
IEEE COMMUNICATIONS MAGAZINE 1

Over-the-Air Software Updates in the
Internet-of-Things: An Overview of Key Principles.

Jan Bauwens, Peter Ruckebusch, Spilios Giannoulis, Ingrid Moerman, and Eli De Poorter

Abstract—Due to the fast pace at which Internet-of-Things
(IoT) protocols and applications evolve, there is an increasing
need to support over-the-air software updates for security up-
dates, bug fixes and software extensions. To this end, multiple
over-the-air techniques have been proposed each covering a
specific aspect of the update process, such as (partial) code
updates, data dissemination and security. However, each tech-
nique introduces an overhead, especially in terms of energy
consumption, thereby impacting the operational lifetime of the
constrained battery powered devices. Up until now, a com-
prehensive overview describing the different update steps and
quantifying the impact of each step is missing in scientific
literature, making it hard to assess the overall feasibility of an
over-the-air update. To remedy this, our article (i) analyzes which
parts of an IoT operating system are most updated after device
deployment, (ii) proposes a step-by-step approach to integrate
software updates in IoT solutions, and (iii) quantifies the energy
cost of each of the involved step. The results show that besides
the obvious dissemination cost, other phases such as security also
introduce a significant overhead. For instance, a typical firmware
update requires 135.026mJ, of which the main portions are data
dissemination (63.11%) and encryption (5.29%). However, when
modular updates are used instead, the energy cost (e.g. for a
MAC update) is reduced to 26.743mJ (of which 48.69% for data
dissemination and 26.47% for encryption).

Index Terms—Internet-of-Things, Sensor networks, Over-the-
air software updates, Code dissemination, Update security, Net-
work management.

I. INTRODUCTION

THE Internet-of-Things (IoT) refers to the trend to include
small, cheap and/or energy efficient wireless radios in

everyday objects. Most of these IoT devices are constrained
in terms of processing power and memory storage to keep the
unit price low, as well as in terms of energy since they are
typically battery powered. IoT solutions are already digitizing
an increasing amount of functionalities of modern day society,
impacting application areas such as health care, surveillance,
agriculture, personal fitness, and home and industry automa-
tion. This trend will lead to a further increase in (i) the number
of devices per person and (ii) the number of devices per square
meter, thereby introducing the need for well designed and
maintainable IoT solutions.

However, the specific device limitations, fast technology
evolution and the increasing pace at which new devices are
rolled out in difficult to reach areas raise questions con-
cerning the long term sustainability of previously installed
IoT networks. For instance, security issues or bugs are often

All authors are with the departement of Information Technology - IDLAB
- Ghent University IMEC, Ghent, Oost-Vlaanderen, 9000, Belgium. e-mail:
fistname.surname@ugent.be (except jan.bauwens2@ugent.be).

detected post deployment, thereby hindering the operational
IoT network. Moreover, already deployed devices cannot take
advantage of new features and/or optimizations, or even adapt
to new application requirements. A recent industry study
showed that the frequency of field updates will significantly
increase in the upcoming five to ten years, even with the
possibility of monthly software updates [1].

Despite this increasing interest in over-the-air updates, sci-
entific literature discussing the impact of these updates on
energy consumption is limited. For example, [2] calculates the
energy cost for update data transmission, but ignores security
and reliable dissemination. Similarly, the operational impact of
software updates on code versioning are not discussed. This
paper offers a remedy by providing the steps required for
enabling over-the-air software updates, while discussing the
impact on constrained devices. For each of the steps, state-of-
the-art techniques are discussed and evaluated.

In summary, this article contains the following contributions
and insights:

• An analysis concerning the distribution of software de-
velopment effort in different parts (applications, network,
core OS and platform) of widely used IoT operating
systems.

• A comprehensive overview of the key steps in an over-
the-air update process is given, as well as an overview on
recent update approaches (firmware based, modular with
dynamic linking, modular with prelinking).

• The energy overhead per phase is quantified, showing the
relative energy impact of the different deployment phases.

• A discussion is provided on the impact of updates on
operational processes, such as the versioning approach
used for software modules.

• Finally, the article lists future research directions that
could enhance the potential of over-the-air updates for
IoT devices.

II. ANALYSING UPDATE REQUIREMENTS IN IOT
OPERATING SYSTEMS

It is important to recognize parts of IoT solutions which
evolve quickly and are hence more likely to require software
updates. Figure 1a depicts the wireless stack of a typical
sensor application, containing the software modules and their
interaction with the (non-upgradable) hardware modules. The
software modules are divided into four blocks: (i) sensor
and actuator application software (blue), (ii) network protocol
stack software (orange), (iii) operating system (OS) core
software (grey), and (iv) platform hardware driver software



IEEE COMMUNICATIONS MAGAZINE 2

(a)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

contiki

riot

openwsn

app (1) net (2) core OS (3) platform (4)

(b)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

contiki

riot

openwsn

app (1) net (2) core OS (3) platform (4)

(c)

Fig. 1: Git commit statistics and memory usage of three operating systems for a typical IoT device. (a) The typical software components
IoT stack (and their interface towards the hardware), divided in application code (1), networking functionality (2), OS core functionality (3),
and platform specific code (4) (b) Relative memory size of the different components (%). (c) Relative Git commit statistics of the different
software components, indicating the percentage of code lines changed between OS software releases (between versions 2018-01 and 2018.04
for RIoT, versions RB1.4 and RB1.8 for OpenWSN, and versions REL3.1 and the master branch in august 2018 for Contiki).

(yellow). Contrary to traditional software systems, the ap-
plications running on constrained IoT devices are relatively
simple (i.e. sense or actuate) and therefore small in size. Most
logic resides in the various network protocols enabling end-
to-end communication with IoT devices. To demonstrate this,
the memory usage and Git commit history for each block is
calculated for different IoT operating systems on a Zolertia Re-
Mote, which is a typical constrained IoT device (ARM Cortex-
M3 32 MHz clock speed, 512 KB ROM and 32 KB RAM), as
depicted on Figure 1b and 1c (in %). The network protocol
stack comprises a significant portion of the firmware,
occupying between 50% and 72%. The complexity of the
network stack is the main reason for the larger code size.
This has a direct consequence on the development effort.
Moreover, since network protocol standards are frequently
added or updated, there is a continuous push to keep the code
up to date and include the latest features. This in contrast to
the core OS and platform code as illustrated in Figure 1c,
showing the Git commit statistics for two consecutive releases
of three different IoT operating systems. The statistics include
all code lines changed in the software modules required to
build a firmware of a typical sensor application on a Zolertia
Remote IoT device. Between 60% and 84% of the code
changes are related to the network protocol stack. The
rate at which new standards are being proposed seems to be
increasing, and therefore the wireless stack will likely not
achieve a completely “stable“ state in the near future [3].

Although an IoT network operator would be mostly inter-
ested to enable IoT application updates, Figure 1b demon-
strates that other code blocks actually comprise a larger portion
of the firmware, and are hence at higher risk of containing
bugs. Without network protocol updates, it is not possible
to guarantee an optimal performance during the operational

lifetime of the device. A sustainable IoT solution therefore
adopts a continuously running development process, taking
into account the rapid rate in which technology and business
requirements change. In this process, software updates are
essential in keeping an IoT solution up to date for the
following reasons:

• Protocol and standard version updates, improving effi-
ciency.

• Critical bug fixes and security updates, increasing avail-
ability and security.

• New applications, providing additional functionalities;
• Integration with third party IoT systems (hardware or

software), extending the scope.
• Adopting new communication standards and protocols,

improving performance and interoperability.
However, because the network stack on constrained devices

is currently included in the OS, it can only be upgraded by
means of a full firmware update, consuming a substantial
amount of energy. Given its significance and the rapid change
rate, we argue that partial updates of a network stack should
also be possible, thereby lowering the energy cost for protocol
updates.

III. SOFTWARE UPDATE PROCESS

Next, we provide a step-by-step overview of the process
required to enable over-the-air software updates of the above
components in a secure and reliable manner. Figure 2 illus-
trates the sequence of interactions during a software update.
A network operator initiates this procedure by downloading
a new or updated module from a software repository. First,
during the “SW Module Management” phase, the code is
verified offline before being released. This phase includes
(i) a compilation step, automatically adding linker metadata



IEEE COMMUNICATIONS MAGAZINE 3

Fig. 2: Overview of the necessary steps to perform an over-the-air update. This process is split between (i) the management (compilation,
validation and verification), of the software modules, and (ii) the secure software rollout process.

to the resulting binary module; (ii) a compatibility analy-
sis step, checking compatibility with the already deployed
modules maintained in a binary module repository; (iii) a
functional verification step, verifying the new/update module
in a simulation or digital twin network mirroring the actual
network. On successful completion of the first phase, the
“secure software rollout” phase can commence, which includes
(i) a security step, encrypting and signing the binary module;
(ii) a dissemination step, transferring the binary module to
the devices; (iii) an activation step, simultaneously installing
and making operational the binary module, and when needed
safely rolling back the update on all devices in case of failure.
Each of these steps is discussed in more detail in the next
sections.

IV. PHASE 1: SOFTWARE MODULE MANAGEMENT

Updating the software on a remote wireless device is error
prone: due to unforeseen code interactions the updated code
might decrease the performance rather than improve the per-
formance of a network, or even result in unstable operations.
This could necessitate a rollback to a previous stable version.
Since a wireless update is an intensive process in terms of
medium usage, computational overhead and energy consump-
tion (see Section V), it is important to automatically assess
the validity of the update upfront, before actually performing
the change and possible wasting valuable resources. For this
purpose, a network operator will first pass the software mod-
ules to the SW module management services which include
three distinct steps, each explained further in the remainder of
this section: (i) module compilation, (ii) compatibility analysis
checking the compatibility of software module versions, and
(iii) qualitative predeployment analysis using a digital twin
network or a sandbox. If all these steps are successfully
completed, the network operator can initiate the secure rollout
of the software module, explained in the next section.

A. Software Module Compilation
Module compilation ensures that new or updated software is

transformed from source code into an efficient binary format

that can be distributed to a running system. Three different
over-the-air software compilation methods are available for
constrained devices as discussed in [2]:

• Firmware based approaches replace the entire image. All
source code is compiled into a single image and installed
on each device. If an update is required, a new image
must be compiled and distributed to all devices. Binary
differential patching techniques (e.g. sending only the
firmware differences) can be used in order to reduce the
size of the image that needs to be transferred.

• Dynamic linking approaches require a linker on the
constrained device to install or update software modules
in an active system. The linker relocates code (data)
section to the allocated ROM (RAM) memory regions and
resolves undefined references to already present modules.

• Prelinking approaches offload the task of the dynamic
linker to a more powerful server. An offline linker
relocates and resolves undefined references before the
modules are disseminated to the devices. This approach
requires complete knowledge of the code and data mem-
ory location of each module installed on each device.

The latter two approaches, that is dynamic and prelinking,
are modular and can be further categorized by their binding
models [4], defining how code blocks are linked post deploy-
ment to the external functionality (functions, shared memory,
etc.) provided by other modules:

• A linker that uses a strict binding model statically links
code blocks to each other, replacing undefined symbols
in one code block with the correct physical address of
another code block. Because the physical addresses are
hardcoded in memory, it is practically impossible to relink
modules after installation if other modules are updated.

• A linker that uses a loosely coupled binding model
employs an indirect function call mechanism and jump
tables to redirect function calls between code blocks. By
manipulating the jump tables, it is possible to update code
blocks in the entire firmware even after installation. This
comes at the cost of an increased complexity for jump
table management and extra memory usage.



IEEE COMMUNICATIONS MAGAZINE 4

The choice of the update method and binding model has
a considerable impact on the possible update scenarios (e.g.
which code blocks can be updated) and the cost of the update
in terms of bandwidth, latency and energy:

• Firmware updates allow to replace the entire code base
but requires most bandwidth and, consequently, energy.
The latency is also very high, especially because a reboot
is required, potentially losing running network state.

• In all cases, prelinking outperforms dynamic linking
because the resulting binary is smaller. This comes at the
cost of additional computational complexity and requires
that all devices have exactly the same firmware.

• A strict binding model only allows to update/add ap-
plication level code blocks (i.e. blue part of Figure 1a)
while a loosely coupled binding model [4] can update
all code blocks, for example when including the network
protocols.

B. Compatibility analysis

Because software modules are often developed indepen-
dently of each other, some versions could prove incompatible
with each other, leading to a degraded or broken network. As
such, a versioning system needs to verify the compatibility
of the different software modules. In case modular software
updates are supported (e.g. only a single protocol or applica-
tion is updated), the compatibility check system should also
be applied on a module level.

This validation process can be split up into several subpro-
cesses (see Figure 3). First, a compatibility check verifies if the
software module can run on the target hardware platform. This
is denoted as ‘platform compatibility’. Second, compatibility
between the different software modules installed on a single
device is checked. This process is referred to as ‘inter-module
compatibility’. Last, the ‘network compatibility’ ensures that
multiple versions of the same software module can co-exist
within the same network (e.g. multiple versions of IPv6 on
different devices).

On traditional component upgradable software systems,
such as OSGi [5], only inter-module compatibility is included.
This is not sufficient when applying the partial update methods
described in the previous section because single network layers
can be updated separately. For instance, an updated MAC
layer could rely on information exchanges (e.g. enhanced
beacons in the IEEE-802.15.4 TSCH mode) that are not
yet available in older versions of the PHY layer, rendering
the new MAC version incompatible with the previous PHY
version. To counter this, the central management server keeps
track of the software version(s) installed on each device and
ensures compatibility. A possible approach utilises a matrix
for keeping track of compatibility, for which an example is
shown in Figure 3. This compatibility matrix can be updated
by performing tests ranging from static code verification, over
simulations, to analysis in a real life deployment.

C. Pre-deployment behavioral verification

While the previous verification step primarily focuses on
compatibility of software versions, this section describes a

Fig. 3: An example matrix showing the compatibility between devices
and network layers. For every combination, a test suite should
perform interaction tests in order to verify the compatibility of the
version combination.

methodology to also investigate if the update actually improves
the network performance and stability. This is necessary be-
cause, contrary to typical software systems, a software update
in constrained IoT networks reduces the battery lifetime and
cannot be easily reverted. A qualitative analysis provides in-
sights in the network operation and verifies the impact on both
the node local and network wide Quality of Service (QoS) after
the update. It can unveil issues that were not detected during
the compatibility analysis using the compatibility matrix. For
instance, it checks if the throughput and latency requirements
are still fulfilled. This new information can also be used to
extend the compatibility matrix.

There are a number of ways in which a qualitative analysis
can be performed. A sandbox or testbed enables testing the
software in a controlled environment on real hardware [6].
While this gives accurate information on a node local level, it
is notoriously hard to verify network wide interactions since a
sandbox is different from the actual environment. To overcome
this, often a network simulator is used (e.g. CupCarbon, Cooja,
OMNeT++, NS-3, QualNet, etc. [7]). This can provide a
network wide view on the overall QoS, although the results
are always an estimation based on a particular channel model.

A simulated virtual environment can be further enhanced
using the digital twin concept, used primarily in the context of
manufacturing and warehousing [8]. The digital twin mimics
the behaviour of real physical objects, allowing to test new
solutions and business processes in a non-invasive manner.
In the context of over-the-air updates, a digital twin mimics
a network of interacting IoT devices containing all node
types and software combinations of the real life deployment.
Moreover, the simulated environment is continuously updated
with information retrieved from the actual network, improving
the simulation model. If the digital twin network behaves as
expected after the update, the network operator can initiate the



IEEE COMMUNICATIONS MAGAZINE 5

Fig. 4: Energy consumption of the different steps of the over-the-
air update process for two update methods: a firmware update (full
stack) and partial updates (MAC layer). All results are shown on a
logarithmic scale.

actual software rollout as described in the next section.

V. PHASE 2: SECURE SOFTWARE ROLLOUT

After validating the correctness of an upcoming software
update, still several steps need to be taken in order to complete
the update. Minimally the deployment sequence includes: (i)
securing and authenticating the data transfer, (ii) disseminating
the software update module(s), and (iii) installing the software
module(s) on all devices and coordinating a simultaneous
activation. Note that each step introduces a non-negligible
overhead in terms of device memory, network traffic and
power consumption. This could drain the batteries, decreasing
the operational lifetime of the constrained wireless devices.
Therefore a trade-off should be made comparing the (possible)
performance gains with the overhead of the update. To gain
further insights regarding the overall energy cost of each step,
the energy consumption has been measured on a typical IoT
device (Zolertia Remote) for both a modular as well as a
full firmware update, as shown in Figure 4 and detailed in
the next subsections. The results were obtained by using the
model for data dissemination and installation cost as defined
in [2] and combined with extra measurements concerning the
various security techniques. The aforementioned results were
determined for a single hop topology and do not take into ac-
count possible packet loss and/or retransmissions. The energy
consumption was calculated only for the battery-powered end
devices. Overall, a typical full firmware update requires
about 135.026mJ, while a modular update only requires
26.743mJ.

A. Software update security

While wireless updates can be used to fix security vulner-
abilities, the update process can also open possible exploits
and enable malicious control over the software stack. Several
techniques have been proposed in order to secure over-the-air
updates in Wireless Sensor Networks (WSN), or data dissem-
ination in general. For example, the authors of [9] analyzed
how a data transfer can occur while maintaining the four major

security aspects: confidentiality, integrity, authentication and
availability. The software updates are typically provided by
the manufacturer or the local network operator.

Although security is clearly beneficial, the impact on the
device functionality as well as network performance should not
be underestimated. The remainder of this section will elaborate
which security measures are feasible and will quantify the
overhead for the constrained end devices. These end nodes
typically have to verify the origin of the software update, and
decrypt the packet contents.

In order to verify the data integrity and origin of traffic,
a hash based message authentication code (HMAC) can be
appended to each data packet. However, HMAC is commonly
used with SHA-256, which requires 32 bytes per packet or
25% of the 127 bytes IEEE802.15.4 Maximum Transmission
Unit (MTU). Figure 4 (third column) shows the measured
energy consumption for data integrity and authentication,
requiring 6.641 (42.690) mJ for a modular update (full
firmware update), which accounts for 24.83% (31.62%) of
the total energy consumption. The HMAC packet overhead is
the main reason for the high energy cost of authentication and
data integrity, while the computational overhead for calculating
the HMAC only constitutes to ±0.01% for both methods. The
energy cost can be drastically lowered by appending a single
HMAC for the entire update file on the last packet. On the
other hand, this disables the possibility to verify data integrity
on a per packet basis.

Besides authentication and data integrity, confidentiality is
an equally important security aspect. Two flavours of data
encryption methods exist: symmetric key encryption (e.g.
AES), and asymmetric encryption (e.g. RSA or ECC). In gen-
eral, symmetric key encryption is faster then the asymmetric
counter part. For instance, on the IEEE 802.15.4 CC2538
radio chip it takes 3.4ms to decrypt a full firmware upgrade
of 24012 bytes using AES-256, while the same decryption
takes 12606.3ms using RSA-1024. On the other hand, sym-
metric keys offer less security, since the shared key enables
unauthorized network access when compromised. Also using
multicast traffic in combination with asymmetric encryption
is difficult to realise, since all data recipients should have
the same decryption key requiring a key sharing protocol.
Therefore it is not feasible to solely rely on either symmetric
or asymmetric encryption to guarantee confidentiality.

In order to achieve a high level of security with a decreased
energy cost and a lower computational overhead, it is ad-
vised to combine both methods. For instance, the Datagram
Transport Layer Security (DTLS) standardized protocol [10]
implements a combination of the two previously described
approaches. During the initial device bootstrapping, server and
clients exchange certificates containing their public key. Per
software update a new symmetric session key is generated,
which is subsequently asymmetrically encrypted and trans-
mitted via a ‘Server Key Exchange‘. Any further over-the-
air traffic, related to the current software update, is encrypted
using this session key. This mechanism offers the advantages
of (i) minimizing the consequences of a compromised sym-
metric encryption key; (ii) enabling multicast during over-
the-air update; and (iii) offering a good trade-off between



IEEE COMMUNICATIONS MAGAZINE 6

performance and security. Summarizing the above results,
when using DTLS like approaches, encryption still requires
a significant amount of energy: 7.080mJ for a modular
update and 7.101mJ for a full firmware update. Compared
to the total update cost this accounts to 26.47% and 5.29%
respectively.

B. Code dissemination

Before the installation of a software update, it must be
possible to guarantee successful dissemination of the update to
all devices in the network. Several techniques were proposed,
as surveyed in [11]. They focus on minimal energy consump-
tion by applying efficient broadcast schemes and try to avoid
flooding the network. More recently, with the rise of low power
wide area networks, operating in the duty cycle restricted
unlicensed sub-GHz bands, novel techniques [12] have been
proposed to overcome the duty-cycle restrictions imposed
by regulatory bodies such as FCC and ETSI. Dissemination
techniques that rely on unicast transmission schemes cannot
be applied in large scale networks due to these restrictions.
For networks with such limitations, coordinated multicast
techniques [13] should be applied that can initiate a over-the-
air update session on groups of devices [14].

In most cases, software updates exceed the MTU of packets,
hence fragmentation is required. A software dissemination
protocol must make sure that all devices receive the entire
update file. This process does not tolerate any lost packets
or bit errors, as this results in corrupted binary code. To
overcome this problem efficiently (e.g. with minimal impact on
energy and latency), special measures such as block (N)acks
and caching on intermediate devices in case of a multi-hop
topology are required. Especially when employing multicast
dissemination, retransmissions should also be grouped and
multicasted to reduce overhead.

Figure 4 shows the energy usage for the constrained wireless
end devices during an over-the-air operation. A large portion of
the overall energy usage can be accounted to the dissemination
(yellow column), especially when considering that the HMAC
message overhead (gray column) is calculated separately. Also
notable are the differences between full firmware and modular
updates. Overall, dissemination costs 13.020 (85.219) mJ
for a modular (full firmware) update. Relative to the
total energy cost of the update, this constitutes to 48.68%
(63.11%).

C. Software module installation and activation

After disseminating the update, the software must be in-
stalled and subsequently activated on all IoT devices. The
installation procedure is different for each of the update
methods (i.e. firmware based, dynamic linking and prelinking)
as discussed earlier in Software Module Compilation. The
installation starts as soon as the server notifies that all devices
have received and verified the complete update file. The result
of this process is reported back to the server after which it
can initiate the activation procedure.

Activating software on a group of networked devices should
happen simultaneously, especially when concerning network

functionality. A failed or delayed activation on one or more
devices could introduce protocol inconsistencies, resulting in
network connectivity issues. Even worse, if the connection
between the server and (some) end devices is completely
broken, it is even not possible to fix the issues remotely. This is
also the reason why automatic rollback mechanisms should be
incorporated, forcing devices to restore the previous software
version, either when demanded by the server, or when the
connection to the server has been lost.

Figure 4 demonstrates that the installation and activation
overhead is negligible, as installing only requires copying the
relevant sections to RAM or ROM. Note that when using
a dynamic linker on the device, a small portion of CPU
overhead is added. Overall installing and activating an
update requires 0.002 (0.017) mJ for a modular (full
firmware) update, constituting only ±0.01% of the overall
energy cost for both methods.

VI. FUTURE RESEARCH DIRECTIONS

When IoT systems become more mature, their ecosystems
grow, often attracting third party developers that want to
add custom software. This is a natural evolution that helps
extending software systems beyond its originally intended
scope. This will put forward many challenges that need to
be tackled properly before IoT networks are truly sustainable.
(i) The trustworthiness of third party code needs to be ver-
ified. Verifying the origin of a software update is therefore
important. (ii) The solutions which are offered by this (and
other) article(s) do not take into account the existence of
multiple owners or owner groups, which has a deep impact
on the properties of secure software dissemination protocols.
(iii) Code isolation techniques should be developed in order
to prevent attacks from inserting malicious code. This will
have an impact on run-time performance and memory require-
ments. (iv) Recent software-defined-radio (SDR) platforms
also allow partial updates of Field-Programmable Gate Array
(FPGA) functionality. By combining both micro controller
and SDR reprogramming, the entire network stack, including
the physical layer, becomes upgradable. (v) The recent trends
towards software defined networking (SDN) approaches and
virtualization, allows networks to inject new network rules into
the application layer, thereby influencing lower layer protocol
behaviour. These approaches could be extended by injecting
not only rules, but even full software components or new
network stacks at the application layer. (vi) An edge/fog-based
architecture could be used to to more efficiently disseminate
update data to the end devices, minimising the impact on the
network.

VII. CONCLUSIONS

In the fast growing world of the Internet-of-Things, net-
works are deployed in increasingly diverse application do-
mains, ranging from smart homes to Industry 4.0 factories.
Most IoT devices are constrained in terms of energy, memory
and processing power. In order to make IoT solutions truly
sustainable, it is necessary to periodically update (parts of) the
software post deployment. This article gave a comprehensive



IEEE COMMUNICATIONS MAGAZINE 7

overview of the principles, necessary to implement a secure
and efficient over-the-air software update mechanism, resulting
in a step-by-step approach as summarised in Figure 2.

Two distinct phases were identified: (i) the software mod-
ule management phase, and (ii) the secure software rollout.
The first phase is performed completely offline, in order to
minimise the impact for the deployment network. Using the
combination of a compatibility matrix and digital twin network
it is possible to identify bugs, version incompatibilities or
performance issues even before the update is executed. The
second phase elaborated on the eventual rollout of the software
modules to the devices, quantifying the energy overhead per
step (symmetric/asymmetric encryption, authentication, data
integrity, data dissemination, installation, and activation) as
can be seen in Figure 4. The results show that beside the
obvious dissemination cost, the other steps also introduce
a significant overhead especially for modular updates (i.e.
51.31% vs. 36.89% for a full firmware update). The use of
HMAC for data integrity and authentication, and the use of
ECC for (a single) encryption occupy the main portion of this
overhead.

To conclude, using this step-by-step approach, it is possible
to improve the sustainability of IoT solutions and calculate the
possible overhead upfront. The results obtained in the second
phase allow a network operator to estimate the cost of either
a modular or a full firmware update in terms of energy. This
enables the operator to make a trade-off between this cost and
the impact on the performance after the update. Moreover, the
digital twin network, included in the first phase, can be used
to evaluate the potential performance gains as well upfront.

ACKNOWLEDGMENT

This work was partially supported by the FWO SBO
IDEAL-IoT project (S004017N), the FWO EOS MUSE-
WINET project (G0F4918N), and the H2020 ORCA project
(732174).

REFERENCES

[1] H. Guissouma et al., “An empirical study on the current and future chal-
lenges of automotive software release and configuration management,” in
Euromicro Conf. on Software Engineering and Advanced Applications.
IEEE, 2018, pp. 298–305.

[2] P. Ruckebusch et al., “Modelling the energy consumption for over-the-
air software updates in lpwan networks: Sigfox, lora and ieee 802.15.
4g,” Internet of Things, vol. 3, pp. 104–119, 2018.

[3] J. C. Cano et al., “Evolution of iot: An industry perspective,” IEEE
Internet of Things Magazine, vol. 1, no. 2, pp. 12–17, 2018.

[4] P. Ruckebusch, E. D. Poorter, C. Fortuna, and I. Moerman, “Gitar:
Generic extension for internet-of-things architectures enabling dynamic
updates of network and application modules,” Ad Hoc Networks, vol. 36,
pp. 127–151, 2016.

[5] P. Brada and J. Bauml, “Automated versioning in osgi: A mechanism
for component software consistency guarantee,” in Euromicro Conf. on
Software Engineering and Advanced Applications, 08 2009, pp. 428–
435.

[6] S. De et al., “Test-enabled architecture for iot service creation and
provisioning,” in The Future Internet Assembly. Springer, 2013, pp.
233–245.

[7] M. Chernyshev et al., “Internet of things: Research, simulators, and
testbeds,” Internet of Things Journal, pp. 1637–1647, 2017.

[8] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
twin in manufacturing: A categorical literature review and classification,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.

[9] F. Doroodgar, M. A. Razzaque, and I. F. Isnin, “Seluge++: A secure
over-the-air programming scheme in wireless sensor networks,” Sensors,
vol. 14, no. 3, pp. 5004–5040, 2014.

[10] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the internet of
things: A standardization perspective,” IEEE Internet of Things Journal,
vol. 1, no. 3, pp. 265–275, 2014.

[11] X.-L. Zheng and M. Wan, “A survey on data dissemination in wireless
sensor networks,” Journal of Computer Science and Technology, vol. 29,
no. 3, pp. 470–486, 2014.

[12] L. Cheng et al., “Towards minimum-delay and energy-efficient flooding
in low-duty-cycle wireless sensor networks,” Computer Networks, vol.
134, pp. 66–77, 2018.

[13] B. Kim and K.-i. Hwang, “Cooperative downlink listening for low-power
long-range wide-area network,” Sustainability, vol. 9(4), p. 627, 2017.

[14] J. Toussaint, N. El Rachkidy, and A. Guitton, “Performance analysis
of the on-the-air activation in lorawan,” in Information Technology,
Electronics and Mobile Communication Conf. IEEE, 2016, pp. 1–7.

Jan Bauwens (jan.bauwens2@ugent.be) received
his B.Sc. and M.Sc. Engineering in Computer Sci-
ence from Ghent University. Since 2015 he has
been a Ph.D. student at Ghent University as part
of the Internet Technology and Data Science Lab
(IDLAB) research group. He has been participating
in several European and national research projects.
His research topic is concentrated around flexible
MAC development in Internet-of-Things networks.

Peter Ruckebusch (peter.ruckebusch@ugent.be)
received his M.Sc. in computer science from
Hogeschool Ghent Faculty Engineering, Belgium.
Since 2011 he has been a Ph.D. student at the
University of Ghent, IMEC, IDLab, in the Depart-
ment of Information Technology (INTEC). He has
been collaborating in several national and European
projects. His research topics are situated in the low
end of IoT, mainly focusing on reconfigurability
and reprogrammability aspects of protocol stacks for
constrained devices in IoT networks.

Spilios Giannoulis (spilios.giannoulis@ugent.be)
received his M.Sc in electrical and computer engi-
neering (2001) and Ph.D. (2010) from the University
of Patras. Since 2015 he has been a postdoctoral
researcher at the University of Ghent, IMEC, IDLab.
He is involved in several EU projects. His main
research interests are mobile ad hoc networks, wire-
less sensor networks, especially flexible and adaptive
MAC and routing protocols, QoS provisioning, and
cross layer and power aware architecture design as
well as dynamic spectrum access techniques.

Ingrid Moerman (ingrid.moeman@ugent.be) re-
ceived her M.Sc. in electrical engineering (1987)
and Ph.D. (1992) from the University of Ghent,
where she became a part time professor in 2000.
She is a member of IDLab-UGent-IMEC, where
she coordinates research on mobile and wireless
networking. Her research interests include IoT, LP-
WAN, cooperative networks, cognitive radio net-
works and flexible architectures for radio/network
control and management. She has long experience
in coordinating national and EU research projects.

Eli De Poorter (eli.depoorter@ugent.be) received
his M.Sc (2006) in computer science engineering
and Ph.D. (2011) from the University of Ghent. He is
now a professor at INTEC, University of Ghent. He
is currently also coordinating several national and
international projects. His main research interests
include wireless network protocols, network archi-
tectures, wireless sensor and ad hoc networks, future
Internet, self learning networks, and next generation
network architectures.


