About
127
Publications
74,602
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,811
Citations
Introduction
Current institution
Additional affiliations
January 2022 - present
September 2019 - December 2021
April 2019 - August 2019
Education
April 2013 - July 2016
August 2011 - April 2013
October 2008 - March 2011
Publications
Publications (127)
The ability to produce abscisic acid enzymatically predates land plants, suggesting that its biosynthetic pathway evolved before its role as a signaling molecule in terrestrial adaptation.
Ferns are essential for understanding plant evolution; however, their large and intricate genomes have kept their genetic landscape largely unexplored, with only a few genomes sequenced and limited transcriptomic data available. To bridge this gap, we generated extensive RNA-sequencing data across various organs from 22 representative fern species,...
The earliest land plants faced a significant challenge in adapting to environmental stressors. Stress on land is unique in its dynamics, entailing swift and drastic changes in light and temperature. While we know that land plants share with their closest streptophyte algal relatives key components of the genetic makeup for dynamic stress responses,...
Zygnematophytes are the closest algal relatives of land plants. They hold key information to infer how the earliest land plants overcame the barrage of terrestrial stressors, prime of which is osmotic stress. Here, we applied two osmotic stressors on a unicellular and a multicellular representative of zygnematophytes and studied their response over...
More than 500 million years ago, a streptophyte algal population established a foothold on land and started terraforming Earth through an unprecedented radiation. This event is called plant terrestrialization and yielded the Embryophyta. Recent advancements in the field of plant evolutionary developmental biology (evo-devo) have propelled our knowl...
Climate change-enforced drought stress conditions and diseases caused by pathogens often co-occur and represent one of the greatest challenges in plant science. Wilt pathogens that colonize water-conducting plant tissues can aggravate the problem and affect a wide range of agricultural crops. However, whilst fungal infections with the vascular path...
Hornworts, one of the three bryophyte phyla, show some of the deepest divergences in extant land plants, with some families separated by more than 300 million years. Previous hornwort genomes represented only one genus, limiting the ability to infer evolution within hornworts and their early land plant ancestors. Here we report ten new chromosome-s...
Currently, it is still a challenge - in terms of laboratory effort and cost, as well as assembly quality - to unravel the sequence of large and complex genomes from non-model/crop plants. This often hampers the study of evolutionarily intricate species groups. The species-rich genus Ranunculus (Ranunculaceae) is an important angiosperm group for th...
Transcription‐associated proteins (TAPs) fulfill multiple functions in regulatory and developmental processes and display lineage‐specific evolution. TAPscan is a comprehensive and highly reliable tool for genome‐wide TAP annotation via domain profiles. Here, we present TAPscan v4, including an updated web interface (https://tapscan.plantcode.cup.u...
Sexual reproduction in Charophyceae abounds in complex traits. Their gametangia develop as intricate structures, with oogonia spirally surrounded by envelope cells and richly pigmented antheridia. The red—probably protectant—pigmentation of antheridia is conserved across Charophyceae. Chara tomentosa is, however, unique in exhibiting this pigmentat...
Immense chemical diversity is one of the hallmark features of plants. This chemo-diversity is mainly underpinned by a highly complex and biodiverse biochemical machinery. Plant metabolic enzymes originated and were inherited from their eukaryotic and prokaryotic ancestors and further diversified by the unprecedentedly high rates of gene duplication...
Phenolic compounds of land plants are varied: they are chemodiverse, are sourced from different biosynthetic routes and fulfil a broad spectrum of functions that range from signalling phytohormones, to protective shields against stressors, to structural compounds. Their action defines the biology of land plants as we know it. Often, their roles are...
The special issue ‘The evolution of plant metabolism’ has brought together original research, reviews and opinions that cover various aspects from the full breath of plant metabolism including its interaction with the environment including other species. Here, we briefly summarize these efforts and attempts to extract a consensus opinion of the bes...
Land plants are astounding processors of information; due to their sessile nature, they adjust the molecular programs that define their development and physiology in accordance with the environment in which they dwell. Transduction of the external input to the respective internal programs hinges to a large degree on molecular signaling cascades, ma...
Despite ferns being crucial to understanding plant evolution, their large and complex genomes has kept their genetic landscape largely uncharted, with only a handful of genomes sequenced and sparse transcriptomic data. Addressing this gap, we generated extensive RNA-sequencing data for multiple organs across 22 representative species over the fern...
Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ush...
Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic...
Transcription associated proteins (TAPs) fulfill multiple functions in regulatory and developmental processes and display lineage-specific evolution. TAPscan is a comprehensive and highly reliable tool for genome-wide TAP annotation via domain profiles. Here, we present TAPscan v4, including an updated web interface ( https://tapscan.plantcode.cup....
This article is a Commentary on Bowles et al. (2024), 244: 1629–1643.
Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or...
The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). While Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of likely more than 5000 species of streptophyte algae that form a paraphyletic grade n...
Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes fo...
Plant yields heavily depend on proper macro‐ and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well‐balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid m...
The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce.
Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl‐CoA red...
Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzyme...
Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes. Here, we focused on land plants and algae to study the role of CYP diversification. CYPs, acting as monooxy...
The earliest land plants faced a significant challenge in adapting to environmental stressors. Stress on land is unique in its dynamics, entailing swift and drastic changes in light and temperature. While we know that land plants share with their closest streptophyte algal relatives key components of the genetic makeup for dynamic stress responses,...
It was through endosymbiosis that an archaeal host incorporated a free-living proteobacterium.
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-...
The Chloroplastida, also known as Viridiplantae (“green plants”) or Chlorobionta, are arguably the most dominant group of primary producers on earth. They include green algae (containing around 500 genera and 8,000 extant species) and embryophytic land plants. Green algae have played a fundamental role in the global ecosystem for hundreds of millio...
The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition throug...
Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzyme...
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants). Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments--from m...
Abscisic acid (ABA) is best known for regulating the responses to abiotic stressors. Thus, applications of ABA signaling pathways are considered promising targets for securing yield under stress. ABA levels rise in response to abiotic stress, mounting physiological and metabolic responses that promote plant survival under unfavorable conditions. AB...
Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of t...
Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum . Here...
Despite its small size, the water fern Azolla is a giant among plant symbioses. Within each of its leaflets, a specialized leaf cavity is home to a population of nitrogen‐fixing cyanobacteria (cyanobionts). Although a number of plant–cyanobiont symbioses exist, Azolla is unique in that its symbiosis is perpetual: the cyanobionts are inherited durin...
All land plants modulate their growth and physiology through intricate signaling cascades. The majority of these are at least modulated—and often triggered—by phytohormones. Over the past decade, it has become apparent that some phytohormones have an evolutionary origin that runs deeper than plant terrestrialization—many emerged in the streptophyte...
Green plants, broadly defined as green algae and the land plants (together, Viridiplantae), constitute the primary eukaryotic lineage that successfully colonized Earth's emergent landscape. Members of various clades of green plants have independently made the transition from fully aquatic to subaerial habitats many times throughout Earth's history....
The evolution of several hallmark traits of land plants is underpinned by phytochemical innovations. The specialized metabolism of plants can appear like a teeming chaos that has yielded an ungraspable array of chemodiversity. Yet, this diversity is the result of evolutionary processes including neutral evolution, drift, and selection that have sha...
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant‐specific evolutionary innovations. Fern cell wall composition is not...
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prere...
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prere...
The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (t...
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not...
Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unraveled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here, w...
There are numerous examples of plant organs or developmental stages that are desiccation‐tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation‐tolerant. One example are the tubers of yellow nutsedge (Cyperus...
The streptophyte algal class Zygnematophyceae is the closest algal sister lineage to land plants. In nature, Zygnematophyceae can grow in both terrestrial and freshwater habitats and how they do this is an important unanswered question. Here, we studied what happens to the zygnematophyceaen alga Mougeotia sp., which usually occurs in permanent and...
The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).¹ There is convincing evidence that the unicellular/filamentous Zygnematophyceae—and not the morphologically more elaborate Coleochaetophyceae or Charophyc...
Photosynthesis, the ability to fix atmospheric carbon dioxide, was acquired by eukaryotes through symbiosis: the plastids of plants and algae resulted from a cyanobacterial symbiosis that commenced more than 1.5 billion years ago and has chartered a unique evolutionary path. This resulted in the evolutionary origin of plants and algae. Some extant...
The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta) [1]. There is convincing evidence that the unicellular/filamentous Zygnematophyceae--and not the morphologically more elaborate Coleochaetophyceae or Charo...
We recently reported the discovery of a lysine–cysteine redox switch in proteins with a covalent nitrogen–oxygen–sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical va...
Third-generation long-read sequencing is transforming plant genomics. Oxford Nanopore Technologies and Pacific Biosciences are offering competing long-read sequencing technologies and enable plant scientists to investigate even large and complex plant genomes. Sequencing projects can be conducted by single research groups and sequences of smaller p...
The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage...
Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics,...
Auteurs : European Reference Genome Atlas (ERGA) Consortium 3
Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics,...
The charophycean green algae (CGA) species, Zygnema circumcarinatum, represent the closest algal relatives to land plants. Sequencing their genomes thus will contribute to the understanding of the origin and early evolution of land plants. The genomes of four Z. circumcarinatum strains: hypothetically haploid SAG 698-1a [mating type +], SAG 698-1b...
Streptophytes are one of the major groups of the green lineage (Chloroplastida or Viridiplantae). During one billion years of evolution, streptophytes have radiated into an astounding diversity of uni- and multicellular green algae as well as land plants. Most divergent from land plants is a clade formed by Mesostigmatophyceae, Spirotaenia spp. and...
To conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO 2 availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has...
Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation (FACC) channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search un...
Land plants constantly respond to fluctuations in their environment. Part of their response is the production of a diverse repertoire of specialized metabolites. One of the foremost sources for metabolites relevant to environmental responses is the phenylpropanoid pathway, which was long thought to be a land‐plant‐specific adaptation shaped by sele...
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LDIP (LD-...
To conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO2 availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has...
Land plants constantly respond to fluctuations in their environment. Part of their response is the production of a diverse repertoire of specialized metabolites. One of the foremost sources for metabolites relevant to environmental responses is the phenylpropanoid pathway, which was long thought to be a land plant-specific adaptation shaped by sele...
Despite its small size, the water fern Azolla is a giant among plant symbioses. Within each of its leaflets, a specialized leaf cavity is home to a population of nitrogen-fixing cyanobacteria (cyanobionts). While examples of nitrogen fixing cyanobionts are found across the land plant tree of life, Azolla is unique in that its symbiosis is perpetual...
For plants, acclimation to low temperatures is fundamental to survival. This process involves the modification of lipids to maintain membrane fluidity. We previously identified a new cold-induced putative desaturase in Physcomitrium (Physcomitrella) patens. Lipid profiles of null mutants of this gene lack sphingolipids containing monounsaturated C2...
Co-option is an important aspect of evolution that can occur on several levels. Genes, whose function was molded by selection in the evolutionary past, are readily observed to serve a new function when acting in a different context in an extant system. Whole organs can be co-opted for new roles as well. For example, roots that evolved from shoot-li...
Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of de...
Seeds were a key evolutionary innovation. These durable structures provide a concerted solution to two challenges on land: dispersal and stress. Lipid droplets (LDs) that act as nutrient storage reservoirs are one of the main cell-biological reasons for seed endurance. Although LDs are key structures in spermatophytes and are especially abundant in...
Carbohydrate-active enzymes (CAZymes) are a cornerstone in the phytopathogenicity of filamentous microbes. CAZymes are required for every step of a successful infection cycle—from penetration, to nutrient acquisition (during colonization), to exit and dispersal. Yet, CAZymes are not a unique feature of filamentous pathogens. They are found across e...
Every textbook says that land plants are primary producers and, as such, are eaten. A couple of plants, however, refuse to stay within the boundaries of their trophic level — the carnivorous plants. Now, a new genomic study pinpoints the genetic chassis that underpins carnivory in Venus flytrap, waterwheel plant, and sundew.
All land plants (embryophytes) share a common ancestor that likely evolved from a filamentous freshwater alga. Elucidating the transition from algae to embryophytes – and the eventual conquering of Earth’s surface – is one of the most fundamental questions in plant evolutionary biology. Here, we investigated one of the organismal properties that mi...
Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phyloge...
Two genomes of the closest algal sisters to land plants were sequenced, providing potential evidence that bacterial genes were key in adapting to terrestrial stresses.
Embryophytes (land plants) can be found in almost any habitat on Earth's surface. All of this ecologically diverse embryophytic flora arose from algae through a singular evolutionary event. Traits that were, by their nature, indispensable for the singular conquest of land by plants were those that are key for overcoming terrestrial stressors. Not s...
Our planet is teeming with an astounding diversity of plants. In a mere single group of closely related species, tremendous diversity can be observed in their form and function — the colour of petals in flowering plants, the shape of the fronds in ferns, and the branching pattern of the gametophyte in mosses. Diversity can also be found in subtler...
Significance
Synthesis of abscisic acid (ABA) and proteins required for its downstream signaling are ancient and found in aquatic algae, but these primitive plants do not respond to ABA and lack ABA receptors. The present work traces the evolution of ABA as an allosteric regulatory switch. We found that ancient PYRABACTIN RESISTANCE 1’s homolog pro...
Oomycetes include many well-studied, devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary co...
Plants are exposed to diverse abiotic and biotic stimuli. These require fast and specific integrated responses. Such responses are coordinated at the protein and transcript levels and are incorporated into larger regulatory networks. Here, we focus on the evolution of transcriptional regulatory networks involved in plant–pathogen interactions. We d...
Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosy...
Land plants evolved from charophytic algae, among
which Charophyceae possess the most complex
body plans. We present the genome of Chara braunii;
comparison of the genome to those of land plants
identified evolutionary novelties for plant terrestrialization
and land plant heritage genes. C. braunii
employs unique xylan synthases for cell wall biosy...
Ferns are the closest sister group to all seed plants, yet little is known about their genomes other than that they are generally colossal. Here, we report on the genomes of Azolla filiculoides and Salvinia cucullata (Salviniales) and present evidence for episodic whole-genome duplication in ferns-one at the base of 'core leptosporangiates' and one...
All land plants must cope with phytopathogens. Algae face pathogens, too, and it is reasonable to assume that some of the strategies for dealing with pathogens evolved prior to the origin of embryophytes – plant terrestrialization simply changed the nature of the plant-pathogen interactions. Here we highlight that many potential components of the a...
de Vries and Archibald introduce the topic of plastid genomes - prokaryotic genomes housed within eukaryotic algae and plants.
Significance
The evolution of land plants from algae is an age-old question in biology. The entire terrestrial flora stems from a grade of algae, the streptophyte algae. Recent phylogenomic studies have pinpointed the Zygnematophyceae as the modern-day streptophyte algal lineage that is most closely related to the algal land plant ancestor. Here, w...
The water fern Azolla is remarkable in many respects. It has a rapid growth rate and is utilized in agriculture as fodder and fertilizer. From a biologist’s perspective, however, its most prominent feature rests within its leaflets. Within each Azolla leaflet, there is a cavity in which a nitrogen-fixing cyanobiont dwells – Nostoc azollae. This cya...
The plant root xylem comprises a specialized tissue for water distribution to the shoot. Despite its importance, its potential morphological plasticity in response to environmental conditions such as limited water availability has not been thoroughly studied. Here, we identify a role for the phytohormone abscisic acid (ABA) for proper xylem develop...
Conclusions:
a streptophyte algal perspective on land plant trait evolution 1432 Acknowledgements 1432 ORCID 1433 References 1433 SUMMARY: Photosynthetic eukaryotes thrive anywhere there is sunlight and water. But while such organisms are exceptionally diverse in form and function, only one phototrophic lineage succeeded in rising above its substr...