝑚−2. We observe a steady decrease of  𝐽0,𝑚𝑒𝑡 −

𝐽0,𝑑𝑖𝑒𝑙  with increasing numbers of ALD cycles for all injection levels, which 

indicates that the contact on n+ silicon is effectively passivated. 

Figure 5.2.2 shows 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  for HF-last Al2O3:Al contacts on a 100 Ω/square 

n-p+ junction (Boron doped), with a surface concentration of 1 ∙ 1019𝑐𝑚−3. For the 

emitter, 𝐽0,𝑑𝑖𝑒𝑙  was less than 25 𝑓𝐴 ∙ 𝑐𝑚−2. We do not observe decreasing emitter 

saturation current densities with increasing number of ALD cycles. This may be 

explained by the asymmetrical band structure and/or asymmetrical capture cross 

sections of the contact passivation layer, which we discuss in section 5.4. 

 
Figure 5.2.2.  𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  as a function of injection level, for different numbers of Al2O3 ALD 

cycles on HF-last silicon for emitter (p+ Si) contacts 

In Figure 5.2.3, 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  is shown for HNO3-last Al2O3:Al contacts on the 

same n-n+ junction that was used previously for the investigation of HF-last 

Al2O3:Al contacts. As before, a steady decrease of 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  with the number 

of ALD cycles is observed. However, the passivation is better for the same number 

of ALD cycles. This is explained by the absence of spikes through the passivation 

layer in the case of HNO3-last Al2O3:Al contacts whereas HF-last Al2O3:Al contacts 

feature spikes through the passivation layer in the form of epitaxial silicon 

pyramids (Figure 5.1.2.1). 
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In Figure 5.2.4, 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  is shown for HNO3-last Al2O3:Al contacts on the 

same n-p+ junction that was used previously for the investigation of HF-last 

Al2O3:Al contacts. Again, we do not observe decreasing emitter saturation current 

densities with the number of ALD cycles. The causes for this observation are 

discussed in section 5.4.  

 

 

Figure 5.2.3. 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  for HNO3-last Al2O3:Al BSF contacts as a function of the 

excess carrier density ∆𝑝 for HNO3-last n+ silicon 

𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  seemingly decreases with the injection level for all samples. This is 

most probably due to a parasitic effect similar to the effect of non-uniform excess 

carrier profiles on saturation current density extraction on blanket test structures 

reported by Kane and Swanson [Kane 1985]. In fact, in section 3.6 we showed 

that, for non-uniform excess carrier densities over wafer thickness, saturation 

current densities extracted using Equation 3.2.2.7 are underestimated by the 

factor 𝑝𝑛𝑚𝑒𝑡 𝑝𝑛𝑎⁄ , in which 𝑝𝑛𝑚𝑒𝑡 is the pn product at the bulk side of the space 

charge region between contacted junction and bulk, and 𝑝𝑛𝑎 is the pn product in 

terms of the average injection level. The ratio of 𝑝𝑛𝑚𝑒𝑡 and 𝑝𝑛𝑎 decreases with 

increasing injection levels since the effective surface recombination velocity that 

describes junction recombination increases with injection level. As a result, 
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saturation current densities extracted using Equation 3.2.2.7 seemingly decrease 

with the injection level. 

 

Figure 5.2.4. 𝐽0,𝑚𝑒𝑡 − 𝐽0,𝑑𝑖𝑒𝑙  for HNO3-last Al2O3:Al emitter contacts as a function of the 

excess carrier density ∆𝑝 for HNO3-last p+ silicon. 
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5.3. Contact resistance 

 

In passivated contact design, a trade-off is made between contact passivation and 

contact resistance. In the previous section, we investigated the passivation of 

aluminum contacts on highly doped n+ and p+ silicon for two different surface pre-

treatments. In this section, we investigate the other aspect that needs to be taken 

into account in the trade-off: contact resistance. 

The contact resistance measurements performed in this dissertation are done 

using two methods. The first method is the circular transfer length method (cTLM). 

The second method is a simple current-voltage (IV) measurement between a tiny 

contact under test and an adjacent contact with similar properties but which is 

much bigger (see the inset in Figure 5.1.1.1). We now shortly discuss these two 

methods. 

In the cTLM technique, contact resistance is extracted from multiple IV 

measurements on circular test structures which are described in [Schroder 2006] 

as “consisting of a conducting circular inner region of radius 𝐿, a gap of width 𝑑, 

and a conducting outer region.” For 𝐿 ≫ 𝐿𝑇, with 𝐿𝑇 the contact’s transfer length; 

and for 𝐿 ≫ 𝑑; the expression for the test structure resistance, 𝑅𝑇, is particularly 

simple [Schroder 2006]: 

𝑅𝑇 =
𝑅𝑠

2𝜋𝐿
(𝑑 + 2𝐿𝑇)𝐶𝑓,               (5.3.1) 

in which 𝐶𝑓 is a correction factor given by: 

𝐶𝑓 =
𝐿

𝑑
ln (1 +

𝑑

𝐿
),                (5.3.2) 

with 𝑅𝑠 the semiconductor’s sheet resistance, and 𝐿𝑇 = √𝜌𝑐 𝑅𝑠⁄ , the contact’s 

transfer length; with 𝜌𝑐 contact resistance. Using Equations 5.3.1 and 5.3.2, 

contact resistance can be extracted from IV measurements as a function 𝑑, and 

optionally 𝐿. 

Where contact resistances were too large for our particular cTLM test structure to 

be viable, the simple IV measurement between a tiny contact and a much larger 

contact was used. In this measurement, the measurement interpretation is even 

simpler than for the cTLM case. Because of its much larger size, the larger contact 

has negligible contact resistance compared to the tiny contact under test. Also, 

the resistance between the two contacts is neglected for simplicity. The latter 

assumption would result in an overestimate of contact resistance if the technique 

would be used to probe contacts with very small contact resistance. As the test 

structure’s resistance (assumed to be) dominated by the contact resistance, the 

contact resistance is found from: 
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𝜌𝑐 = 𝐴𝑐
𝑑𝑉

𝑑𝐼
,                (5.3.3) 

in which 𝐴𝑐 is the contact’s area, and 𝑑𝑉 𝑑𝐼⁄  is the derivative of the current-voltage 

characteristic, measured around zero volts. 

5.3.1. HF-last silicon 

 

In Figure 5.3.1.1, we show the contact resistance of Al2O3 passivated contacts on 

our emitter (p+ Si) and BSF (n+ Si). The unpassivated BSF contact has a higher 

contact resistance than the unpassivated emitter contact even though the surface 

doping concentration is higher for the BSF than for the emitter. This is due to the 

higher Schottky barrier height of Al contacts on n+ Si compared to Al contacts on 

p+ Si. However, the contact resistance of BSF contacts increases much more 

slowly with the number of ALD cycles than the contact resistance of our emitter 

contacts. By comparison of Figures 5.2.1 and 5.2.2 with Figure 5.3.1.1, it is clear 

that ALD Al2O3 can provide very significant passivation of aluminum contacts on 

HF-last n+ silicon for a relatively minor increase in contact resistance. Conversely, 

the presence of an ALD Al2O3 layer between Al and p+ Si quickly results in 

excessive contact resistance while providing at most limited contact passivation. 

This can be explained by the fact the valence band offset of Al2O3 on silicon is 

higher than the conductance band offset of Al2O3 on silicon. 
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Figure 5.3.1.1. Contact resistance for Al2O3 passivated Al contacts on HF-last silicon 
as a function of the number of ALD cycles. The inset shows the test structure for the 
measurement of contact resistance for samples with very high contact resistance, for 
which the contact resistance is not measurable using our particular cTLM test structure. 

We measured the temperature dependence of contact resistance at voltages 

below 5 mV between 25 and 100 ℃, which is shown in Figure 5.3.1.2, for two 

samples. These samples were chosen because they present a reasonable trade-

off between contact resistance and contact passivation. It is clear that for these 

samples, contact resistance is not thermally activated. In [Deckers 2014], we 

noted that this is consistent with current transport through the dielectric which is 

dominated by direct tunneling tunneling through the SiOx/Al2O3 passivation layer. 

Indeed, for small fields and thin oxides, the direct tunneling transport mechanism 

is expected (see e.g. [Sze 2007] p. 438). This should be contrasted with the trap 

assisted tunneling mechanism that has been found to be dominating at low 

operating voltages in (thicker) high-κ gate dielectric stacks in the context of 

complementary metal oxide semiconductor (CMOS) devices [Houssa 2000]. 

Other transport mechanisms, notably Poole-Frenkel emission and Fowler-

Nordheim tunneling, are expected to be dominating at significantly larger electric 

fields, and for thicker oxides.  

 
Figure 5.3.1.2. Contact resistance as a function of temperature for selected samples. 
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However, the TEM micrographs shown in section 5.1.2 indicate that the tunnel 

oxide is not continuous, but rather perforated. Therefore, it is actually likely that 

the contact resistance is determined by current flow through the perforations, as 

opposed to being dominated by a direct tunnel current through the thin dielectric 

contact passivation layer. Note that current transport dominated by direct 

tunneling through the space charge region associated with the aluminum-silicon 

junction in the perforations is consistent with the observed temperature 

independence of contact resistance. 

5.3.2. HNO3-last silicon 

 

The contact resistance of ALD Al2O3 – passivated contacts on HNO3-last silicon is 

shown in Figure 5.3.2.1. The contact resistance of all the HNO3-last Al2O3 

passivated contacts on silicon was too big to be measurable using our particular 

cTLM test structure. Therefore, we used the test structure shown in the inset of 

Figure 5.3.1.1 for all measurements, which yields an upper bound of the contact 

resistance.  

 
Figure 3.5.2.1. Upper bound on the contact resistance for ALD Al2O3-passivated 
aluminum contacts on HNO3-last n+ and p+ silicon. The contact resistance of 
unpassivated aluminum contacts on HF-last and HNO3-last n+ and p+ silicon is given 
as a reference. 
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By comparison of Figure 5.3.2.1 with Figure 5.3.1.1, the contact resistance for 

HNO3-last Al2O3 passivated aluminum contacts is much higher than for HF-last 

Al2O3 passivated aluminum contacts, for the same number of ALD cycles. This is 

true for contacts on n+ silicon and p+ silicon. We suggest that this is due to the 

island growth of ALD Al2O3 during the first ALD cycles on the hydrogen-terminated 

HF-last silicon surfaces compared to the uniform growth of ALD Al2O3 on the 

hydroxyl-terminated HNO3-last silicon. The associated perforations in the form of 

epitaxial nano-pyramids for HF-last Al2O3 passivated aluminum contacts form 

current paths which dominate the contact resistance for HF-last Al2O3 passivated 

aluminum contacts; conversely, the absence of these epitaxial nano pyramids in 

the case of HNO3-last Al2O3 passivated aluminum contacts result in contact 

resistance being dominated by the tunneling current through the tunnel oxide, 

resulting in higher contact resistance. 
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5.4. Contact resistance and contact recombination 

 

Our experiments yield several key observations on the passivation of Al-Si 

interfaces using Al2O3 on HF-last and HNO3-last silicon. First, 𝐽0,𝑚𝑒𝑡 consistently 

decreases with increasing numbers of ALD cycles for passivated contacts on n+ 

silicon. However, there was no appreciable contact passivation on p+ silicon. 

Second, 𝜌𝑐 consistently increases with the number of ALD cycles for contacts on 

both n+ and p+ silicon. Third, 𝜌𝑐 increases much faster with the number of ALD 

cycles for p+ silicon compared to n+ silicon. Finally, 𝐽0,𝑚𝑒𝑡 decreases faster with the 

number of ALD cycles and 𝜌𝑐 increases faster with the number of ALD cycles for 

Al2O3 passivated aluminum contacts for HNO3-last silicon compared to HF-last 

silicon. These experimental observations are explained below. 

5.4.1. Uniform layers 

 

The passivation effect of a thin dielectric layer between metal contact and 

semiconductor is due to several effects. First, the silicon-metal interface is 

replaced by a silicon-dielectric interface, which reduces the density of states at the 

silicon surface, thereby reducing the surface recombination current. Apart from 

the density of states at the interface, the capture cross section of traps is another 

critical parameter that determines the surface recombination current. For plasma 

assisted ALD Al2O3 layers on (100) silicon interfaces, the capture cross section for 

holes in the lower band gap half is smaller than the capture cross section for 

electrons in the upper band gap half [Werner 2012]. Extrapolating this finding to 

the thermal ALD Al2O3 layers studied in this thesis, this partly explains why the 

investigated n+ silicon surfaces are better passivated by Al2O3 than p+ silicon 

surfaces. 

Another reason for the passivation of a contacts by thin dielectric layers is that the 

dielectric forms a barrier that shields minority carriers from the metal. This is also 

an essential effect since minority carrier flow from the semiconductor into the 

contact is effectively a recombination current. The transfer coefficient for tunneling 

𝑇𝑡, i.e. the tunnelling probability, of carriers through a rectangular barrier is 

approximately given by [Sze 2007] p. 440: 

𝑇𝑡 ≈ 𝑒𝑥𝑝 (−
2𝑑√2𝑞𝑚∗𝜙𝑇

ℏ
)                       (5.4.1.1) 

in which 𝑑 is barrier thickness, 𝑞 is elementary charge, 𝑚∗ is effective mass in the 

barrier, 𝑞𝜙
𝑇
 is effective barrier height in eV, and ℏ equals ℎ 2𝜋⁄ , with ℎ Planck’s 

constant.  
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In our qualitative analysis, we make the simplifying assumption that all electrons 

(holes) are situated at the top (bottom) of silicon’s conduction (valence) band. As 

a consequence and in the context of our passivated contacts, the barrier height 

for electron flow through the dielectric corresponds to the conductance band offset 

∆𝐸𝑐 between dielectric and silicon, and the barrier height for hole flow through the 

dielectric corresponds to the valence band offset ∆𝐸𝑣 between dielectric and 

silicon. 

For passivated contacts on HNO3-last silicon, contact resistance is determined by 

tunneling through the passivating dielectric stack. For passivated contacts on HF-

last silicon, both tunneling and current transport through pinholes in the dielectric 

play a role. Here, the properties of the dielectric tunneling barrier are discussed. 

A first observation with respect to the dielectric tunneling layer is that the contact 

passivation layer under investigation is actually a SiOx:Al2O3 stack, since it is well 

known that a thin SiOx layer unavoidably grows between Al2O3 and silicon. The 

valence band offset ∆𝐸𝑣 of SiO2 on Si is 4.35 to 4.54 eV and the conductance band 

offset ∆𝐸𝑐 of SiO2 on Si is 3.15-3.5 eV. For Al2O3 on Si, ∆𝐸𝑣 is 2.95-3.75 eV and 

∆𝐸𝑐=2.08-2.8 eV [Bersch 2008]. For the purpose of our qualitative reasoning, we 

disregard the fact that SiO2 and Al2O3 have different band offsets, but we use that 

for both SiO2 and Al2O3, ∆𝐸𝑣>∆𝐸𝑐. Therefore, the tunnelling probability through the 

SiOx:Al2O3 stack is smaller for holes than for electrons, all other things equal. The 

contact resistance 𝜌𝑐 is determined by the resistance to majority carrier flow. In 

Al2O3-passivated contacts on silicon, resistance to the flow of holes from silicon to 

metal is bigger than the resistance to the flow of electrons from silicon to metal 

since ∆𝐸𝑣 > ∆𝐸𝑐. It therefore follows that contact resistance on our n+ BSF is 

expected to increase slowly with the number of Al2O3 ALD cycles compared to 

contact resistance on our p+ emitter. This corresponds to the experimental 

observation of contact resistance as a function of the number of Al2O3 ALD cycles.  

The effective surface recombination velocity of the contact is determined by 

surface recombination at the Si-SiOx:Al2O3 interface, by the tunneling probability 

of minority carriers from the semiconductor to the metal, and by recombination in 

pinholes, if present. We first focus on the properties of the Si-SiOx:Al2O3 interface 

and then discuss the influence of pinholes to extend our conclusions to Al2O3 

passivated aluminum contacts on HF-last silicon.  

Since the capture cross section for holes in the lower band gap half is smaller than 

the capture cross section for electrons in the upper band gap half for Al2O3 – (100) 

silicon interfaces [Werner 2012], the surface recombination at the p+ Si – Al2O3 

interface is larger than the recombination current at the n+ Si Al2O3 interface, all 

other things equal. This partly explains the worse passivation of p+ silicon surfaces 

compared to n+ silicon surfaces in our study.  
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An additional explanation for the observed trends of contact passivation and 

contact resistance can be found in the band structure of the aluminum-aluminum 

oxide-silicon contact. For Al2O3 on silicon, ∆𝐸𝑣 > ∆𝐸𝑐 such that the transmission 

coefficient through the barrier is smaller for holes than for electrons, and the 

resistance to minority carrier flow is larger for the passivated n+ BSF compared to 

the passivated p+ emitter, all other things equal. This is beneficial for the 

passivation of the n+ BSF compared to the passivated p+ emitter. In addition, due 

to the asymmetric conduction and valence band offsets, 𝐽0,𝑚𝑒𝑡 of the passivated n+ 

BSF is expected to decrease faster with the number of ALD cycles than 𝐽0,𝑚𝑒𝑡 of 

the passivated p+ emitter. The above observations explain why we observed 

consistently improving n+ BSF contact passivation with the number of ALD cycles, 

and we failed to observe such a trend for passivated contacts on our p+ emitter. 

Trapped charge in the ALD Al2O3 layers is also a factor which may affect the 

contact recombination properties. For thermal Al2O3 ALD layers, the charge carrier 

density was found to be −4 ∙ 1011𝑐𝑚−2 elementary charges at the SiOx-Al2O3 

interface and −1 ∙ 1019𝑐𝑚−3 elementary charges in the Al2O3 layer [Rothschild 

2010]. The thickness of the layers we investigated was below 4 nm, which yields 

overall charge densities of −4 ∙ 1011 to −4.4 ∙ 1011 𝑐𝑚−2. The fact that the overall 

surface charge density is not expected to change significantly with the number of 

ALD cycles for the samples we investigated is consistent with our contact 

resistance measurements: increasing negative charge density in a tunnel barrier 

would increase the Schottky barrier height for passivated n+ Si-Al contacts and it 

would decrease the Schottky barrier height for Al2O3 passivated p+ Si-Al contacts. 

Therefore, if the surface charge would increase significantly with the number of 

ALD cycles in the investigated range, the contact resistance of Al2O3 passivated 

n+ Si-Al contacts would tend to increase faster with the number of ALD cycles than 

contact resistance of Al2O3 passivated p+ Si-Al interfaces. This contradicts our 

experimental observations, which motivates the interpretation of our experimental 

results in terms of band offsets, and a reduction in surface states. 

The worse contact passivation of aluminum contacts on p+ silicon compared to n+ 

silicon by ALD Al2O3 layers is in apparent contradiction to experiments in [Hoex 

2007, Hoex 2008]; in which excellent passivation of p+ silicon surfaces by plasma 

assisted ALD Al2O3 was reported. Our failure to observe contact passivation on p+ 

silicon surfaces by ALD Al2O3 layers is also at odds with experimental results 

reported in [Richter 2011]. In the next paragraphs, an attempt is made to explain 

the observed discrepancies. 

The most remarkable difference between the layers investigated in [Hoex 2007] 

and the layers investigated in this work is their thickness. The thickness of our 

layers is kept very thin, less than 3 nm, as to allow a majority carrier tunnel current 
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to pass through. Conversely, the passivation layers in [Hoex 2007] were much 

thicker (30 nm), as they were not designed to allow current to tunnel through. The 

higher thickness implies more negative charge in the dielectric, which in turn 

implies a better field effect passivation of the negatively charged Al2O3 layer on 

the p+ silicon surface. In addition, the extremely low thickness of our layers also 

implies that minority carriers can tunnel through, whereas the layers in [Hoex 

2007] are much too thick for a tunnel current to pass through (by Equation 5.4.1.1, 

the tunneling probability of minority carriers through the SiOx:Al2O3 stack 

decreases strongly with the layer thickness). 

In [Richter 2011], very thin ALD Al2O3 layers, having thicknesses of less than a 

nanometer, are observed to passivate of p+ silicon surfaces. However, the thin 

ALD Al2O3 layers studied in [Richter 2011] are not contacted; contrary to our 

samples on which we failed to observe the passivation of aluminum contacts on 

p+ silicon by Al2O3 ALD layers. Therefore, the failure to observe contact 

passivation of aluminum contacts on p+ silicon in our experiments may indicate 

that interactions between the metal layer and the dielectric could compromise the 

dielectric’s passivating properties. However, it should be noted that other 

differences in the sample characteristics were present as well, including a 

difference in surface doping concentration. Therefore, definitely establishing the 

cause of the failure to observe contact passivation in our samples would require 

further research. 

5.4.2. Non-uniform layers 

 

In our analysis of non-uniform layers, we consider a special, simplified case, 

corresponding to a dielectric tunneling barrier with pinholes. Outside the pinholes, 

the tunneling barrier is perfectly homogeneous. We call the pinholes unpassivated 

areas, and the tunneling barrier covered surfaces are called passivated areas. In 

this case, the saturation current density of the contacted junction is approximately 

the area weighted sum of the saturation current densities of passivated and 

unpassivated areas: 

𝐽0,𝑐 = 𝐽0,𝑝 + 𝐶𝑢[𝐽0,𝑢 − 𝐽0,𝑝],                                     (5.4.2.1) 

in which 𝐽0,𝑐 is the average saturation current density, 𝐽0,𝑝 is the saturation current 

density of passivated areas, 𝐽0,𝑢 is the saturation current density of unpassivated 

areas, and 𝐶𝑢 is the ratio of the unpassivated area to the total area. 

The resulting contact resistance of a non-uniform contact consisting of passivated 

and unpassivated areas is the area-weighed harmonic average of the contact 

resistances of passivated and unpassivated areas: 
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1

𝜌𝑝
+ 𝐶𝑢 [

1

𝜌𝑢
−

1

𝜌𝑝
],                         (5.4.2.2) 

in which 𝜌𝑐 is the resulting contact resistance of the non-uniform contact, 𝜌𝑝 is the 

contact resistance of the passivated areas, and 𝜌𝑢 is the contact resistance of the 

passivated areas. 

Because the dependence of 𝜌𝑐 and 𝐽0,𝑐 on 𝐶𝑢 is different, the occurrence of 

pinholes can yield an improved trade-off between contact resistance and contact 

recombination. Inspection of Equations 5.4.2.1 and 5.4.2.2 yields that especially 

when 𝜌𝑢 is small compared to 𝜌𝑝, a small amount of pinholes can drastically lower 

the contact resistance while marginally impacting the contact saturation current 

density provided that 𝐽0,𝑢 is not much larger than 𝐽0,𝑝. This analysis, combined with 

the observation of pinholes for Al2O3 passivation layers on HF-last silicon, and the 

absence of pinholes for Al2O3 passivation layers on HNO3-last silicon, qualitatively 

explains the dramatic dependence of contact resistance and contact passivation 

on the final surface treatment of the silicon wafer before ALD Al2O3 deposition. 

Because the presence of pinholes can influence contact resistance and contact 

recombination in such a dramatic way, it is essential to control pinhole occurrence. 

Failure to do so can result in solar cells with excessively high contact resistance. 
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6. Conclusions 
 

A novel test structure for contact recombination current measurements has been 

proposed. The test structure is based on lattices of point contacts with various 

contact fractions on which radio wave detected photoconductance measurements 

are performed. The test structure has the advantage of simplicity. Its most 

significant limitations are related to design rules for avoiding parasitic current flow 

through point contacts, and to design rules formulated to ensure constant excess 

carrier densities throughout the test structure’s quasi neutral bulk. The test 

structure and the fundamental theory at its basis is outlined in section 3.2. Test 

structure manufacture for the characterization of MIS contacts on diffused 

junctions is outlined in section 3.3. 

In order to avoid parasitic effects related to current flow through point contacts the 

contact’s characteristic size must be smaller than the contact transfer length. 

Design rules related to avoid parasitic current flow through point contacts are 

treated in section 3.4. Failure to ensure that the contact’s characteristic size is 

smaller than the contact’s transfer length causes underestimations in extracted 

contact recombination currents. In addition, the point contacts in the test structure 

must be designed such that adjacent point contacts do not touch. For simple 

square lattices of circular point contacts, as used in this dissertation, this restriction 

limits the maximum theoretical contact fraction to 𝜋 4⁄ . However, practical 

maximum contact fractions are generally smaller as metallized areas are always 

bigger than the contact openings to provide a buffer for process limitations. For 

the lithographically defined test structures used in this dissertation, the maximum 

contact fraction is less than 20%, and is limited by design rules which require the 

metal point contacts to be significantly larger than the contact openings as to 

counter misalignment, over etch and over development. 

The excess carrier density must be approximately constant throughout the test 

structure’s quasi neutral bulk for a simple interpretation of the measurement 

results to apply. Excess carrier density variations are discussed in sections 3.5 

and 3.6.  

In order to avoid in-plane excess carrier density variations, contact size and pitch 

must be designed to be much smaller than the effective diffusion lengths in 

contacted and passivated areas, respectively. This is discussed in section 3.5. 

Out-of-plane excess carrier density variations are discussed in section 3.6. Out-

of-plane excess carrier density variations can be limited by using thin wafers such 

that the bulk diffusion length is much larger than wafer thickness. In addition, out-

of-plane excess carrier density variations can be reduced by making symmetric 
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test structures as opposed to asymmetric test structures (section 2.3). However, 

in symmetric test structures the generation rate depends on the contact fraction, 

which has to be taken into account. Also, because of the partial shading in 

symmetric test structures, in-plane excess carrier density variations may be more 

pronounced. An additional consideration is related to bulk excess carrier density 

variations being smaller on a relative basis for smaller effective surface 

recombination velocities, all other things equal. Therefore, the test structure works 

better for better passivated contacts. In addition, since junction recombination is 

generally proportional to the pn product, junction recombination generally results 

in increasing effective surface recombination velocities for increasing injection 

levels such that excess carrier densities are more constant at lower excess carrier 

densities. As a result, contact recombination characteristics are more accurately 

extracted from the test structures at low excess carrier densities. At higher excess 

carrier densities, the increased effective surface recombination velocities result in 

higher excess carrier density variations, which result in seemingly decreasing 

saturation current densities with increasing excess carrier concentration. Finally, 

excess carrier density variations cause saturation current densities to be 

underestimated more when they are extracted using the high injection level 

technique compared to when they are extracted using the arbitrary injection level 

technique. 

For saturation current densities extracted using the arbitrary injection level 

technique, the bulk doping level must be accurately known. Using incorrect bulk 

doping levels significantly distorts the extracted contact recombination currents at 

low excess carrier densities, but has no effect on contact recombination currents 

extracted at high excess carrier densities; thereby introducing artificial excess 

carrier density dependence in the extracted contact recombination currents. This 

is discussed in section 3.7. 

In this dissertation, the focus is on surface recombination currents featuring unit 

ideality factors. The presence of significant space charge region recombination 

can give rise to ideality factors significantly bigger than one. The resulting effect 

on contact saturation current densities extracted using the arbitrary injection level 

technique is treated in section 3.8. 

In lithographically defined test structures, contact diameter control is complicated 

due the use of relatively rough solar cell wafers. The use of relatively rough wafers 

requires relatively high illumination doses to ensure uniform resist development 

across the entire wafer. However, this introduces over-development. In addition, 

over-etch is unavoidable due to the relatively long etching times used to ensure 

uniform contact opening. Errors related to poor contact size control are treated in 

section 3.9. 
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For some contacting technologies, such as plated contacts, the use of line-shaped 

contact openings is desirable. Also, for some contact opening technologies such 

as laser-opened contacts, the contact recombination current is expected to 

depend on the contact shape. Therefore, test structures based on lattices of point 

contacts are not ideally suited for the study of some contacting technologies. 

Alternative test structure embodiments featuring line-shaped contacts are 

discussed in section 3.10. 

In chapter 4, the 𝐽0,𝑚𝑒𝑡 test structure introduced in chapter 3 is applied to the 

optimization of diffused junctions. The use of this 𝐽0,𝑚𝑒𝑡 test structure for such a 

classical junction optimization problem allows for further experimental 

confirmation of the characterization method. The optimization has proven to be 

especially successful since the baseline efficiency of imec’s IBC process was 

increased by 0.2% by merely modifying the BSF and FSF oxidations. Indeed, the 

consistency of the trends between contact resistance, contact saturation current 

density and saturation current density of the passivated junction is a strong 

experimental confirmation of this novel characterization method. 

Finally, in chapter 5, thin dielectric Al2O3 layers grown using thermal atomic layer 

deposition (ALD) are investigated for the passivation of the interface between 

aluminum contacts and n+ or p+ silicon. Specific attention is paid to the effect of 

the surface treatment prior to the formation of Al2O3 contact passivation layers: 

HF-last and HNO3-last ALD Al2O3 contact passivation layers are investigated. ALD 

Al2O3 contact passivation layers are found to effectively passivate aluminum 

contacts on n+ silicon surfaces, but they are found to be ineffective at passivating 

aluminum contacts on p+ silicon surfaces. In addition, it is found that pin-holes 

associated with HF-last ALD Al2O3 contact passivation layers can improve the 

trade-off between contact resistance and contact recombination associated with 

passivated contacts. 
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7. Suggestions for future work 
 

The theoretical treatment in this dissertation is based on relatively simple 

analytical models to tackle the analysis of 𝐽0,𝑚𝑒𝑡 test structures based on lattices 

of point contacts one aspect at a time. This approach is advantageous because of 

its simplicity and transparency. However, an all-inclusive three dimensional model 

of the test structure could be useful to uncover phenomena related to the 

interaction of different non-ideal effects.  

A three dimensional model could also be useful for quantitative modelling of non-

ideal effects, for example those due to non-uniform excess carrier densities 

throughout the quasi neutral bulk. This might allow for extracting more accurate 

𝐽0,𝑚𝑒𝑡 values from effective lifetime measurements on non-ideal samples. 

Alternatively, the Plagwitz model [Plagwitz 2006] could be used as a basis for 

more accurate contact recombination current extraction using our test structure. 

The development of alternative test structure embodiments could allow for the 

application of the 𝐽0,𝑚𝑒𝑡 test structure to the characterization of line-shaped 

contacts. In addition, such alternative test structure embodiments could also be 

useful to speed up the measurement time. However, the realization of such 

alternative test structure embodiments would require the development of new 

measurement tools. 

Test structures based on line-shaped contacts may also be useful in the field of 

DC contact recombination current measurements, as opposed to the AC contact 

recombination measurements performed in the present dissertation. The DC 

contact resistance of many passivated contacts is suspected to be higher than 

their AC contact resistance. Therefore, DC measurements may be useful in this 

context for reducing parasitic effects related to current flow through the metal 

contacts instead of through the semiconductor. 

There is a great variety of material systems that show significant potential in the 

field of passivated contacts. We assert that the test structure proposed in the 

present dissertation, and its alternative embodiments, could proof to be useful 

characterization tools for further research in this field.  
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Symbols 
 

𝑘  Boltzmann’s constant   [𝑐𝑚2 ∙ 𝑘𝑔 ∙ 𝑠−2𝐾−1] 

𝐶𝑚𝑒𝑡  contact fraction    [%] 

𝐷  diffusion coefficient    [𝑐𝑚2 ∙ 𝑠−1] 

𝐸  electric field    [𝑉 ∙ 𝑐𝑚] 

𝐸𝐹  Fermi level    [𝑒𝑉] 

𝐺  generation rate    [𝑐𝑚−3𝑠−1] 

J  current density    [𝐴 ∙ 𝑐𝑚−2] 

Jmpp  current density at maximum power point  [𝐴 ∙ 𝑐𝑚−2] 

𝐽𝑅  recombination current density   [𝐴 ∙ 𝑐𝑚−2] 

𝐽0  saturation current density   [𝐴 ∙ 𝑐𝑚−2] 

𝐿𝐷  diffusion length    [𝑐𝑚] 

𝐿𝑇  transfer length    [𝑐𝑚] 

𝑛  free electron concentration   [𝑐𝑚−3] 

𝑛𝑖  intrinsic carrier concentration   [𝑐𝑚−3] 

𝑛0  equilibrium free electron concentration  [𝑐𝑚−3] 

𝑁𝐴  electron acceptor concentration  [𝑐𝑚−3] 

𝑁𝐷  electron donor concentration   [𝑐𝑚−3] 

𝑝  free hole concentration   [𝑐𝑚−3] 

𝑝0  equilibrium free hole concentration  [𝑐𝑚−3] 

𝑃𝑚𝑝𝑝  output power at maximum power point  [𝑊] 

𝑞  elementary charge    [𝐶] 

𝑄  𝑄 = 𝑆𝑒𝑞 𝑆𝑠⁄     [-] 

𝑅  recombination rate    [𝑐𝑚−3𝑠−1] 

𝑅𝑠  sheet resistance    [Ω 𝑠𝑞𝑢𝑎𝑟𝑒⁄ ] 

𝑆  conductance, also 𝑆𝑥, 𝑆𝑦 or 𝑆𝑧 when referring [Ω−1]    

  to a particular direction 

  Also: pitch (in section 3.4 )   [𝑐𝑚] 

𝑆𝑒𝑓𝑓 effective surface recombination velocity  [𝑐𝑚 ∙ 𝑠−1]       

also 𝑆1 or 𝑆2 when referring to a particular surface 

𝑆𝑒𝑞 sheet resistance of a wafer featuring a lattice  [Ω−1 ∙ 𝑠𝑞𝑢𝑎𝑟𝑒]        

of point contacts 

𝑆𝑠 sheet conductance of a bare wafer   [Ω−1 ∙ 𝑠𝑞𝑢𝑎𝑟𝑒] 
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𝑡  time     [𝑠] 

𝑇  temperature    [𝐾] 

𝑉  quasi Fermi level splitting   [𝑉] 

𝑉𝑚𝑝𝑝  output voltage at maximum power point  [𝑉] 

∆𝑛  excess electron concentration   [𝑐𝑚−3] 

∆𝑝  excess hole concentration    [𝑐𝑚−3] 

𝑊  wafer thickness, approximately equal to bulk  [𝑐𝑚]  

  quasi neutral region thickness 

∆𝜎  photoconductivity    [Ω−1 ∙ 𝑐𝑚−1] 

𝜂  efficiency      [%] 

𝜇  mobility     [𝑐𝑚2 ∙ 𝑉−1 ∙ 𝑠−1] 

𝜎  conductivity    [Ω−1 ∙ 𝑐𝑚−1] 

𝜏𝑏  bulk lifetime    [𝑠] 

𝜏𝑒𝑓𝑓  effective lifetime    [𝑠] 
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Glossary 
 

Arbitrary injection technique: The term “arbitrary injection technique” refers to the application of 

Equation 3.2.7 for 𝐽0,𝑚𝑒𝑡 extraction. The name derives from the fact that Equation 3.2.7 can be 

used at arbitrary injection levels, as opposed to Equation 3.2.10, the “high injection technique”, 

which is only applicable when the injection level is sufficiently high such that Kane and Swanson’s 

method [Kane 1985] is applicable. 

BSF: Back surface field; highly doped region in a high-low junction on a solar cell’s non-illuminated 

side used for surface passivation and base contacting. 

BSG: Boro-Silicate Glass - Glassy substance used as a boron source for the formation of p+ 

diffused regions.  

CIGS: Copper Indium Gallium Selenide, an absorber material for thin-film solar cells. 

Contact fraction 𝐶𝑚𝑒𝑡 : The ratio of contacted area and total area. 

cTLM: Circular Transfer Length Method, a method for contact resistance measurements 

diffusion current: the component of the electrical current which is driven by a charge carrier 

concentration gradient. 

drift current: the component of the electrical current which is driven by an electric field. 

Dry oxide: oxide formed with O2 being the oxidizing species. A dry oxide forming oxidation is 

called a dry oxidation. 

Effective lifetime 𝜏𝑒𝑓𝑓 [𝑠]: Characteristic timescale of recombination processes. It is defined such 

that 𝜏𝑒𝑓𝑓 ≡ ∆𝑝𝑎 𝑅𝑡𝑜𝑡⁄ , in which ∆𝑝𝑎 is the average excess carrier density over the thickness of the 

quasi neutral bulk, and 𝑅𝑡𝑜𝑡 is the total recombination rate per unit area. 

Effective surface recombination velocity 𝑆𝑒𝑓𝑓  [𝑐𝑚 ∙ 𝑠−1]: A figure of merit for surface recombination 

in which the surface recombination current is described as: 𝐽𝑅 = 𝑞𝑆𝑒𝑓𝑓Δ𝑝, with  𝐽𝑅 the surface 

recombination current density, 𝑞 elementary charge, and Δ𝑝 the excess carrier density at the 

surface. 

EQE [%]: external quantum efficiency; the ratio of the minority carrier flux collected by the solar 

cell under short circuit conditions and the photon flux reaching the solar cell surface. 

Excess carrier density: The difference between the carrier density and the equilibrium carrier 

density, also called the injection level. 

HF-dip: Short (typically 10s to 2 min) immersion of one or more wafers in a diluted aqueous HF-

solution (typically 1-10 vol%). A small amount of HCl is commonly added to the solution (typically 

1-10%). 

High injection technique: The term “high injection technique” refers to the application of Equation 

3.2.10 for 𝐽0,𝑚𝑒𝑡 extraction. The name derives from the fact that for Equation 3.2.10 to be relevant, 

𝐽0,𝑡𝑜𝑡 must be extractable using Kane and Swanson’s method [Kane 1985] from the effective 

lifetime data over a range of contact fractions. For Kane and Swanson’s method to be applicable, 

the injection level must be sufficiently high such that the slope of inverse lifetime versus the 

contact fraction is determined by junction recombination. Note that as used in this thesis, the term 

“high injection” does not necessarily refer to injection levels that are strictly larger than ten times 

the base doping level. In fact, as shown in sections 3.5 and 3.6, the high injection technique 
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should not be applied at “too high” injection levels because parasitic effects related to non-

constant excess carrier densities are more significant at higher injection levels. 

IBC solar cells: solar cells with a specific contacting layout in which all contacts are at the non-

illuminated side of the solar cell, and the emitter and base contacts are shaped in a pattern that 

resembles two hands with interlocking fingers. 

Ideality factor 𝑚: Figure of merit for recombination currents which describes their injection level 

dependence. In this dissertation, unit ideality factors are assumed unless mentioned otherwise. 

Injection level: The difference between the carrier density and the equilibrium carrier density, also 

called the excess carrier density.  

IQE [%]: internal quantum efficiency - the ratio of the minority carrier flux collected by the solar 

cell under short circuit conditions and the photon flux reaching the solar cell’s active part. 

Layperson: a person without professional or specialized knowledge in a particular subject. 

Maximum power point: The point on a solar cell’s current-voltage characteristic at which the solar 

cell’s output voltage is at a maximum. The power delivered by the solar cell at the maximum 

power point is called 𝑃𝑚𝑝𝑝 = 𝐼𝑚𝑝𝑝 ∙ 𝑉𝑚𝑝𝑝. 

MIS: a Metal-Insulator-Semiconductor structure 

Passivated contact: The term passivated contact refers to the application of a technique to reduce 

the recombination current at the metal-semiconductor interface. Examples are metal – insulator 

– semiconductor contacts and semiconductor – insulator – semiconductor contacts. The term 

carrier-selective contact can be used interchangeably. 

PL: photoluminescence – the process in which matter emits photons after the absorption of 

photons. 

PSG: Phospho-Silicate Glass - glassy substance used as a phosphorous source for the formation 

of n+ doped diffusions. 

QSSPC: Quasi Steady State Photoconductance. A photoconductance measurement technique 

featuring an exciting light pulse that is much longer than the effective minority carrier lifetime such 

that the steady state approximation is valid. This measurement technique allows to obtain the 

effective lifetime as a function of the injection level. 

RCA clean (Radio Corporation of America Clean): a silicon wafer cleaning process consisting of 

the following sequence: SC1 – water rinse – HF dip – water rinse – SC2 – water rinse – HF-dip – 

water rinse 

Red.: Redacted; used in citations when certain bits and pieces of information were added to the 

citation in order to improve citation’s clarity. 

Saturation current density 𝐽0 [𝑓𝐴 ∙ 𝑐𝑚−2]: A figure of merit for recombination currents, particularly 

for surface regions featuring highly doped regions between surface and semiconductor bulk. The 

recombination current at the surface and in the highly doped region is described as: 𝐽𝑅 =

𝐽0 exp(𝑞𝑉 𝑚𝑘𝑇⁄ ), in which 𝐽𝑅 is the recombination current, 𝑞 is elementary charge, 𝑉 is the Fermi 

level splitting at the bulk-side of the space charge region between diffused region and 

semiconductor bulk, 𝑚 is the ideality factor, 𝑘 is Boltzmann’s constant, and 𝑇 is absolute 

temperature. 
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SC1: Standard Clean 1, used in the RCA clean. It is performed in many variations in the Art. As 

used in the present dissertation, the SC1 clean consists of a 10 minute chemical treatment in a 

1:1:5 NH4OH:H2O2:H2O solution at 70℃. 

SC2: Standard Clean 2, used in the RCA clean. It is performed in many variations in the Art. As 

used in the present dissertation, the SC2 clean consists of a 10 minute chemical treatment in a 

1:1:5 HCl:H2O2:H2O solution at 80℃. 

SPM: Sulfur-Peroxide-Mixture. Mixture of H2O2 and H2SO4. In the present dissertation, it is used 

for wafer cleaning: 10 minutes in a fresh solution (1:4 H2O2 and H2SO4) at a temperature between 

90 and 120℃. The mixing process of H2O and H2SO4 is highly exothermic such that this 

temperature is reached upon mixing of H2O2 and H2SO4 in a 1:4 ratio. 

Something rotten in the state of this text: Allusion to a sentence from the first Act of Shakespeare’s 

play “Hamlet”. The original phrase is “something rotten in the state of Denmark”. In English, the 

phrase “something rotten in the state of Denmark” is used to indicate “something which is not 

right, rife with errors from top to bottom, leading to suspicion of motive” [Wiktionary 2014]. 

Transfer length 𝐿𝑇 [𝑐𝑚]: Characteristic length for current to flow in or out of a metal contact on a 

semiconductor. It is defined as 𝐿𝑇 = √𝜌𝑐 𝑅𝑠ℎ𝑒𝑒𝑡⁄ , in which 𝜌𝑐 is contact resistance and 𝑅𝑠ℎ𝑒𝑒𝑡 is 

sheet resistance. 

Wet oxide: Oxide formed with H2O being the oxidizing species. A wet oxide forming oxidation is 

called a wet oxidation.  
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