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Abstract

The Bulk Synchronous Parallel (BSP) model of computing proposed by Valiant [Val90] axiomatically
assumes inexpensive global synchronization. Typically, however, global synchronization is expensive,
detracting from the appeal of BSP on machines without special synchronization hardware.

Decreasing the cost of global synchronization is critical to improving the performance of any BSP
implementation. We address this problem by exploiting local knowledge of the state of remote processes
that can be inferred from the number of messages received from the remote process. We found that
frequently, synchronization may be e�ected with no network tra�c overhead.

This paper describes the design, implementation, and performance of a counting Bulk Synchronous
Parallel (cBSP) runtime library incorporating these ideas.

1 Introduction

In parallel computing, the gap separating theory and practice is wider than in sequential computing. Most theoretical
models of parallel computing were designed to study algorithmic complexity [FW78, Gib89, KLadH92] and, like the
physics students' frictionless plane, do not reect the state of real-world technology. While useful for theoretical
exploration, these models of parallel computing do not incorporate the limitations and features of existing parallel
machines.

Real parallel programming always has been based on speci�c types of application programming interfaces
(APIs). These APIs have been designed around experience and need, integrating techniques of concurrent
programming (e.g. Mutual Exclusion, Monitors, Threads) and interprocessor communications (e.g. PVM, RPC,
NX, MPI) [BDG+91, BN84, Pie94, SOHL+95]. Because these APIs are not models of computation, it is di�cult to
use them to study or to predict the behavior of parallel algorithms running on parallel machines. Recent e�orts such
as the LogP model [CKP+92] can be used to study the behavior of message passing programs quite realistically, but
they are not designed for programming parallel algorithms.

A model of parallel computing analogous to the von Neumann model of sequential computing could wed the tools
of theoretical analysis to real parallel programming. The BSP model was introduced by Les Valiant [Val90] as just
such a bridging model, linking architecture and software, theory and practice.

BSP o�ers both a a common abstraction toward which computer architects and compiler writers can design, and
a concise model of parallel program execution enabling accurate performance prediction for proactive application
design [HCB96, Kne94, RPL95].

The BSP model is described in more detail in section 2. In summary, however, BSP divides a computation into
supersteps, delineated by global synchronization. Communication initiated during one superstep is not visible at a
receiver until the start of the next superstep.

�This work was completed in part while this author was at Princeton University.



Researchers [BM93, Har, Oxf] are striving to implement run-time libraries and exploit the strengths of the the BSP
model. Through these e�orts, programmers can develop portable and scalable parallel programs, where the same
code executes with predictable performance on shared or distributed memory systems, on clustered workstations or
PCs. But these e�orts still are not competitive with existing message-passing libraries such as NX, PVM, and MPI
due to the di�culties inherent in making the BSP model e�cient.

This paper proposes a counting Bulk Synchronous Parallel (cBSP) scheme that addresses the cost of global
synchronization, allowing more e�cient implementation on today's parallel architectures.

Our research shows that frequently, an application can determine locally the number of messages due to arrive
during a given superstep. We have implemented and tested counting synchronization and compared its performance
to that of global synchronization. Exploiting this knowledge can enhance application performance. cBSP continues
to embrace the simplicity of the original BSP model, so it still can be used to study theoretical properties of parallel
algorithms.

We describe the BSP model in section 2. Section 3 describes our research platform. In section 4, we present our
rationale for modifying BSP, describe our enhancements, and analyze our design decisions. Section 5, details our
implementation and the tradeo�s we made. In section 6, we describe the performance of our library, and in section 7,
summarize our �ndings and discuss some related open research questions.

2 BSP

2.1 The BSP Model
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Figure 1: Eight nodes executing two supersteps.

In 1990, Valiant introduced the BSP model [Val90] to
bridge the gap between the theory and the practice of
parallel computing. The BSP model provides an abstrac-
tion toward which both compiler writers and computer
architects can aim. One goal of BSP is its use by parallel
algorithm designers as a portable programming model
and as a tool to analyze and predict the performance of
parallel algorithms on real hardware. Another is to allow
computer architects to design e�cient parallel machines
without undue concern for the nature of the software that
they will run, and to allow application writers to design
programs that can be executed e�ciently with minimal
concern for the underlying hardware.

A BSP computer is one having
1. some number of components, each performing pro-

cessing and/or memory functions,

2. a router that delivers messages point-to-point be-
tween components, and

3. an e�cient means of synchronizing all or a subset of
the components.

The execution of a BSP program is divided into distinct
phases called \supersteps". During any superstep, com-
putation, memory references, I/O, and communication can occur. Supersteps are delineated by a synchronization
operation. Data transmitted during a superstep become available to the receiver only during the following superstep.
Figure 1 shows eight nodes executing two supersteps of a BSP program. Computation is shown as solid lines,
communication as dashed lines, blocking as dotted lines, and synchronization as horizontal dashed lines. The
blocking is a symptom of load imbalance.

The meaning of bulk synchronous becomes apparent. Communication is synchronous \in bulk," that is, at the
synchronization points that de�ne supersteps.

2.2 Quantifying Performance

Four parameters describe the performance of a BSP computer:

1. p, the number of processors



2. L, the synchronization cost

3. g, the communication cost, and

4. s, the processor speed.

The synchronization cost, L, is the time required to reach barrier synchronization across all p nodes, measured in
processor operations.

The communication cost, g, is the least upper bound of the cost (in elapsed processor operations) of communicating
a given amount of data to each processor (the least upper bound is used to account for possible network congestion).
The value of g is equal to the quotient of the total number of operations performed by all processors in any given
unit of time and the total amount of data that can be delivered to all processors in that same amount of time, or
\aggregate processor operations per word transferred".

L and g are expressed in terms of processor operations to insure valid comparisons.

A clear advantage of this model is its simplicity. Any parallel computation becomes phases of computing, memory
access, and communication, de�ned by synchronization points in an uncomplicated form. Because of this simplicity,
the BSP model enjoys the potential to be implemented on many di�erent parallel architectures. The model makes
no assumptions about the topology of the interconnect of a parallel architecture.

BSP is useful not only to algorithm designers, but also to programmers and architects. Adhering to the BSP model
permits advances in hardware and software to occur fairly independently of each other [GRT94].

Valiant asserts that the BSP model achieves both portability and e�ciency for a large class of problems. The cost
of portability is that e�cient operation typically requires a larger input size for BSP code than for machine-speci�c
code.

A formal analysis of some BSP algorithms can be found in [GV92]. A rather nice example of how a programmer can
use the parameters p, L, g, and s, to optimize code is \parameterizing for performance," given in [MR94]: Depending
on the values of the performance parameters, it may be less costly to broadcast data to processors linearly than to
broadcast logarithmically.

With values of p, L, g, and s for a speci�c machine available at compile time, preprocessor directives could cause
compilation of that code using the most e�cient method to achieve some goal.

3 The Test Platform

Our implementation of cBSP exploits virtual memory-mapped communication.

Virtual memory-mapped communication (VMMC) occurs when a region of one process's virtual address space is
mapped onto a region of another process's virtual address space. Writes then propagate with little or no sending
processor involvement, and no receiver involvement whatsoever. The VMMC mechanism provides good support for
protected, user-level message passing, user-level bu�er management, and zero-copy protocols [DIFL96, FAB+96].

Our test platform consists of 16 commodity dual 200 MHz P6, PCI-bus-based PCs, running a slightly modi�ed Linux
v2.0.24, connected with M2M-Dual-SW8 Myrinet interconnects [BCF+95, Myr96].

Under VMMC, receivers grant permission for remote writes into their virtual address spaces by exporting regions
of their virtual memory. Senders then import memory regions to which they wish to write. Protection is veri�ed at
the time of import.

Once the mapping has been created, a send is initiated by a few user-level instructions, instructions which cause the
Myrinet DMA hardware to initiate data transfer. Bu�er management is performed by senders. Data are written
directly into the address space of the receiver; there is no explicit receive instruction.

Details of the VMMC implementation can be found in [DBLP97].

An important feature of virtual memory-mapped communication is that it not only supports, but requires, user-level
bu�er management. Libraries and user programs customize their own bu�er management to implement zero-copy
protocols, to achieve very low-latency message passing, and to exploit the raw bandwidth available in hardware. One
challenge in implementing cBSP at user level is to capitalize fully on the advantages of the underlying communication
mechanism while preserving the semantics of the BSP model.



4 cBSP Design

4.1 Identifying Cost

Because of the importance of global synchronization in the BSP model and its typical cost (O(logP ) time, O(P )
messages), the challenge in creating an e�cient implementation is to design a scheme for which, in the common case,
the cost of global synchronization can be minimized or avoided entirely.

Synchronization generally is viewed as a temporal constraint. At a given point in the execution of an application,
processes \stop" to wait for siblings to \catch up" with them. The invariant condition of nearly all global
synchronization operations is that no process exits the synchronization routine until all processes have entered
that routine.

In the BSP model of parallel computation, however, synchronization satis�es a logical, yet less strict need: that of
insuring correct computation. Synchronization guarantees that certain data have been sent and that certain data
have arrived.

To decrease or eliminate the cost of synchronizatin in BSP is to satisfy these communication constraints using the
least expensive means possible.

Examining applications, we found that there are instances in which even a sender can not determine the number
of messages it is sending to a given receiver during a given superstep until that superstep has ended. Frequently,
however, receiving processes can determine the number of messages that should arrive during a given superstep, and
thus derive some information about the state of the computation at the sending node without resorting to additional
communication.

This derived knowledge of a sender's computational state can be used by a receiver to lower the cost of determining
superstep boundaries.

4.2 Synchronization

In four applications written for BSP (Gaussian Elimination, Ocean, Barnes-Hut N-Body, and LU Decomposition),
processes could determine the number of messages to be received a large percentage of the time.

In gauss and ocean, receivers could use counting synchronization in 100% of the supersteps. LU decomposition
showed slightly lower percentages. Values for each program in the suite are shown in Figure 3.

In ocean and LU decomposition, however, a few simple calculations were necessary, as the number of messages is a
function both of a node's position in the grid and the number of columns and rows in the subarray being processed
by the node at the time.

After the requisite number of messages has been received, a process can continue into the following superstep without
imperiling program correctness. To prevent data corruption, our library cycles through disjoint data structures in
consecutive supersteps. With a few such data structures, communication patterns themselves enforce an adequate
(safe) level of synchrony.

Exploiting these characteristics enables local end-of-superstep synchronization without introducing additional
network tra�c. The key is exploiting information about the state of a computation at a remote process conveyed
by the number of messages sent by that process.

Avoiding network synchronization tra�c is not totally free of cost, however. A receiving node must be able to count
the number of messages that actually arrive during a given superstep. Counting can be accomplished by bu�ering
messages at the receiver and counting them as they are copied into their �nal destinations. Alternatively, at synch
time, a sender can inform a receiver explicitly of the number of messages it sent.

4.3 The cBSP API

The goal of this research is not the creation of an ideal API for BSP, but to test speci�c features, principally the
feasibility of e�ecting synchronization locally. There is a signi�cant e�ort underway to create a world-wide standard
BSP API [GHL+]. We do not suggest that our API can or should compete with this e�ort.

We chose to keep our API as simple as possible. It consists of these four functions:

� cBSP initialize()
creates, allocates, and initializes bu�ers, assigns logical node numbers



� cBSP send(node, destAddr, srcAddr, nbytes, handler)

causes nbytes of the contents of local virtual address srcAddr to be written to remote virtual address destAddr
on logical node node. The write is guarantee to occur by the beginning of the next superstep.
If non-NULL, handler will be executed on logical node node synchronously, at user-level, at the time of
synchronization on node, after the accompanying data have been written to their destination.
The handler takes three parameters: the source node, the destination address, and the size of the message in
bytes. Its prototype is
void handler (int srcNode, void * destAddr, int nBytes).
A NULL (zero) destination address in a cBSP send call has special signi�cance. An application programmer
may prefer to operate on data directly from an incoming message bu�er without �rst copying into the
applications address space. Scatter/gather is one such case. The programmer supplies a handler and speci�es
a NULL destination address. The handler is passed the address of the data in the receive bu�er, rather than
a destination address in the user's virtual address space.

� cBSP nsync(count)

prevents a process from proceeding until count messages have been received and written to their destination
addresses. If any handlers have been speci�ed, they will have executed to completion prior to the exit from
cBSP nsync. There are no guarantees with respect to execution order of multiple handlers, nor of multiple
sends to the same destination address.

� cBSP gsync()

is a global synchronization. Any pending messages are guaranteed to have been written, and any handlers
speci�ed are guaranteed to be executed prior to exit from cBSP gsync. No process exits cBSP gsync until
every process has entered.

From these four primitives, broadcast and reduction functions can be built in a straightforward manner.

There is no explicit receive function. Data are guaranteed to have been written by the beginning of the next
superstep. In our library, all writes actually occur during synchronization.

5 cBSP Implementation

5.1 Initialization and Use of Bu�ers

At initialization time, each process allocates a region of memory for messages from each other process.

Because message bu�ers are completely cleared at the end of each superstep, there is no need for a bu�er to have
a strict, regular format. This contrasts with the VMMC implementation of NX/2 [ADFL96, Pie94]. Because NX
messages can be consumed out-of-order, and because there is no time at which it is known that a message bu�er
will be completely empty, NX messages are sent to clearly de�ned \slots" in the message bu�er.

In cBSP, messages of di�erent sizes �ll the bu�er space as needed with almost no waste (a very small number of
bytes are sacri�ced to satisfy alignment constraints). At the beginning of each superstep, senders are free to (and
are expected) to re�ll message bu�ers from the beginning.

Messages are written into bu�ers from higher to lower addresses. This scheme was chosen because the VMMC library
delivers data from lower-to-higher address; receivers can examine the last data delivered to sense message arrival.

The layout of a message in the bu�er is straightforward. For each message, there is an arrival ag, a size �eld, the
data, destination address, handler, and the superstep number. The superstep number modulo some integer (the
number of sets of such bu�ers) provides an index into the receive bu�er data structures.

5.2 Flow Control

When messages are bu�ered at the receiver, some provisionmust be made for bu�er overow. Because communication
is sender managed, it is the sender, not the receiver, that detects when an overow condition is imminent.

If a message would cause a receive bu�er to overow, the sender writes a special overow ag in the size �eld of
the �nal remaining message region. Subsequent messages for the current superstep are then bu�ered at the sender
in a backup bu�er.

When the receiver is synchronizing, it sends a special message to the sender after it has consumed all of the messages
in its receive bu�er and senses the overow ag. The sender then sends the contents of the backup bu�er to the
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Figure 2: Small Message Latencies

receive bu�er, and the receiver continues. The sender cannot complete synchronization until it has satis�ed all
pending requests for backup bu�ers.

5.3 Large Messages

If a message is larger than an entire message bu�er, a special ag is written in the size �eld and the message is
bu�ered on the sender side. As with small message ow control, the receiver, during synchronization, sends a special
message to the sender, clearing the sender to write the data directly to its �nal destination.

6 Performance

The cBSP libraries were �rst used to obtain microbenchmarks for small message latency. These results were intuitive,
with global synchronization requiring approximately twice as much time as counting synchronization. To draw a
more practical picture of the relative performance of the two schemes, applications having di�erent communication
styles were run using the di�erent protocols.

6.1 Microbenchmarks

Small message latency performance is shown in the graph of Figure 2, which shows the one-way latency observed
in a \ping-pong" test. Two processes send payloads to each other, with data movement alternating direction in
consecutive supersteps. For comparison, eight-node all-to-all latency also is show in Figure 2.

Using cBSP gsync, naive global synchronization is e�ected by an O(logn)-time, O(n)-messages technique, with
explicit synchronization messages passing between nodes.

The cBSP nsync scheme sends no messages other than those containing the actual data. When the prescribed number
of messages has arrived (in this case, one), the process proceeds. As one might intuit, latency is about half that of
naive global synchronization.



6.2 Testing with Applications

We tested counting vs. global synchronization on gauss, a Gaussian Elimination solver, nbody, Barnes-Hut N-Body,
lu, LU Decomposition using grid distribution, and ocean, simulating eddy and boundary currents and large-scale
ocean movements.

The communication behaviors displayed by these applications are varied, and are typi�ed by gauss and nbody.

Communication in gauss is regular and predictable, with message counts and message sizes known in advance,
making gauss a good candidate for counting synchronization. Knowing only the dimensions of the matrix, it is
trivial to determine the time, size, source and destination of each message prior to program execution.

LU decomposition is almost as predictable, but there are a few points at which some short calculations (mostly
boolean) must be performed to determine the number of incoming messages.

Application Supersteps Percent Known Speedup
gauss 1025 100.00% 1.116
LU 2564 79.95% 1.052
ocean 2634 100.00% 1.139
n-body 180 26.11% 1.180

Figure 3: Application Characteristics

In Barnes-Hut N-Body, communication is irregular
and dependent upon the nature of the data.
Three-dimensional space is represented by an
octtree, and is hierarchically divided according
to the density of bodies within each region. As
the algorithm progresses and bodies are displaced,
they may be transferred from one process to
another. Each movement of a body from one
process to another occurs in a separate message.

As a result, nbody is less able to exploit counting
synchronization, though message counts are known at some stages of the algorithm. N-body was the only one of
our applications for which we could not determine the number of incoming messages in a signi�cant fraction of the
supersteps. Simulating 16000 bodies through 20 iterations, the number of incoming messages can be determined in
only 47 of 180 supersteps (26.11%). In many of these supersteps, not only can senders not determine the number
of messages they are sending to a given node until synchronization time, but the destination addresses of these
messages can be determined only by receivers. This occurs during the exchange of bodies between nodes, because
senders lack su�cient information about the state of the receivers' data structures.
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Figure 4: Relative Running Time

Applications were run on the test platform (Sec 3) using
both global and counting synchronization. The results are
shown in Figure 4. The vertical axis of Figure 4 represents
relative computation time, with the longest time as 100
(shorter is better).

In Table 3, which summarizes characteristics and observed
behavior of the applications, shows, for each application,
the number of supersteps, the percentage of supersteps for
which the number of incoming messages can be determined
by the receiver, and the observed speedup using counting
synchronization over global synchronization.

6.2.1 Gaussian Elimination

Computation and communication both are regular and
predictable in gauss, making it an ideal candidate for
counting synchronization. The number of messages expected
at each stage of the computation is �xed and can be
\hardwired" into the code. On 8 nodes, solving a 1024-
equation system, gauss used 1025 supersteps in about 11
seconds. Counting synchronization showed a speedup of
1.116 over global synchronization.

6.2.2 N-Body

Barnes Hut N-Body [BH86] is a hierarchical O(N logN ) force calculation algorithm. Bodies, each having di�erent
mass, acceleration, and initial velocity, are distributed in space. Space is then recursively partitioned, forming an
octree. Bodies are at the leaves; regions of space are represented by interior nodes. Di�erent regions in space then
are assigned to di�erent processors.

Rather than individually calculating the result of the bodies' mutually attracting forces (an O(N2) algorithm),



bodies su�ciently distant are grouped and assumed to have a mass and centroid equal to the sum of the masses and
sum of the centroids of the individuals, producing an O(N logN ) algorithm.

The shape of the octree is a function of the distribution of the bodies in space, and the distribution changes as
the algorithm progresses, so it is not possible to predict communication needs and behaviors. This property of the
algorithm limits potential speedup of counting synchronization.

Simulating the motion of 16000 bodies with randomly assigned initial velocities and accelerations through twenty
time steps used 180 supersteps in about 11 seconds on 8 processors. Using counting synchronization wherever
possible resulted in a speedup of about 1.180 over global synchronization.

6.2.3 LU

Like Gaussian Elimination, LU Decomposition is an algorithm for solving systems of linear equations written as
Ax = b, where A is an n� n coe�cient matrix and x and b are n� 1 column vectors. Unlike Gaussian Elimination,
LU �rst factors A into a lower triangular and upper triangular matrix.

An upper [lower] triangular matrix is one in which all elements below [above and including] the diagonal are zero.
Once A has been factored into L and U , solution of the system is straightforward.

LU is able to exploit counting synchronization, but not without incurring the small cost of a few simple calculations
to determine the number of incoming messages.

On 8 nodes performing LU decomposition on a 512 � 512 array used 2564 supersteps and completed in approximately
11 seconds. Using counting synchronization yielded a speedup of 1.052over global synchronization.

6.2.4 Ocean

Ocean models the role of eddy and boundary currents in inuencing large-scale ocean movements. This
implementation, modi�ed from the SPLASH suite [SWG], uses dynamically allocated four-dimensional arrays for
grid data storage.

The behavior of ocean meets intuitive expectations: counting synchronization is faster than global synchronization,
though with results less dramatic (7% speedup) than some of the more regular applications.

7 Conclusions

Some applications can bene�t from counting synchronization. Factors favoring use of counting synchronization
include regularity of communication and larger numbers of processors

For the programs in our suite, speedups using counting synchronization ranged from 1.052 to 1.180.

Porting existing applications to cBSP was fairly straightforward, with determining the number of incoming messages
the only sometimes non-trivial task.

Because a sender usually is unaware of the scope of a receiver's data structure, sometimes destination addresses can
not be determined by a sender. cBSP's handler feature was easily powerful enough to cope with those situations
where receivers determined destinations.
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