
Jan WölferHumboldt-Universität zu Berlin | HU Berlin · Department of Biology
Jan Wölfer
Dr. rer. nat.
About
23
Publications
8,553
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
168
Citations
Introduction
I am a research assistant at the Humboldt-Universität zu Berlin. My research concerns the macroevolution of the postcranium of rodents and other mammals.
Additional affiliations
September 2020 - present
Education
November 2014 - March 2020
October 2012 - October 2014
October 2008 - September 2012
Publications
Publications (23)
Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid‐fli...
Tessellations (surface architectures of arrays of hard tiles) are common in natural and man-made designs. Boxfishes (Ostracioidea) are almost completely encased in a tessellated armor and have evolved a plethora of cross-sectional carapace shapes, yet whether the scutes constructing these exhibit comparable variation is unknown. Using high-resoluti...
Correlations between morphology and lifestyle of extant taxa are useful for predicting lifestyles of extinct relatives. Here, we infer the locomotor behaviour of Palaeosciurus goti from the middle Oligocene and Palaeosciurus feignouxi from the lower Miocene of France using their femoral morphology and different machine learning methods. We used two...
The skeletons of sharks and rays, fashioned from cartilage, and armored by a veneer of mineralized tiles (tesserae) present a mathematical challenge: How can the continuous covering be maintained as the skeleton expands? This study, using microCT and custom visual data analyses of growing stingray skeletons, systematically examines tessellation pat...
Background
Biological adaptation manifests itself at the interface of different biologically relevant ‘levels’, such as ecology, performance, and morphology. Integrated studies at this interface are scarce due to practical difficulties in study design. We present a multilevel analysis, in which we combine evidence from habitat utilization, leaping...
Eco-morphological convergence, i.e., similar phenotypes evolved in ecologically convergent taxa, naturally reproduces a common-garden experiment since it allows researchers to keep ecological factors constant, studying intrinsic evolutionary drivers. The latter may result in differential evolvability that, among individual anatomical parts, causes...
Many of the squirrel‐related rodents (i.e., Sciuromorpha) are tree‐dwelling species known to be very agile climbers. This taxon also includes the most diverse clade of gliding (aerial) mammals that likely descended from a non‐gliding arboreal ancestor and evolved a patagium (i.e., a gliding membrane) to increase gliding performance. Glides can cove...
Synopsis
From large ventral pleats of humpback whales to nanoscale ridges on flower petals, wrinkled structures are omnipresent, multifunctional, and found at hugely diverse scales. Depending on the particulars of the biological system—its environment, morphology, and mechanical properties—wrinkles may control adhesion, friction, wetting, or drag;...
Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly comp...
Vertebrate musculoskeletal locomotion is realized through lever-arm systems. The instantaneous muscle moment arm (IMMA), which is expected to be under selective pressure and thus of interest for ecomorphological studies, is a key aspect of these systems. The IMMA changes with joint motion. It’s length change is technically difficult to acquire and...
Differences between arboreal and terrestrial supports likely pose less contrasting functional demands on the locomotor system at a small body size. For arboreal mammals of small body size, asymmetrical gaits have been demonstrated to be advantageous to increase dynamic stability. Many of the extant arboreal squirrel-related rodents display a small...
Der Bewegungsapparat der Sciuromorpha, einer monophyletische Gruppe von ca. 300 Arten, wurde verwendet um den Effekt der Lebensweise und der Körpermasse auf die Scapula- und Femurmorphologie zu untersuchen. Diese Nagetierklade weist eine breite Vielfalt an Lebensweisen (arboreal, fossoriell, aerial) als auch Körpermassen (drei Größenordnungen umfas...
Zwei große Forschungsrichtungen, die ein gemeinsames Interesse an der Morphologie der Tiere teilen, sind die Bionik-und die Phylogenieforschung. Allerdings bestehen kaum direkte Verbindungen zwischen diesen beiden Disziplinen. In den vergangenen Jahrzehnten hat sich die funktionelle Morphologie durch eine immer größer werdende Verfügbarkeit neuer b...
Zwei große Forschungsrichtungen, die ein gemeinsames Interesse an der Morphologie der Tiere teilen, sind die Bionik- und die Phylogenieforschung. Allerdings bestehen kaum direkte Verbindungen zwischen diesen beiden Disziplinen. In den vergangenen Jahrzehnten hat sich die funktionelle Morphologie durch eine immer größer werdende Verfügbarkeit neuer...
Homoplasy is a strong indicator of a phenotypic trait's adaptive significance when it can be linked to a similar function. We assessed homoplasy in functionally relevant scapular and femoral traits of Marmotini and Xerini, two sciuromorph rodent clades that independently acquired a fossorial lifestyle from an arboreal ancestor. We studied 125 speci...
In several groups of mammals, adaptation to differing functional demands is reflected in long bone cross-sectional properties (CSP), which relate to the resistance to compression and to bending loads in the craniocaudal and mediolateral directions. Members of the Sciuromorpha ("squirrel-like" rodents) display a diversity of locomo-tor ecologies and...
Sciuromorph rodents are a monophyletic group comprising ~300 species that display a variety of locomotor behaviours and a body mass range spanning three orders of magnitude. We asked how the interaction of body mass and locomotor ecology affects the morphology of the scapula. Univariate traits and the shape of the scapula from the lateral view of 1...
Sciuromorph rodents are a monophyletic group comprising about 300 species with a body mass range spanning three orders of magnitude and various locomotor behaviors that we categorized into arboreal, fossorial and aerial. The purpose of this study was to investigate how the interplay of locomotor ecology and body mass affects the morphology of the s...
Background
Sciuromorpha (squirrels and close relatives) are diverse in terms of body size and locomotor behavior. Individual species are specialized to perform climbing, gliding or digging behavior, the latter being the result of multiple independent evolutionary acquisitions. Each lifestyle involves characteristic loading patterns acting on the bo...