Jan Harms

Jan Harms
Breakthrough Prize Laureate
Gran Sasso Science Institute | GSSI · Astroparticle physics

PhD

About

543
Publications
325,876
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
75,644
Citations
Additional affiliations
August 2017 - present
Gran Sasso Science Institute
Position
  • Professor
December 2016 - July 2017
University of Urbino
Position
  • Researcher
November 2014 - October 2016
University of Urbino
Position
  • Fellow

Publications

Publications (543)
Article
Among third-generation ground-based gravitational-wave detectors proposed for the next decade, the Einstein Telescope provides a unique kind of null stream - the signal-free linear combination of data - that enables otherwise inaccessible tests of the noise models. We project and showcase challenges in modeling the noise in the 2030s and how it wil...
Preprint
Full-text available
Pulsar timing array experiments have recently reported strong evidence for a common-spectrum stochastic process with a strain spectral index consistent with that expected of a nanohertz-frequency gravitational wave background, but with negligible yet non-zero evidence for spatial correlations required for a definitive detection. However, it was poi...
Article
The Einstein Telescope (ET) is a proposed third-generation gravitational-wave (GW) underground observatory. It will have greatly increased sensitivity compared to current GW detectors, and it is designed to extend the observation band down to a few Hz. At these frequencies, a major limitation of the ET sensitivity is predicted to be due to gravitat...
Article
Pulsar timing array experiments have recently reported strong evidence for a common-spectrum stochastic process with a strain spectral index consistent with that expected of a nanohertz-frequency gravitational-wave background, but with negligible yet non-zero evidence for spatial correlations required for a definitive detection. However, it was poi...
Article
Full-text available
It is expected that noise produced by terrestrial gravity fluctuations will start to limit the sensitivity of the ground-based, gravitational-wave detector Virgo in coming observation runs. A system is under preparation at Virgo to cancel this noise, also known as Newtonian noise. This Newtonian noise cancellation system requires the deployment of...
Preprint
Full-text available
An important step in the planning of future gravitational-wave (GW) detectors and of the networks they will form is the estimation of their detection and parameter-estimation capabilities, which is the basis of science-case studies. Several future GW detectors have been proposed or are under development, which might also operate and observe in para...
Article
The existence of primordial black holes (PBHs), which may form from the collapse of matter overdensities shortly after the Big Bang, is still under debate. Among the potential signatures of PBHs are gravitational waves (GWs) emitted from binary black hole (BBH) mergers at redshifts z ≳ 30, where the formation of astrophysical black holes is unlikel...
Preprint
Full-text available
Among third-generation ground-based gravitational-wave detectors proposed for the next decade, Einstein Telescope provides a unique kind of null stream $\unicode{x2014}$ the signal-free linear combination of data $\unicode{x2014}$ that enables otherwise inaccessible tests of the noise models. We project and showcase challenges in modeling the noise...
Preprint
Full-text available
The Einstein Telescope (ET) is going to bring a revolution for the future of multi-messenger astrophysics. In order to detect the counterparts of binary neutron star (BNS) mergers at high redshift, the high-energy observations will play a crucial role. Here, we explore the perspectives of ET, as single observatory and in a network of gravitational-...
Preprint
The Einstein Telescope (ET) is a proposed third-generation gravitational-wave (GW) underground observatory. It will have greatly increased sensitivity compared to current GW detectors, and it is designed to extend the observation band down to a few Hz. At these frequencies, a major limitation of the ET sensitivity is predicted to be due to gravitat...
Article
Full-text available
Fluctuations of gravitational forces cause so-called Newtonian noise (NN) in gravitational-wave (GW) detectors which is expected to limit their low-frequency sensitivity in upcoming observing runs. Seismic NN is produced by seismic waves passing near a detector's suspended test masses. It is predicted to be the strongest contribution to NN. Modelin...
Article
Full-text available
Multi-messenger astrophysics is becoming a major avenue to explore the Universe, with the potential to span a vast range of redshifts. The growing synergies between different probes is opening new frontiers, which promise profound insights into several aspects of fundamental physics and cosmology. In this context, THESEUS will play a central role d...
Preprint
Full-text available
To deliver on the promise of next generation gravitational-wave observatories, a sustained and coordinated detector research and development program is required. This report examines in detail the wide range of nearer- and longer-term detector R&D programs needed for next generation GW detectors commensurate with the key science targets presented i...
Preprint
Full-text available
The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it poss...
Article
Full-text available
The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it poss...
Article
Full-text available
The suspended test masses of gravitational-wave (GW) detectors require precise alignment to be able to operate the detector stably and with high sensitivity. This includes the continuous counter-acting of seismic disturbances, which, below a few Hertz, are not sufficiently reduced by the seismic isolation system. The residual angular motion of susp...
Preprint
Full-text available
The existence of primordial black holes (PBHs), which may form from the collapse of matter overdensities shortly after the Big Bang, is still under debate. Among the potential signatures of PBHs are gravitational waves (GWs) emitted from binary black hole (BBH) mergers at redshifts $z\gtrsim 30$, where the formation of astrophysical black holes is...
Preprint
Full-text available
The suspended test masses of gravitational-wave (GW) detectors require precise alignment to be able to operate the detector stably and with high sensitivity. This includes the continuous counter-acting of seismic disturbances, which, below a few Hertz, are not sufficiently reduced by the seismic isolation system. The residual angular motion of susp...
Preprint
Full-text available
Fluctuations of gravitational forces cause so-called Newtonian noise (NN) in gravitational-wave (GW) detectors which is expected to limit their low-frequency sensitivity in upcoming observing runs. Seismic NN is produced by seismic waves passing near a detector's suspended test masses. It is predicted to be the strongest contribution to NN. Modelin...
Article
Cosmic Explorer is a next-generation ground-based gravitational-wave observatory concept, envisioned to begin operation in the 2030s and expected to be capable of observing binary neutron star and black hole mergers back to the time of the first stars. Cosmic Explorer’s sensitive band will extend below 10 Hz, where the design is predominantly limit...
Preprint
Full-text available
Multi-messenger astrophysics is becoming a major avenue to explore the Universe, with the potential to span a vast range of redshifts. The growing synergies between different probes is opening new frontiers, which promise profound insights into several aspects of fundamental physics and cosmology. In this context, THESEUS will play a central role d...
Preprint
Full-text available
The KAGRA gravitational-wave detector in Japan is the only operating detector hosted in an underground infrastructure. Underground sites promise a greatly reduced contribution of the environment to detector noise thereby opening the possibility to extend the observation band to frequencies well below 10 Hz. For this reason, the proposed next-genera...
Article
Full-text available
Monitoring of vibrational eigenmodes of an elastic body excited by gravitational waves was one of the first concepts proposed for the detection of gravitational waves. At laboratory scale, these experiments became known as resonant bar detectors first developed by Joseph Weber in the 1960s. Due to the dimensions of these bars, the targeted signal f...
Preprint
Full-text available
Cosmic Explorer (CE) is a next-generation ground-based gravitational-wave observatory concept, envisioned to begin operation in the 2030s, and expected to be capable of observing binary neutron star and black hole mergers back to the time of the first stars. Cosmic Explorer's sensitive band will extend below 10 Hz, where the design is predominantly...
Article
Full-text available
Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mec...
Article
The recent discovery of gravitational waves (GWs) and their potential for cosmic observations prompted the design of the future third-generation GW interferometers, able to extend the observation distance for sources up to the frontier of the Universe. In particular, the European detector Einstein Telescope (ET) has been proposed to reach peak stra...
Preprint
Full-text available
Monitoring of vibrational eigenmodes of an elastic body excited by gravitational waves was one of the first concepts proposed for the detection of gravitational waves. At laboratory scale, these experiments became known as resonant-bar detectors first developed by Joseph Weber in the 1960s. Due to the dimensions of these bars, the targeted signal f...
Article
Full-text available
The cancellation of noise from terrestrial gravity fluctuations, also known as Newtonian noise (NN), in gravitational-wave detectors is a formidable challenge. Gravity fluctuations result from density perturbations associated with environmental fields, e.g., seismic and acoustic fields, which are characterized by complex spatial correlations. Measu...
Article
Full-text available
Gravity fluctuations produced by ambient seismic fields are predicted to limit the sensitivity of the next generation, gravitational wave detector Einstein Telescope at frequencies below 20 Hz. The detector will be hosted in an underground infrastructure to reduce seismic disturbances and associated gravity fluctuations. Additional mitigation might...
Article
The stochastic cosmological gravitational-wave background (CGWB) provides a direct window to study early universe phenomena and fundamental physics. With the proposed third-generation ground-based gravitational wave detectors, Einstein Telescope (ET) and Cosmic Explorer (CE), we might be able to detect evidence of a CGWB. However, to dig out these...
Article
Full-text available
The Einstein Telescope (ET) is a proposed next-generation, underground gravitational-wave detector to be based in Europe. It will provide about an order of magnitude sensitivity increase with respect to the currently operating detectors and, also extend the observation band targeting frequencies as low as 3 Hz. One of the first decisions that needs...
Article
Full-text available
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 tim...
Preprint
We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR~J0437\textminus4715, PSR~J0711\textminus6830, and PSR~J0737\textminus3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835\textminus4510). We use data from the third observing run of Advanced LIGO an...
Article
The first detection of a gravitational-wave signal of a coalescence of two black holes marked the beginning of the era of gravitational-wave astronomy, which opens exciting new possibilities in the fields of astronomy, astrophysics, and cosmology. The currently operating detectors of the LIGO and Virgo Collaborations are sensitive at relatively hig...
Preprint
Full-text available
We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of $3.3 \times 10^{-22}/\sqrt{\text{Hz}}$ at 1.7 Hz. In this pape...
Article
Full-text available
A methodology using adaptive time series analysis is tested on data from a seismometer monitoring the north end building (NEB) of the Virgo interferometer during four acoustic noise injections. Empirical mode decomposition (EMD) is used for adaptive detrending, while the recently developed time-varying filter EMD algorithm is used for narrowband mo...
Preprint
The stochastic cosmological gravitational-wave background (CGWB) provides a direct window to study early universe phenomena and fundamental physics. With the proposed third-generation ground-based gravitational wave detectors, Einstein Telescope (ET) and Cosmic Explorer (CE), we might be able to detect evidence of a CGWB. However, to dig out these...
Article
Full-text available
We report the observation of a compact binary coalescence involving a 22.2–24.3 M_⊙ black hole and a compact object with a mass of 2.50–2.67 M_⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-t...
Preprint
Full-text available
We report the observation of a compact binary coalescence involving a 22.2 - 24.3 $M_{\odot}$ black hole and a compact object with a mass of 2.50 - 2.67 $M_{\odot}$ (all measurements quoted at the 90$\%$ credible level). The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on August 14, 2019 at 21:10:3...
Article
Full-text available
The LIGO and Virgo Scientific Collaborations have cataloged ten confident detections from binary black holes and one from binary neutron stars in their first two observing runs, which has already brought up an immense desire among the scientists to study the Universe and to extend the knowledge of astrophysics from these compact objects. One of the...
Preprint
Full-text available
The cancellation of noise from terrestrial gravity fluctuations, also known as Newtonian noise (NN), in gravitational-wave detectors is a formidable challenge. Gravity fluctuations result from density perturbations associated with environmental fields, e.g., seismic and acoustic fields, which are characterized by complex spatial correlations. Measu...
Article
A first detection of terrestrial gravity noise in gravitational-wave detectors is a formidable challenge. With the help of environmental sensors, it can in principle be achieved before the noise becomes dominant by estimating correlations between environmental sensors and the detector. The main complication is to disentangle different coupling mech...
Article
Full-text available
We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO's and Virgo's third observing run. The signal was recorded on April 12, 2019 at 05:30:44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably d...
Preprint
The first detection of a gravitational-wave signal of a coalescence of two black holes marked the beginning of the era of gravitational-wave astronomy, which opens exciting new possibilities in the fields of astronomy, astrophysics and cosmology. The currently operating detectors of the LIGO and Virgo collaborations are sensitive at relatively high...
Article
We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a...
Article
The Einstein Telescope (ET), a proposed European ground-based gravitational-wave detector of third-generation, is an evolution of second-generation detectors such as Advanced LIGO, Advanced Virgo, and KAGRA which could be operating in the mid 2030s. ET will explore the universe with gravitational waves up to cosmological distances. We discuss its m...
Article
Full-text available
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if...
Preprint
Full-text available
The Einstein Telescope (ET) is a proposed next-generation, underground gravitational-wave (GW) detector based in Europe. It will provide about an order of magnitude sensitivity increase with respect to currently operating detectors, and furthermore, extend the observation band towards lower frequencies, i.e., down to about 3\,Hz. One of the first d...
Article
Full-text available
The LIGO Scientific Collaboration and the Virgo Collaboration have cataloged eleven confidently detected gravitational-wave events during the first two observing runs of the advanced detector era. All eleven events were consistent with being from well-modeled mergers between compact stellar-mass objects: black holes or neutron stars. The data aroun...
Article
Full-text available
GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical...
Preprint
The LIGO and Virgo scientific collaborations have cataloged ten confident detections from binary black holes and one from binary neutron stars in their first two observing runs, which has already brought up an immense desire among the scientists to study the universe and to extend the knowledge of astrophysics from these compact objects. One of the...
Article
Full-text available
In this paper, we summarize the present state-of-the-art on the proof-of-principle experiment of frequency-dependent squeezing implemented through EPR entanglement for Virgo gravitational-wave detector and we introduce Virgo subsystem proposal for frequency-dependent squeezing, obtained with a compact apparatus and without the costs required by the...
Preprint
A first detection of terrestrial gravity noise in gravitational-wave detectors is a formidable challenge. With the help of environmental sensors, it can in principle be achieved before the noise becomes dominant by estimating correlations between environmental sensors and the detector. The main complication is to disentangle different coupling mech...
Preprint
Full-text available
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 tim...
Article
Full-text available
Terrestrial gravity fluctuations produce so-called Newtonian noise (NN) which is expected to limit the low frequency sensitivity of existing gravitational-waves (GW) detectors LIGO and Virgo, when they will reach their full potential, and of next-generation detectors like the Einstein Telescope. In this paper, we present a detailed characterization...
Preprint
Full-text available
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from 1.12...
Article
Full-text available
We present results from offline searches of Fermi Gamma-ray Burst Monitor (GBM) data for gamma-ray transients coincident with the compact binary coalescences observed by the gravitational-wave (GW) detectors Advanced LIGO and Advanced Virgo during their first and second observing runs. In particular, we perform follow-up for both confirmed events a...