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Abstract—In this paper, we consider a multi-cell multi-user
MISO broadcast channel. The system operates according to the
opportunistic beamforming framework in a multi-cell environ-
ment with variable number of transmit beams (may alternatively
be referred as the transmission rank) at each base station. The
maximum number of co-scheduled users in a cell is equal to
its transmission rank, thus increasing it will have the effect of
increasing the multiplexing gain. However, this will simultane-
ously increase the amount of interference in the network, which
will decrease the rate of communication. This paper focuses on
optimally setting the transmission rank at each base station such
that a set of Quality of Service (QoS) constraints, that will ensure
a guaranteed minimum rate per beam at each base station, is
not violated. Expressions representing the achievable region of
transmission ranks are obtained considering different network
settings. The achievable transmission rank region consists of
all achievable transmission rank tuples that satisfy the QoS
constraints. Numerical results are also presented to provide
further insights on the feasibility problem.

I. INTRODUCTION

Opportunistic beamforming (OBF) is a well known adaptive
signaling scheme that has received a great deal of attention
in the literature as it attains the sum-rate capacity with full
channel state information (CSI) to a first order for large
numbers of mobile users in the network, while operating
on partial CSI feedback from the users. In this paper, we
consider a cellular network which operates according to the
OBF framework in a multi-cell environment with variable
number of transmit beams at each BS. The number of transmit
beams is also referred to as the transmission rank (TR) in the
paper, and we focus on optimally setting the transmission rank
at each BS in the network.

The earliest work of OBF appeared in the landmark pa-
per [1], where the authors have introduced a single-beam
OBF scheme for the single-cell multiple-input single-output
(MISO) broadcast channel. The concept was extended to Nt
random orthogonal beams in [2], where Nt is the number
of transmit antennas. The downlink sum-rate of this scheme
scales as Nt log log(K), where K is the number of users in
the system [2]. Recently, the authors in [3] have considered
using variable TRs at the BS, and they have showed that
the downlink sum-rate scales as L

L−1 log(K) in interference-
limited networks, where L is the TR employed by the BS.
The gains of adapting variable TR compared to a fixed one
is clearly demonstrated in [3], however, how to select the

TR for OBF is still an open question which has only been
characterized in the asymptotic sense for the single-cell system
in [4]-[5], and a two-transmit antenna single-cell system in [6].

In all of the above works, the users are assumed to be
homogeneous with the large-scale fading gain (alternatively
referred to as the path loss in this paper) equal to unity. OBF in
heterogenous networks has been considered in [7]-[9]. In [7],
the authors focused on the fairness of the network and obtained
an expression for the ergodic capacity of this fair network. In
[8], the authors modeled the user locations using a spatial
Poisson point process, and studied the outage capacity of the
system. In [9], the authors considered an interference-limited
network and derived the ergodic downlink sum-rate scaling
law of this interference-limited network. The TRs in [7]-[9]
are considered to be fixed.

In this paper, we are interested in the Quality of Service
(QoS) delivered to the users. More precisely, we focus on a
set of QoS constraints that will ensure a guaranteed minimum
rate per beam with a certain probability at each BS. Previous
studies have shown that user’s satisfaction is a non-decreasing,
concave function of the service rate [10]; this suggests that the
user’s satisfaction is insignificantly increased by a service rate
higher than what the user demands, but drastically decreased if
the provided rate is below the requirement [11]. The network
operator can promise a certain level of QoS to a subscribed
user. To this end, the QoS is closely related to the TR of
the BS. Increasing the TR will increase the number of co-
scheduled users. However, increasing the TR will also increase
interference levels in the network, which will decrease the
rate of communication per beam. A practical question arises;
what is a suitable TR to employ at each BS while achieving
a certain level of QoS in multi-cell heterogeneous networks?
The authors in [12] have performed a preliminary study of this
problem for a single-cell system consisting of homogeneous
users with identical path loss values of unity.

The main contributions of this paper are summarized as
follows. We focus on finding the achievable TRs without
violating the above mentioned set of QoS constraints. This
can be formulated into a feasibility problem. For some specific
cases, we derive analytical expressions of the achievable TR
region, and for the more general cases, we derive expressions
that can be easily used to find the achievable TR region.
The achievable TR region consists of all the achievable TR
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tuples that satisfy the QoS constraints. Numerical results are
presented for a two-cells scenario to provide further insights
on the feasibility problem; our results show that the achievable
TR region expands when the QoS constraints are relaxed, the
SNR and the number of users in a cell are increased, and the
size of the cells are decreased.

II. SYSTEM MODEL

We consider a multi-cell multi-user MISO broadcast chan-
nel. The system consists of M BSs (or cells), each equipped
with Nt transmit antennas. Each cell consists of K users,
each equipped with a single receive antenna. A BS will only
communicate with users in its own cell. Let hj,i,k denote the
channel gain vector between BS j and user k in cell i. The
elements in hj,i,k are independent and identically distributed
(i.i.d.) random variables, each of which is drawn from a
zero mean and unit variance circularly-symmetric complex
Gaussian distribution CN (0, 1). The large-scale fading gain
(may alternatively referred to as path loss in this paper)
between BS j and user k in cell i is denoted by gj,i,k. The
path loss (PL) values of all the users are governed by the
PL model G(d) = d−α for α > 2, where d represents the
distance between the user and the BS of interest. Therefore,
the random PL values are also i.i.d. among the users, where
the randomness stems from the fact that users’ locations are
random. Moreover, we assume a quasi-static block fading
model over time [13].

The BSs operate according to the OBF scheduling and trans-
mission scheme as follows. The BSs will first pre-determine
the number of beams to be transmitted. BS i generates Li
random orthogonal beamforming vectors and transmits Li
different symbols along the direction of these beams (Li is
the TR employed by BS i). This process is simultaneously
carried out at all BSs. For BS i, let wi,m and si,m denote
the beamforming vector and the transmitted symbol on beam
m, respectively. The received signal at user k in cell i can be
written as

yi,k =
√
gi,i,k h>i,i,k

Li∑
l=1

wi,lsi,l+

M∑
j 6=i

√
gj,i,k h>j,i,k

Lj∑
t=1

wj,tsj,t + ni,k, (1)

where ni,k ∼ CN (0, σ2
n) is the additive complex Gaussian

noise. We assume that E[|si,k|2] = ρi, where ρi = Pt/Li is
a scaling parameter to satisfy the total power constraint Pt at
each BS. For conciseness, we assume Pt = 1. Each user will
measure the SINR values on the beams from its associated
BS, and feed them back. For the beam generated using wi,m,
the received SINR at user k located in cell i is given by

Si,k,m =
[
gi,i,k|h>i,i,kwi,m|2

]σ2
nLi + gi,i,k

Li∑
l6=m
l=1

|h>i,i,kwi,l|2

+

M∑
j 6=i

gj,i,k
Li
Lj

Lj∑
t=1

|h>j,i,kwj,t|2

−1

. (2)

Once the BSs have received the feedback from the users,
each BS will select a set of users for communication by assign-
ing each beam to the in-cell user having the highest SINR on
it1, i.e., the user with SINR value S?i,m = max1≤k≤K Si,k,m.
For cell i, let F kLi and F ?Li denote the distributions of the
SINR on a beam at user k and the maximum SINR on
a beam, respectively. Since the maximum number of co-
scheduled users in cell i is equal to Li, increasing Li will
have the effect of increasing the number of co-scheduled
users. However, increasing Li will also increase the amount
of intra-cell and inter-cell interference, which will decrease
the rate of communication per beam. Therefore, we focus on
finding an achievable (L1, . . . , LM ) TR M-tuple with a set of
QoS constraints at all the BSs that will ensure a guaranteed
minimum rate per beam with a certain probability. To this end,
we consider that an outage probability of p can be tolerated at
each BS, where the outage event refers to the received SINR
of the scheduled user on a beam being below a target SINR
threshold value η, i.e., Pr{S?i,m ≤ η} ≤ p ⇒ F ?Li(η) ≤ p
for all i. There is also a natural constraint on Li due to the
orthogonality requirement among the beams, i.e., Li ≤ Nt
for all i. We focus on finding the achievable Lis such that
these constraints are not violated. This is a non-trivial problem
for the system of interest due to the presence of intra-cell
and inter-cell interferences, and the SINR values on a beam
being not identically distributed among the users due to their
different locations. We note that there is an implicit constraint
that Li must be an integer. For the analysis, we will relax
the integer constraint and assume that Nt is sufficiently large
such that the constraints 0 ≤ Li ≤ Nt is always satisfied
for all i. Denote (L̃1, . . . , L̃M ) as an achievable TR M-tuple
with the relaxed constraints; the corresponding achievable
(L1, . . . , LM ) M-tuple is given by Li = min(Nt, bL̃ic) for
all i, where b.c represents the floor function. Since the SINR
on a beam is a strictly decreasing function of the TR, we
have the following property; given an achievable M-tuple
(L̂1, . . . , L̂M ), another M-tuple (L̄1, . . . , L̄M ) is achievable
if L̄i ≤ L̂i for all i = 1, . . . ,M . In the remaining parts of
the paper, we will focus on finding the achievable TRs and
the achievable TR region, where the achievable TR region is
defined to consist all the achievable (L̃1, . . . , L̃M ) M-tuples.
We will call the constraints on F ?Li(η) the QoS constraints.

III. ANALYSIS FOR A SINGLE CELL SCENARIO

We will start our analysis with a simple single-cell scenario.
We drop the cell index i for brevity. For a single cell, the SINR
expression in (2) reduces to

Sk,m =
gk|h>k wm|2

σ2
nL+ gk

∑L
l6=m
l=1

|h>k wl|2
. (3)

1In this paper, we focus on rate maximization in the network. Interested
readers are referred to [1], [6], [14] and [15] for techniques that can be used
to achieve fairness in such a network.



For a given PL value gk, by using techniques similar to those
used in [2], it is not hard to show that F kL is given by

F kL(x|gk) = 1−
exp

(
−xσ2

nL/gk
)

(x+ 1)L−1
. (4)

Therefore, by conditioning on g = {g1, . . . , gK}, the CDF of
S?m is given by

F ?L(x|g) =

K∏
k=1

[
1−

exp
(
−xσ2

nL/gk
)

(x+ 1)L−1

]
. (5)

A. Homogeneous Users with Identical PL Values

First we consider the simplest case where the user’s are
located equidistant to the BS, i.e., the user’s PL values are
identical and deterministic, and given by g1 = . . . = gK =
g. For this simplest case, a closed-form expression for the
achievable TR can be obtained, and it is formally presented
through the following theorem.

Theorem 1: For the system in consideration with M = 1
and g1 = . . . = gK = g, the achievable TRs are given by

L̃ ≤ log(1 + η)− log(1− p1/K)

ησ2
n/g + log(1 + η)

, (6)

where η is the target SINR threshold value.
Proof: With equal PL values g1 = . . . = gK = g, the

QoS constraint is given by[
1−

exp
(
−ησ2

nL/g
)

(η + 1)L−1

]K
≤ p.

Solving for L completes the proof.
Setting g = 1 makes the result in Theorem 1 consistent
with [12].

B. Heterogeneous Users with Random PL Values

Now, we will consider the users to be heterogenous as in
Section II. We model the cell as a disk with radius D. Given
the non-identical PL values, F ?L is given by (5) for this setup,
and the QoS constraint can be written as

K∏
k=1

[
1− exp(−(ησ2

n/gk)L)

(η + 1)L−1

]
≤ p. (7)

Since the user locations are random in our setup, removing the
conditioning of F ?L by averaging over the PL values gives us
the QoS constraint of interest. This idea is formally presented
in the following lemma.

Lemma 1: For the system in consideration with M = 1 and
the random PL values governed by the PL model G(d) = d−α
for α > 2, the QoS constraint is given by[

1−
2γ( 2

α
, ησ2

nLD
α)

αD2(η + 1)L−1(ησ2
nL)2/α

]K
≤ p, (8)

where η is the target SINR threshold value and γ(·, ·) is the
lower incomplete gamma function.

Proof: Since the users are located uniformly over the
plane, the CDF of the distance from the user to its associated
BS is given by ΦD(d) = (d/D)2. Let ΦG(g) denote the CDF

of the PL value, which is given by ΦG(g) = 1− g−2/α

D2 . Since
the PL values are i.i.d. among the users, we have

F ?L(x) =

∫ G(0)

g1=G(D)

· · ·
∫ G(0)

gK=G(D)

K∏
k=1

F kL(x|gk)dΦG(g1) . . . dΦG(gK)

=

[∫ G(0)

G(D)

FL(x|g)dΦG(g)

]K
.

Substituting for the CDFs and setting t = g−2/α gives us

F ?L(η) =

[
1− 1

D2(η + 1)L−1

∫ D2

0

exp
(
−ησ2

nLt
α/2
)
dt

]K
.

Evaluating the integral completes the proof [16].
The achievable TR region consists of all the achievable L̃s
that satisfy (8). Next, we will focus on the general multi-cell
scenario.

IV. ANALYSIS FOR THE MULTI-CELL SCENARIO

Similar to what we have done in the previous section,
we will start the analysis by obtaining an expression for the
conditional distribution of the SINR on a beam at a user. This
result is formally presented in the following lemma.

Lemma 2: Consider user k in cell i. Given the PL
values from all the BSs to user k, i.e., given gi,k =
{g1,i,k, . . . , gM,i,k}, the conditional distribution of the SINR
on a beam is given by

F kLi(x|gi,k) = 1−
exp

(
−xσ

2
nLi

gi,i,k

)
(x+ 1)Li−1

∏M
j 6=i
j=1

(
x
gj,i,k
gi,i,k

Li
Lj

+ 1
)Lj . (9)

Proof: The conditional distribution of the SINR can be
obtained using a result in [17], which is summarized as fol-
lows. Suppose Zi, i = 1, . . . , n are independent exponentially
distributed random variables (RVs) with parameters λi. Then

Pr

(
Z1 ≤ c+

n∑
i=2

Zi

)
= 1− exp(−λ1c)

n∏
i=2

(
1

1 + λ1
λi

)
,

where c is a constant. Given all the PL values gi,k, F kLi can
be re-written as

F kLi(x|gi,k) = Pr {Si,k,m ≤ x|gi,k}

= Pr

Zi,m ≤ c+

Li∑
l 6=m

Ai,l +

M∑
j 6=i

Lj∑
t=1

Bj,t

 ,

where c = xσ2
nLi/gi,i,k is a constant, and Zi,m, Ai,l and Bj,t

are independent exponentially distributed RVs with parameters
1, 1x and gi,i,kLj

xgj,i,kLi
, respectively. Therefore, directly using the

result in [17] completes the proof.
Using the above lemma, given all PL values, the conditional

CDF of the maximum SINR on a beam can be written as

F ?Li(x|g1,i, . . . ,gK,i) =

K∏
k=1

F kLi(x|gi,k). (10)

Next, we will use this expression to find the achievable TR
region considering different scenarios, similar to what we have
done in Section III. For the clarity of presentation and the
ease of explanation, we present the analysis for the two-cells
scenario; the analysis of the M -cells scenario can be easily
extended using the same techniques.



A. The Wyner Model
First we consider the classical Wyner model [18] for the

two-cells scenario. The users’ PL values are deterministic as
follows; the PL value between all the users to their associated
BS is unity, and the PL value between all the users to the
interfering BS is g. For this setup, the QoS constraint for cell
one is given by1−

exp
(
−ησ2

nL1

)
(η + 1)L1−1

(
L1
L2
gη + 1

)L2


K

≤ p, (11)

where η is the target SINR threshold. The QoS constraint for
cell two can be easily obtained by interchanging 1 and 2 in the
indices. Analytical expressions that characterize the achievable
TR region for this setup are formally presented through the
following theorem.

Theorem 2: For the Wyner model, given a fixed L2, the
achievable TRs for cell one is given by

L̃1 ≤ −
1

c
+
b

a
W
(
a

bc
+
d

b

)
, (12)

where W is the Lambert-W function given by the defining
equationW(x) exp(W(x)) = x, a = ησ2

n+log(1+η), b = L2,
c = gη/L2, d = log(1+η)− log(1−p1/K), and η is the target
SINR threshold.

Proof: With some simple manipulations, we can re-write
the QoS constraint in (11)

aL1 + b log(1 + cL1) ≤ d. (13)

The following chain of inequalities holds which completes the
proof.

aL1 + b log(1 + cL1) ≤ d

⇒ aL1

b
+ log(1 + cL1) +

a

bc
≤ d

b
+
a

bc

⇒ exp

(
aL1

b
+
a

bc

)(
aL1

b
+
a

bc

)
≤ a

bc
exp

(
d

b
+
a

bc

)
⇒ L1 ≤ −

1

c
+
b

a
W
(
a

bc
+
d

b

)
.

Given a fixed L1, the achievable TRs for cell two can be
easily obtained by interchanging 1 and 2 in the indices. The
achievable TR region consists of all the achievable (L̃1, L̃2)
tuples. When L1 = L2 = L, the result in Theorem 2 can be
further simplified, and the result is presented in the following
corollary.

Corollary 1: For the Wyner model, if L1 = L2 = L, the
achievable TRs are given by

L̃ ≤ log(1 + η)− log(1− p1/K)

ησ2
n + log(1 + η) + log(1 + gη)

. (14)

Next, we consider the users to be heterogeneous as in Sec-
tion II.

B. Heterogeneous Users with Random PL Values
For this scenario, if all the path loss values are given, the

QoS constraint for cell one can be written using (10) as

K∏
k=1

1−
exp

(
−ησ2

nL1/g1,1,k
)

(η + 1)L1−1
(
L1
L2

g2,1,k
g1,1,k

η + 1
)L2

 ≤ p. (15)

The QoS constraint for cell two can be easily obtained by
interchanging 1 and 2 in the indices. Since the user locations
are random, we need to remove the conditioning on F ?Li by
averaging over the PL values. With multiple BSs, the PL values
between the user and each BS are correlated. Hence, it is
difficult to average over the PL values directly as in the single
cell case because it is difficult to obtain the CDF of the path
loss value. Nonetheless, since the PL values are directly related
to the distance between the user and each of the BSs, we
can perform a change of variables by writing each PL as a
function of the user and BS locations, and then average over
the location process by making use of the fact that the users
are located uniformly over the plane.

For the purpose of illustrating the idea, consider a user
k in cell one and let (x1,k, y1,k) denote its exact location
coordinate on the two dimensional plane. For convenience,
we assume that a user is always connected to the closest BS
geographically, i.e., the two cells are arranged in a rectangular
grid on the two dimensional plane. Hence x1,k and y1,k are
independent and uniformly distributed within the cell for all
k. Let (Xi, 0) denote the location coordinate of BS i. Figure 1
illustrates the setup. The distance from the user to BS one

(X1, 0)

(x1,k,y1,k)

d1,1,k

Cell 1 Cell 2

(X2, 0)d2,1,k

BS 1 BS 2

User k

x

y

Fig. 1. Two Cells Model

and two is therefore d1,1,k =
√

(x1,k −X1)2 + (y1,k)2 and
d2,1,k =

√
(x1,k −X2)2 + (y1,k)2, respectively. Thus the PL

values are given by g1,1,k = d−α1,1,k and g2,1,k = d−α2,1,k, re-
spectively. The following lemma presents the QoS constraints
for a two-cells scenario consisting of heterogeneous users with
random PL values.

Lemma 3: For the system in consideration with BS i being
located at (Xi, 0), given a fixed L2, the QoS constraint of cell
one is

ΩL1(η)

A1(η + 1)L1−1 ≥ 1− p1/K , (16)

where η is the target SINR, A1 is the area of cell one, and
ΩL1

(η) is defined by the following integral

ΩL1(η) =

∫
y

∫
x

exp
(
−ησ2

nL1[(x−X1)2 + y2]α/2
)

[(
(x−X1)2+y2

(x−X2)2+y2

)α
2 L1
L2
η + 1

]L2
dxdy, (17)

and the integration is over the area of cell one.
Proof: First we substitute g1,1,k and g2,1,k to (9) to get

F kL1
. Given a user’s location coordinate (x1,k, y1,k), F kL1

is



given by

F kL1
(s|x1,k, y1,k) = 1− exp

(
− sσ2

nL1

[(x1,k −X1)2 + (y1,k)2]−α/2

)
(s+ 1)L1−1

((
(x1,k −X1)2 + (y1,k)2

(x1,k −X2)2 + (y1,k)2

)α
2 L1

L2
s+ 1

)L2
−1

.

Averaging (10) over cell one gives us

F ?L1
(η) =

∫
x1,K

∫
y1,K

· · ·
∫
x1,1

∫
y1,1

K∏
k=1

F kL1
(η|x1,k, y1,k)

f(x1,k, y1,k)dx1,kdy1,k,

where f(x1,k, y1,k) = f(x1,k)f(y1,k) = 1
A1

is the joint PDF
of x1,k and y1,k. Since the location coordinates are i.i.d. among
the users, we have

F ?L1
(η) =

[∫
y

∫
x

F kL1
(η|x, y)f(x, y)dxdy

]K
.

Substituting for F kL1
(η|x, y) completes the proof.

Given a fixed L1, the QoS constraint for cell two can be
easily obtained by interchanging 1 and 2 in the indices. The
achievable TR region is given by all the (L̃1, L̃2) tuples that
satisfy the QoS constraints for both cells.

V. NUMERICAL RESULTS

In this section, we present our numerical results for the
single cell and two-cell scenarios. In all the simulations, the
cell is modeled as a disk with radius D for the single cell
scenario, and each cell is modeled as a square with cell area
A1 = A2 = (2D)2 for the two-cell scenario.

In Figures 2-4, we show the achievable TR regions for
the two-cells scenario. Figures 2 and 3 show the achievable
TR regions for the Wyner model with g = 0.1 and g = 1,
respectively. The dotted line connecting the origin and the
corner point in each region represents the achievable TR set
given in Corollary 1. Figure 4 shows the achievable TR regions
for heterogeneous users, using the result of Lemma 3. For
a given L1, any L2 below the boundary can be achieved,
whereas any L2 above the boundary will violate the QoS
constraints. Moreover, if the system wants to maximize the
multiplexing gain at each BS, operating at (L1, L2) strictly
below the boundary is sub-optimal in a sense that we can
further increase the TRs without violating the QoS constraints.
Therefore, the boundary curve can be considered as the Pareto
optimal boundary between the achievable and un-achievable
TR pairs. As can be observed from the figures, TR region
expands when the QoS constraints are relaxed, i.e., p is
increased and/or η is decreased. Relaxing the QoS constraints
allows more interference in the network, thus expanding the
achievable TR Region. Moreover, the achievable TR region
also expands when K is increased. The achievable rate on
a beam increases due to multi-user diversity, therefore, more
beams/interference can be tolerated without violating the con-
straints. The achievable TR region will also change with D
and σ2

n and will be discussed further in Figures 5-6.
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Fig. 2. Achievable TR Region for the Two-Cells Scenario with Wyner Model,
D = 2, σ2

n = 0.01, g = 0.1.

0 2 4 6 8 10
0

1

4

6

8

10

L1

L
2

 

 

p = 0.2, η = 1,K = 1000

p = 0.2, η = 1,K = 100

p = 0.2, η = 2,K = 100

p = 0.1,
η = 4,
K = 100

Fig. 3. Achievable TR Region for the Two-Cells Scenario with Wyner Model,
D = 2, σ2

n = 0.01, g = 1.

1 3 5 7 9 11
1

3

5

7

9

11

L1

L
2

 

 

p = 0.2, η = 1,K = 1000

p = 0.2, η = 1,K = 100

p = 0.1,
η = 4,
K = 100

p = 0.2, η = 2,
K = 100

Fig. 4. Achievable TR Region for the Two-Cells Scenario with Heteroge-
neous Users, D = 2, α = 3, σ2

n = 0.01.

Let L̃∗ denote the maximum achievable TR with the relaxed
constraints on L. Figure 5 shows L̃∗ vs. K, for the single-cell
scenario and two-cells scenario with equal TRs. As can be
observed from the figure, for a fixed K, L̃∗ decreases as the
cell size increases. This is because the users are uniformly
located in the cell and as the cell size increases, the users’



locations will be more spread out. As a consequence, the SINR
on each beam will decrease and we must compensate this by
decreasing the TR (to decrease the interferences). Figure 6
shows L̃∗ vs. SNR for fixed number of users, where SNR is de-
fined as 1

σ2
n

. As can be observed from the figure, L̃∗ increases
with SNR. Intuitively, when σ2

n decreases, we can increase the
TR (effectively introduces additional interferences) while still
satisfying the QoS constraints. Therefore, the achievable TR
region will expand with decreased cell size or increased SNR.
Finally, L̃∗ decreases as M , the number of cells, increases.
This is because the SINR on each beam decreases with M .
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Fig. 5. Maximum Achievable TR vs. K for Single Cell and Two-Cell
Scenarios with p = 0.1, η = 4, α = 3.

VI. CONCLUSIONS

In this paper, we considered a multi-cell multi-user MISO
broadcast channel. Each cell employs the OBF scheme with
variable TRs. We focused on finding the achievable TRs
for the BSs to employ with a set of QoS constraints that
ensures a guaranteed minimum rate per beam with a certain
probability at each BS. We formulated this into a feasibility
problem for the single-cell and multi-cell scenarios consisting
of homogeneous users and heterogeneous users. Analytical
expressions of the achievable TRs were derived for systems
consisting of homogeneous users and for systems consisting
of heterogeneous users, expressions were derived which can
be easily used to find the achievable TRs. An achievable TR
region was obtained, which consists of all the achievable TR
tuples for all the cells to satisfy the QoS constraints. Numerical
results showed that the achievable TR region expands when the
QoS constraints are relaxed, the SNR and the number of users
in a cell are increased, and the size of the cells are decreased.
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