
T 0; tð Þ¼ Tiþ T1�Tið Þ 1�erfc
h

k

ffiffiffiffiffi
k t

p� �
exp

h2k t
k2

� �
 �

ð34Þ

or

T 0; tð Þ ¼Ti þ T1 � Tið Þ 1� exp
h2k t
k2

� ��

1� erf
h

k

ffiffiffiffiffi
k t

p� �
 �� ð35Þ

The solution (35) is also used for the experi-

mental determination of the heat transfer coeffi-

cient h on the basis of measured surface

temperature at a given time point tp.

The temperature distribution in the semi-

infinite solid is shown in Fig. 3 as a function of

time t and coordinate x. The presented formulas

can be used for calculating temperature distribu-

tion in components with finite dimensions at the

initial moment of heating or cooling.
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Overview

This entry covers the mathematical description of

physical backgrounds governing the transient

heat conduction process in sphere. The most

common case, the heat transfer between the

sphere’s body and its surroundings due to con-

vection, is presented. The well-known analytical

approach [1, 2] is introduced. The analytical

methods are commonly used because they are

more accurate and easier to program than numer-

ical methods. In contrary to the numerical solu-

tion, it is possible to present the analytical

solution as a continuous function. Consequently,

the function which satisfies the differential equa-

tion can be parameterized. Therefore, it is possi-

ble to study the influence of particular parameters

on the solution. The additional contribution to

this entry is the presentation of charts [1, 3]

which allow obtaining the temperature of

sphere’s center, outer surface, and the average

temperature. The mathematical feedback

explained in this entry may be used for modeling

the engineering phenomena’s like hardening of

steel or to determine the thermal stresses during

the hardening. The mathematical model of tran-

sient heat conduction in sphere may also be used

to simulate the food boiling process – e.g.,

potato’s boiling.

Physical Backgrounds of Transient Heat
Conduction in Sphere

The transient heat conduction in sphere occurs,

during the contact between the sphere’s material

and the surrounding, in which temperature differs

from the temperature of the material of sphere.

Because of the finite thermal diffusivity and rel-

atively large radius, the transient heat conduction

in sphere cannot be treated as the conduction in

a lumped body. The temperature distribution

inside sphere depends on time and the distance

from the center of sphere to the point at which the

temperature is measured. Consider the model of

hot steel sphere immersed in quenching bath (see

Fig. 1).

The fluid temperature is significantly lower

than the temperature of metal. At time t ¼ 0, the

sphere, with the initial temperature T0, is placed

in a fluid which temperature is equal to T1, and

for a time t > 0, the sphere is kept in the fluid.
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The heat transfer occurs between the sphere

and the environment with constant heat transfer

coefficient h. The temperature in the sphere is

assumed to be symmetric about its center point

(r¼ 0). The radiation heat transfer is neglected or

incorporated into the heat transfer coefficient h.

At the time t ¼ 0, the temperature of entire sur-

face of the sphere is equal to T0. However, with
increasing time t1> 0 and t2> t1, the temperature

of wall starts to drop (see Fig. 2) due to the heat

transfer between the sphere and the surrounding

medium. This creates the temperature gradient

across the wall and begins the heat transfer from

the inner parts of the sphere’s walls to the outers.

For the short period of time, the changes of tem-

perature at r ¼ 0 are negligible, and it is possible

to assume that the temperature T(0,t) remains T0.
After a period of time when the t reaches t3, the

temperature at r ¼ 0 starts to drop. In successive

time intervals, the temperature profile gets flatter

and flatter and finally becomes uniform reaching

T1 value.

The heat released from the sphere is absorbed

by the surrounding medium. Assuming that there

is no heat source in the sphere domain, the tem-

perature of sphere’s wall decreases, and after an

infinitely long time, ðt ! t1Þ reaches the temper-

ature of medium. This means that there is no heat

transfer, because the temperature difference does

not exist. The wall of the sphere reaches the

thermal equilibrium with the surrounding

medium. The formulas presented in the following

are also valid for the situation when the fluid

temperature is higher than the initial sphere

temperature.

Mathematical Model of Transient Heat
Conduction in Sphere

The physical principles which describe the prob-

lem of transient heat conduction in sphere are

modeled using the partial differential equation,

which can be solved analytically. The method

proposed in this entry is the separation of

variables.

The following assumptions are considered:

• One-dimensional heat transfer conduction

• Constant diffusivity (k ¼ const.)

• Constant thermal conductivity (k ¼ const.)

• Uniform heat transfer coefficient (h ¼ const.)

and ambient temperature (T1 ¼ const:)

Transient Heat Conduction in Sphere, Fig. 1 Cooling

of the sphere which temperature changes from the initial

temperature T0 to the ambient temperature T1

Transient Heat Conduction in Sphere,
Fig. 2 Transient temperature profiles for a sphere –

convection boundary conditions

Transient Heat Conduction in Sphere 6187 T

T



According to the heat conduction law, the

temperature distribution inside the sphere is

given by [4]

@y
@t

¼ k
@2y
@r2

þ 2

r

@y
@r

� �
ð1Þ

with boundary conditions

� k
@y
@r

����
r¼ro

¼ hyjr¼ro
ð2Þ

@y
@r

����
r¼0

¼ 0 ð3Þ

and initial condition

yjt¼0 ¼ y0 ð4Þ

where

y ¼ T � T1 ð5Þ

and

y0 ¼ T0 � T1 ð6Þ

Introducing the new variable

# ¼ y � r ð7Þ

the initial boundary value problem (1–4) may be

written as follows:

@#

@t
¼ k

@2#

@r2
ð8Þ

� k
@#

@r

����
r¼r0

¼
�
h� k

ro

�
#jr¼ro

ð9Þ

#jr¼0 ¼ 0 ð10Þ

#jt¼0 ¼ ry0 ð11Þ

Equation (8) is solved using the separation of

variables. The variable # is a function of r and t;
hence, it may be written as

Transient Heat
Conduction in Sphere,
Fig. 3 Graphical method

for determining roots of the

characteristic equation

tanðmÞ ¼ m
1�Bi
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#ðr; tÞ ¼ ’ðtÞcðrÞ ð12Þ

Substituting (12) to (8), the following form is

obtained:

1

k
c
d’

dt
¼ ’

d2c
dr2

ð13Þ

After dividing both sides of (13) by ’ðtÞcðxÞ,
(13) is transformed into

1

k
1

’

d’

dt
¼ 1

c
d2c
dr2

ð14Þ

The equality (14) should be satisfied for any

values of x and t; therefore, both sides of (14)

should be equal to the constant. Its sign, due to the

finite value of # for increasing time, should be

negative. Denoting the aforementioned constant

as –w2, (14) becomes

1

k
1

’

d’

dt
¼ 1

c
d2c
dr2

¼ �w2 ð15Þ

Hence, the system of two ordinary differential

equations

d’

dt
þ kw2’ ¼ 0 ð16Þ

and

d2c
d2t

þ w2c ¼ 0 ð17Þ

is obtained.

The general solutions of (16) and (17) are

given below:

’ ¼ C1 � e�kw2t ð18Þ

and

c ¼ C2 � cosðwrÞ þ C3 � sinðwrÞ ð19Þ

Substituting (18) and (19) into (12), the

following formula for # is obtained:

#ðr; tÞ ¼ ’ðtÞcðrÞ
¼ e�kw2t½A � sinðwrÞ þ B � cosðwrÞ� ð20Þ

where A ¼ C1 � C3 and B ¼ C1 � C2:

Because the solution #ðr; tÞ must satisfy

boundary conditions (10), then

#ð0; tÞ ¼ e�kw2tB ¼ 0 ð21Þ

and B ¼ 0. Consequently, the solution of (8) is

given by

#ðr; tÞ ¼ Ae�kw2t sinðwrÞ ð22Þ

After substituting (22) into (9), the character-

istic equation is obtained:

�kAw cosðwroÞ ¼
�
h� k

ro

�
� A � sinðwr0Þ

tanðwroÞ ¼ wro
1� Bi

ð23Þ

where Bi ¼ hro
k
.

Taking into account that m ¼ wro; the (23) can

be written in the form that is easier to represent in

a graphical way:

tanðmÞ ¼ m
1� Bi

ð24Þ

The graphical method for determination of

roots of the characteristic equation is presented

in Fig. 3.

On the basis of Fig. 3, it is possible to localize

the regions where the roots are situated. If the

denominator of the (24) is greater than zero,

(1�Bi) > 0, then the nth root is located in the

interval

ðn� 1Þp 	 mn 	
p
2
þ ðn� 1Þp;

n ¼ 1; 2 . . . ; if ð1� BiÞ > 0

ð25Þ

If the denominator of the (24) is less than zero,

(1�Bi) < 0, then the nth root is located in the

interval
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p
2
þ ðn� 1Þp 	 mn 	 pþ ðn� 1Þp;
n ¼ 1; 2 . . . ; if ð1� BiÞ < 0

ð26Þ

If the Biot number Bi equals 1, then

mn ¼ ð2n� 1Þ p
2
; n ¼ 1; 2 . . . ; for Bi ¼ 0

ð27Þ

If the Biot number Bi tends to infinity, then

mn ¼ np; n ¼ 1; 2 . . . ; if Bi ! 1 ð28Þ

The first six roots of the characteristic (24)

obtained on the basis of computer programs

published in [1] are listed in a Table 1.

In order to satisfy the initial boundary condi-

tion (11), (22) is written as follows:

#ðr; tÞ ¼
X1

n¼1

Ane
�kw2t sinðwrÞ

¼
X1

n¼1

Ane
�kw2t sin

�
mn
ro

r

�
ð29Þ

where w ¼ mn
ro
, after substituting (29) into (11),

the following equality is obtained:

rðTo � T1Þ ¼
X1

n¼1

An sin

�
mn
ro

r

�
ð30Þ

Multiplying both sides of (30) by sinðmmro rÞ and
integrating from 0 to ro gives

ðTo � T1Þ
ðr0

0

r sin mm
r

ro

� �
dr

¼
X1

n¼1

An

ðro

0

sin
mn
ro

r

� �
sin

mm
ro

r

� �
dr

ð31Þ

The right side integral is

ðr0

0

sin

�
mn
ro

r

�
sin

�
mm
ro

r

�
dr

¼ roðmn sin mm cos mn � mm sin mn cos mmÞ
m2m � m2n

ð32Þ

Multiplying both sides of the characteristic

equation (24) by sin mn and substituting

mn ¼ mm gives

sinmm sin mnð1� BiÞ ¼ mm cos mm sinmn ð33Þ

Similarly, the multiplication of both sides of

the characteristic equation (24) by sin mm and

substitution mn instead of m gives

sin mm sinmnð1� BiÞ ¼ mn cos mn sinmm ð34Þ

The right sides of (33) and (34) are equal.

Therefore, when m 6¼ n, the integral given by

(32) equals 0. In the summation term – the right

side of (31) – the only nonzero components are

these for which m ¼ n. This shows the orthogo-

nally of functions sin mn and sin mm. Hence, if
m ¼ n, then

ðr0

0

sin

�
mn
ro

r

�
sin

�
mm
ro

r

�
dr ¼

ðr0

0

sin2
�
mn
ro

r

�
dr

¼ r0
2mn

ðmn � sin mn cos mnÞ

ð35Þ

In case that m 6¼ n,

ðr0

0

sin

�
mn
ro

r

�
sin

�
mm
ro

r

�
dr ¼ 0 ð36Þ

Taking into account (35) and (36) in (31) and

noting that the integral on the right side of (31)

vanishes when m 6¼ n; (31) becomes
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Transient Heat Conduction in Sphere, Table 1 First six roots of the characteristic equation tanðmÞ ¼ m
1�Bi

obtained

for different values of Bi

Bi m1 m2 m3 m4 m5 m6

0 0,00E+00 4.4934 7.7253 10.904 14.066 17.221

0.001 0.054767 4.4936 7.7254 10.904 14.066 17.221

0.002 0.077444 4.4939 7.7255 10.904 14.066 17.221

0.003 0.094839 4.4941 7.7256 10.904 14.066 17.221

0.004 0.1095 4.4943 7.7258 10.904 14.066 17.221

0.005 0.12241 4.4945 7.7259 10.905 14.067 17.221

0.006 0.13408 4.4947 7.726 10.905 14.067 17.221

0.007 0.14481 4.495 7.7262 10.905 14.067 17.221

0.008 0.15479 4.4952 7.7263 10.905 14.067 17.221

0.009 0.16417 4.4954 7.7264 10.905 14.067 17.221

0.01 0.17303 4.4956 7.7265 10.905 14.067 17.221

0.011 0.18146 4.4959 7.7267 10.905 14.067 17.221

0.012 0.18951 4.4961 7.7268 10.905 14.067 17.221

0.013 0.19723 4.4963 7.7269 10.905 14.067 17.222

0.014 0.20465 4.4965 7.7271 10.905 14.067 17.222

0.015 0.21181 4.4967 7.7272 10.905 14.067 17.222

0.03 0.2991 4.5001 7.7291 10.907 14.068 17.222

0.04 0.34503 4.5023 7.7304 10.908 14.069 17.223

0.05 0.38537 4.5045 7.7317 10.909 14.07 17.224

0.06 0.42173 4.5068 7.733 10.91 14.07 17.224

0.07 0.45506 4.509 7.7343 10.911 14.071 17.225

0.08 0.486 4.5112 7.7356 10.911 14.072 17.225

0.09 0.51497 4.5134 7.7369 10.912 14.073 17.226

0.1 0.54228 4.5157 7.7382 10.913 14.073 17.227

0.11 0.56818 4.5179 7.7395 10.914 14.074 17.227

0.12 0.59286 4.5201 7.7408 10.915 14.075 17.228

0.13 0.61645 4.5223 7.7421 10.916 14.075 17.228

0.14 0.63908 4.5246 7.7434 10.917 14.076 17.229

0.15 0.66086 4.5268 7.7447 10.918 14.077 17.229

0.3 0.92079 4.5601 7.7641 10.932 14.088 17.238

0.4 1.0528 4.5822 7.777 10.941 14.095 17.244

0.5 1.1656 4.6042 7.7899 10.95 14.102 17.25

0.6 1.2644 4.6261 7.8028 10.959 14.109 17.256

0.7 1.3525 4.6479 7.8156 10.968 14.116 17.261

0.8 1.432 4.6696 7.8284 10.977 14.123 17.267

0.9 1.5044 4.6911 7.8412 10.986 14.13 17.273

1 1.5708 4.7124 7.854 10.996 14.137 17.279

1.1 1.632 4.7335 7.8667 11.005 14.144 17.285

1.2 1.6887 4.7544 7.8794 11.014 14.151 17.29

1.3 1.7414 4.7751 7.892 11.023 14.158 17.296

1.4 1.7906 4.7956 7.9045 11.032 14.165 17.302

1.5 1.8366 4.8158 7.9171 11.041 14.172 17.308

3 2.2889 5.087 8.0962 11.173 14.276 17.393

4 2.4556 5.2329 8.2045 11.256 14.343 17.449

5 2.5704 5.354 8.3029 11.335 14.408 17.503

6 2.6537 5.4544 8.3913 11.409 14.47 17.556

(continued)
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ðTo � T1Þ
ðr0

0

r sin

�
mn

r

ro

�
dr

¼ An

ðro

0

sin

�
mn
ro

r

�
sin

�
mn
ro

r

�
dr ð37Þ

The coefficient An is obtained after some

manipulations:

An ¼
ðTo � T1Þ Ð

r0

0

r sinðmn r
ro
Þdr

Ðro

0

sinðmnro rÞ sinð
mn
ro
rÞdr

¼ 2r0ðTo � T1Þðsin mn � mn cos mnÞ
mnðmn � sin mn cos mnÞ

ð38Þ

Substituting (38) into (29), the solution #ðx; tÞ
is given according to the following formula:

#ðr; tÞ ¼
X1

n¼1

Ane
�kw2t sin

�
mn
ro

r

�

¼ 2roðTo � T1Þðsin mn � mn cos mnÞ
mnðmn � sin mn cos mnÞ

� sin

�
mn
ro

r

�
e�kw2t

ð39Þ

According to (7) # ¼ yr; thus,

y ¼
X1

n¼1

2ðTo � T1Þðsin mn � mn cos mnÞ
ðmn � sin mn cos mnÞ

sinðmnro rÞ
mn

r
ro

e�kw2t

ð40Þ

Assuming the following dimensionless vari-

ables R ¼ r
ro

and Fo ¼ kt
r2o
;

y ¼
X1

n¼1

2ðTo � T1Þðsin mn � mn cos mnÞ
ðmn � sin mn cos mnÞ

sinðmnro rÞ
mnR

e�kw2t

ð41Þ

Transient Heat Conduction in Sphere, Table 1 (continued)

Bi m1 m2 m3 m4 m5 m6

7 2.7165 5.5378 8.4703 11.477 14.529 17.607

8 2.7654 5.6078 8.5406 11.541 14.585 17.656

9 2.8044 5.6669 8.6031 11.599 14.637 17.703

10 2.8363 5.7172 8.6587 11.653 14.687 17.748

11 2.8628 5.7606 8.7083 11.703 14.733 17.791

12 2.8851 5.7981 8.7527 11.748 14.777 17.832

13 2.9041 5.8309 8.7924 11.79 14.818 17.87

14 2.9206 5.8597 8.8282 11.828 14.856 17.907

15 2.9349 5.8852 8.8605 11.863 14.892 17.941

30 3.0372 6.0766 9.1201 12.169 15.225 18.287

40 3.0632 6.1273 9.1933 12.262 15.333 18.409

50 3.0788 6.1582 9.2384 12.32 15.403 18.489

60 3.0893 6.1788 9.269 12.36 15.452 18.545

70 3.0967 6.1937 9.2909 12.389 15.487 18.586

80 3.1023 6.2048 9.3075 12.411 15.514 18.618

90 3.1067 6.2135 9.3204 12.428 15.535 18.643

100 3.1102 6.2204 9.3308 12.441 15.552 18.663

110 3.113 6.2261 9.3393 12.453 15.566 18.68

120 3.1154 6.2309 9.3464 12.462 15.578 18.694

130 3.1174 6.2349 9.3524 12.47 15.588 18.706

140 3.1192 6.2383 9.3576 12.477 15.596 18.716

150 3.1207 6.2413 9.362 12.483 15.604 18.725
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Dividing (41) by y0 gives

y
y0

¼ Tðr; tÞ � T1
T0 � T1

¼
X1

n¼1

2ðsin mn � mn cos mnÞ
ðmn � sinmn cos mnÞ

sinðmnRÞ
mnR

e�kw2t

ð42Þ

The dimensionless average temperature is cal-

culated according to formula

�y
y0

¼
�Tðr; tÞ � T1
T0 � T1

¼ 3

r3o

ðro

0

y
y0
r2dr

¼ 3

ð1

0

y
y0
R2dR ð43Þ

Substituting (42) into (43) and taking into

account that

ð1

0

R sinðmnRÞdR ¼ 1

m2n
ðsinmn � mn cos mnÞ ð44Þ

Equation (43) becomes

�y
y0

¼
X1

n¼1

6

m3n

ðsin mn � mn cos mnÞ2
mn � sin mn cos mn

e�m2nFo ð45Þ

In order to obtain the rate of temperature

change, (41) is transformed to the following

form:

Tðr; tÞ ¼ ðT0 � T1Þ
X1

n¼1

2ðsin mn � mn cos mnÞ
ðmn � sin mn cos mnÞ

� sinðmnRÞ
mnR

e�kw2t þ T1

ð46Þ

The differentiation of (46) with respect to time

allows obtaining the formula for the rate of tem-

perature changes in the sphere:

dTðr; tÞ
dt

¼ kðT0 � T1Þ
r2z

X1

n¼1

2mnðsin mn � mn cos mnÞ
ðmn � sin mn cosmnÞ

� sinðmnRÞ
R

e�kw2t

ð47Þ

Numerical Examples

The brief analysis of (46) and (47) allows con-

cluding that the transient temperature profile and

the rate of temperature changes in sphere strongly

depend on the value of the heat transfer coeffi-

cient. To investigate how the different values of h
influence the temperature distribution inside the

sphere, three values of h are taken into consider-

ation. The calculations are carried out using pro-

grams published in [1] for the following data:

ro ¼ 20 mm; k ¼ 10�5m2=s; k ¼ 46W=ðm � KÞ;
T0 ¼ 800 �C; T1 ¼ 42 �C:

The values of the heat transfer coefficient are

listed in Table 2

In Fig. 4, the transient temperature plots (see 46),

obtained for the inner, outer, and mean radius,

r ¼ 0:5ro, are presented. The calculations are

carried out for h ¼ 400 W=ðm2 � KÞ.
Furthermore, the transient plots for the aver-

age temperature of the sphere wall are shown.

The average temperature can be obtained by

transforming (43) to the form presented below:

�Tðr; tÞ ¼ ðT0 � T1Þ

�
X1

n¼1

6

m3n

ðsin mn � mn cos mnÞ2
mn � sin mn cos mn

e�m2nFo

þ T1
ð48Þ

Transient Heat Conduction in Sphere,
Table 2 Values of h for computational cases

Case no. h W=ðm2 � KÞ
1 400

2 4,000

3 40,000
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For low values of h, e.g.,

h ¼ 400 W=ðm2 � KÞ, the temperature difference

between the center of the sphere and its outer

surface is low. Therefore the temperatures calcu-

lated at the center, at the outer surface of the

sphere and the mean temperaure of the sphere

have nearly the same values. The maximal value

of the temperature difference DT does not exceed

60 K. With increasing time, the analyzed temper-

atures approach the temperature of surroundings.

In Fig. 5, the rates of temperature changes for

the center, mean radius, and the outer surface of

the sphere are presented.

During the first 4 s of the heat transfer process,

the rate of temperature changes is the largest

at the outer surface and the lowest at the center

of the sphere. This can be explained by the

thermal inertia of the sphere’s material. After

the relatively short period of time, the rate of

temperature changes is nearly equal for the all

analyzed cases.

The temperature transients for

h ¼ 4000W=ðm2 � KÞ are presented in Fig. 6. It

is possible to observe that temperature differ-

ences between the center and the outer surface

of sphere are significantly larger than for the

computational case no. 1, especially for the time

period t ¼ 0 to 40 s. The largest temperature

difference occurs at t ¼ 10 s and is equal to

310 �C. The steady state t1 is reached significantly

faster in comparison to the first analyzed case.

The rates of temperature changes for

h ¼ 4000W=ðm2 � KÞ are presented in Fig. 7.

The largest values of
dTðr;tÞ

dt are obtained for

r ¼ ro. Due to the thermal inertia of sphere’s

material, the lower values of
dTðr;tÞ

dt are obtained

Transient Heat Conduction in Sphere, Fig. 4 The

transient temperature plots for the center of sphere T(0,t),
outer surface of sphere T(ro, t), the mean radius of sphere

T(0.5ro, t), average temperature �T, and temperature differ-

ence DT ¼ Tð0; tÞ � Tðro; tÞ, h ¼ 400W=ðm2 � KÞ

Transient Heat Conduction in Sphere, Fig. 5 The rate

of temperature change at the outer surface of the sphere,

on the mean radius, and at the center of the sphere,

h ¼ 400 W=ðm2 � KÞ

Transient Heat Conduction in Sphere, Fig. 6 The

transient temperature plots for the center of sphere T(0,t),
outer surface of sphere T(ro, t), the mean radius of sphere

T(0.5ro, t), average temperature �T, and temperature differ-

ence DT ¼ Tð0; tÞ � Tðro; tÞ, h ¼ 4,000W=ðm2 � KÞ
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for r ¼ 0.5ro and the lowest for the center of

sphere. Comparing Figs. 5 and 7 one can see,

that the rates of temperature changes obtained

for h ¼ 4000W=ðm2 � KÞ are significantly larger

than if h ¼ 400W=ðm2 � KÞ.
The temperature transients obtained for

h ¼ 40000W=ðm2 � KÞ are presented in Fig. 8.

For h ¼ 40000W=ðm2 � KÞ the temperature dif-

ferences between the center of the sphere and the

outer surface of the sphere are larger than for

h ¼ 400W=ðm2 � KÞ and h ¼ 4000W=ðm2 � KÞ.
When h ¼ 40000W=ðm2 � KÞ the steady-state

heat conduction occurs after 34 s, significantly

faster than if h ¼ 400W=ðm2 � KÞ and

h ¼ 4000W=ðm2 � KÞ.
The rates of temperature change for

h ¼ 40000W=ðm2 � KÞ, presented in Fig. 9, are

significantly larger than if h ¼ 400W=ðm2 � KÞ
and h ¼ 4000W=ðm2 � KÞ. For larger values of

heat transfer coefficient h, the temperature

of sphere rapidly reaches the temperature of

medium.

Comparing Figs. 4 and 5 it is possible to draw

a conclusions that for low value of heat transfer

coefficient the ratios of temperature changes at

the center of the sphere, outer surface and at

the mean radius of the sphere do not differ

significantly. Therefore, the temperature of

sphere material is close to uniform. On the other

hand if the heat transfer coefficient h is large, then

the rate of temperature changes for studied

locations differs significantly. Consequently, the

large temperature differences occur in the

domain of sphere during the time.

Transient Heat Conduction in Sphere, Fig. 7 The rate

of temperature change at the outer surface of the sphere,

on the mean radius, and at the center of the sphere,

h ¼ 4;000W=ðm2 � KÞ

Transient Heat Conduction in Sphere, Fig. 8 The

transient temperature plots for the center of sphere T(0,t),
outer surface of sphere T(ro, t), the mean radius of sphere

T(0.5ro, t), average temperature �T, and temperature differ-

ence DT ¼ Tð0; tÞ � Tðro; tÞ, h ¼ 40,000W=ðm2 � KÞ

Transient Heat Conduction in Sphere, Fig. 9 The rate

of temperature change at the outer surface of the sphere,

on the mean radius, and at the center of the sphere,

h ¼ 40;000 W=ðm2 � KÞ
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To apply the the matematical models of tran-

sient heat conduction in sphere for engineering

calculations, the specialized charts (see Fig. 10)

were developed. These charts are developed for

dimensionless parameters: Fourier number Fo,

Biot number Bi and the dimensionless tempera-

ture Q/Q0. If the values of Fo and Bi are known

then it is possible to determine the value of

dimensionless temperature Q/Q0 at the outer

surface and at the center of the sphere. Similary,

the mean dimensionless temperaute can be cal-

culated as a function of Fourier and Biot

numbers.

On the basis of Fig. 10, the given values of

Fourier and Biot numbers allow graphically

determining the dimensionless temperature for

the center of the sphere, which is defined as:

yð0; tÞ
y0

¼ Tð0; tÞ � T1
T0 � T1

ð49Þ

Hence, aftere some manipulations of (49) the

temperature at the center of the sphere is obtained

Tð0; tÞ ¼ yð0; tÞ
y0

ðT0 � T1Þ þ T1 ð50Þ

Similarly, the temperature of the sphere’s

outer surface is determined for the known Biot

and Fourier numbers. The dimensionless

temperature at the outer surface is given by the

following formula:

yðro; tÞ
y0

¼ Tðro; tÞ � T1
T0 � T1

ð51Þ

The values of
yðro;tÞ
y0

can be obtained from

Fig. 11 for the known values of Biot and Fourier

numbers.

The temperature at the outer surface of the

sphere can be obtained by transforming (51)

into the following form:

Tðro; tÞ ¼ yðro; tÞ
y0

ðT0 � T1Þ þ T1 ð52Þ

The same procedure may be applied in order to

obtain the dimensionless average temperature of

the sphere. According to (43), the dimensionless

average temperature of the sphere becomes

�y
y0

¼
�Tðr; tÞ � T1
T0 � T1

ð53Þ

It may be obtained from Fig. 12 as a function

of Biot and Fourier number.

The value of �Tðro; tÞ is calculated as follows:

�Tðro; tÞ ¼
�yðr; tÞ
y0

ðT0 � T1Þ þ T1 ð54Þ

Transient Heat Conduction in Sphere, Fig. 10 Dimensionless temperature at the center of the sphere
yð0;tÞ
y0

¼ Tð0;tÞ�T1
T0�T1

as a function of Biot and Fourier numbers
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Summary

The transient heat conduction in sphere is

described. The physical backgrounds of these

phenomena are introduced. The analytical formu-

las, which describe the transient heat conduction

in the sphere, are presented. The method of vari-

ables separation is used to obtain the temperature

distribution as a function of time and position.

The influence of the heat transfer coefficient from

surroundings to the sphere is studied. Moreover,

the charts that allow determining the value of

temperature at the certain time point are

presented. This method permits to calculate the

temperature at the center of the sphere, the tem-

perature at the outer surface of the sphere and the

average temperature of the sphere at the specified

time on the basis of dimensionless parameters –

Biot Bi and Fourier Fo numbers.
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Overview

Steam turbines are used in thermal cycles that

convert the chemical or the nuclear energy of

a fuel intomechanical energy,which usually drives

an electric power generator. The turbine is a

thermal engine that converts the energy

of flowing steam into mechanical energy. The tur-

bines manufactured today are either drum-type

turbines (so-called reaction turbines) or disc-type

turbines (impulse turbines) [1]. Plots describing

these turbines are shown in Figs. 1 and 2. The

plots present the essential components of the tur-

bines. The steamflows through the system of blades

and expands, while its temperature decreases. The

higher the temperature of the steam delivered to the

turbine, the higher the efficiency of the conversion

of the fuel chemical energy intomechanical energy.

Furthermore, the temperature of the components

that are exposed to the flowing steam increases.

This process results in thermal stresses that occur

in the components of the turbine.

Operation of Turbines

In modern turbines, the live steam pressure reaches

30MPa, and the temperature exceeds600 �C.Due to
such large parameter values, the expansion process

takes place in three or four sections of the turbine

(Fig. 3). The steam flows from the outlet of the HP

section to the boiler where the steam temperature is

increased (usually to a level slightly above the tem-

perature at the inlet to the HP section). Next, the

steamflows into the IP sectionand subsequently into

the LP section. Depending on the power output,

a turbinemay include one, two, or threeLP sections.

The operation of steam turbines is performed in

cycles [2]. The length of a single cycle depends on

the application and varies from several hundreds

of hours to several thousands of hours. A single

cycle begins with a start-up process. In this period

the parameters of the working fluid (the steam)

delivered to the turbine are gradually increased

(Fig. 4a). The rate of change of the pressure, the

Transient Temperature
and Thermal Stresses in
Turbine Components,
Fig. 1 A reaction turbine:

1 rotor, 2 rotor blades,

3 stator blades, 4 inner

casing, 5 outer casing,

6 seal on a balance piston,

and 7 casing seal
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