Jan Dobeš

Jan Dobeš
Charles University in Prague | CUNI · Department of Cell Biology (PF)

Phd

About

21
Publications
2,933
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
173
Citations
Additional affiliations
January 2021 - present
Charles University in Prague
Position
  • PI
Description
  • dobeslab.org
May 2017 - December 2020
Weizmann Institute of Science
Position
  • PostDoc Position
Description
  • http://www.weizmann.ac.il/immunology/Abramson/
January 2016 - April 2017
Institute of Molecular Genetics AS CR
Position
  • PostDoc Position
Description
  • http://www.img.cas.cz/research/dominik-filipp/
Education
October 2011 - December 2015
Charles University in Prague
Field of study
  • Immunology
October 2009 - September 2011
Charles University in Prague
Field of study
  • Immunology
October 2006 - September 2009
Charles University in Prague
Field of study
  • Molecular Biology and Biochemistry of Organisms

Publications

Publications (21)
Article
FOXN1 is a transcription factor critical for the development of both thymic epithelial cell (TEC) and hair follicle cell (HFC) compartments. However, mechanisms controlling its expression remain poorly understood. To address this question, we performed thorough analyses of the evolutionary conservation and chromatin status of the Foxn1 locus in dif...
Preprint
The expression of MHCII by intestinal epithelial cells (IEC) determines the severity of intestinal immunopathological reactions. However, the function of MHCII on IEC under homeostatic conditions remains elusive. Here we report that MHCII expression on IECs is a hallmark of an adaptive wave of homeostatic intestinal immune responses to commensal se...
Preprint
Thymic epithelial cells (TEC) play an indispensable role in the development and selection of immunocompetent, yet self-tolerant T cells. To provide further insights into TEC functional and developmental diversity, we utilized multiome analysis, which revealed a detailed atlas of the TEC compartment based on their transcriptional states and chromati...
Article
Full-text available
Patients with loss of function in the gene encoding the master regulator of central tolerance AIRE suffer from a devastating disorder called autoimmune polyendocrine syndrome type 1 (APS-1), characterized by a spectrum of autoimmune diseases and severe mucocutaneous candidiasis. Although the key mechanisms underlying the development of autoimmunity...
Article
Full-text available
Medullary thymic epithelial cells (mTECs), which produce and present self-antigens, are essential for the establishment of central tolerance. Since mTEC numbers are limited, their function is complemented by thymic dendritic cells (DCs), which transfer mTEC-produced self-antigens via cooperative antigen transfer (CAT). While CAT is required for eff...
Article
Full-text available
The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of...
Preprint
Full-text available
Medullary thymic epithelial cells (mTECs) which produce and present self-antigens are essential for the establishment of central tolerance. Since mTEC numbers are limited, their function is complemented by thymic dendritic cells (DCs), which transfer mTEC-produced self-antigens via cooperative antigen transfer (CAT). While CAT is required for effec...
Article
Full-text available
Foxp3+ regulatory T cells (Tregs) are potent suppressor cells, essential for the maintenance of immune homeostasis. Most Tregs develop in the thymus and are then released into the immune periphery. However, some Tregs populate the thymus and constitute a major subset of yet poorly understood cells. Here we describe a subset of thymus recirculating...
Article
Full-text available
Foxp3+ regulatory T cells (Tregs) are potent suppressor cells, essential for the maintenance of immune homeostasis. Most Tregs develop in the thymus and are then released into the immune periphery. However, some Tregs populate the thymus and constitute a major subset of yet poorly understood cells. Here we describe a subset of thymus recirculating...
Article
Full-text available
Foxp3+ regulatory T cells (Tregs) are potent suppressor cells, essential for the maintenance of immune homeostasis. Most Tregs develop in the thymus and are then released into the immune periphery. However, some Tregs populate the thymus and constitute a major subset of yet poorly understood cells. Here we describe a subset of thymus recirculating...
Article
Full-text available
The development of thymic regulatory T cells (Treg) is mediated by Aire-regulated self-antigen presentation on medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), but the cooperation between these cells is still poorly understood. Here we show that signaling through Toll-like receptors (TLR) expressed on mTECs regulates the product...
Article
Full-text available
The autoimmune regulator (Aire) serves an essential function for T cell tolerance by promoting the “promiscuous” expression of tissue antigens in thymic epithelial cells. Aire is also detected in rare cells in peripheral lymphoid organs, but the identity of these cells is poorly understood. Here, we report that Aire protein–expressing cells in lymp...
Article
The gut is the biggest immune organ in the body that encloses commensal microbiota which aids in food digestion. Paneth cells, positioned at the frontline of host-microbiota interphase, can modulate the composition of microbiota. Paneth cells achieve this via the delivery of microbicidal substances, among which enteric α-defensins play the primary...
Article
Full-text available
Medullary thymic epithelial cell (mTEC)-restricted expression of autoimmune regulator (Aire) is essential for establishment of immune tolerance. Recently, Aire was also shown to be expressed in cells of hematopietic and reproductive lineages. Thus, the generation of Airefl/fl mouse strain enables the investigation of the cell-specific function of A...
Article
Full-text available
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4) is produced in a broad spectrum of mouse embryonic and adult tissues and its deficiency results in embryonal or perinatal lethality. The LGR4 function was mainly related to its potentiation of canonical Wnt signaling; however, several recent studies associate LGR4 with additional si...
Article
Background & aims: Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is an autoimmune disorder characterized by chronic mucocutaneous candidiasis, hypoparathyroidism, and adrenal insufficiency, but patients also develop intestinal disorders. APECED is an autosomal recessive disorder caused by mutations in the autoimmune regul...
Article
Full-text available
Hypermethylated in cancer 1 (HIC1) represents a prototypic tumor suppressor gene frequently inactivated by DNA methylation in many types of solid tumors. The gene encodes a sequence-specific transcriptional repressor controlling expression of several genes involved in cell cycle or stress control. In this study, a Hic1 allele was conditionally dele...
Article
Full-text available
The activity of the Wnt pathway undergoes complex regulation to ensure proper functioning of this principal signaling mechanism during development of adult tissues. The regulation may occur at several levels and includes both positive and negative feedback loops. In the present study we employed one of such negative feedback regulators, naked cutic...
Article
Type 1 diabetes (T1D) is an autoimmune disease caused by T-cell mediated destruction of pancreatic beta cells. Recently, small cationic α-defensin molecules have been implicated in the pathogenesis of certain inflammatory and autoimmune diseases. The purpose of this study was to assess the α-defensin expression in patients with T1D and elucidate th...

Network

Cited By