
 
 

AUGMENTING HUMAN ODOR ASSESSMENTS OF CABIN AIR QUALITY OF 
AUTOMOBILES BY INSTRUMENTAL MEASUREMENTS  
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ABSTRACT 

Four commercial e-nose instruments (Multisensor Systems, 
Alpha MOS, iSense, and Nordic Sensors Technologies) and a 
trained human panel tested cabin odors generated by heat cycling 
four new automobiles. Odor samples were collected at Hyundai 
Motor Group (HMG) and express-shipped to four university 
partners for analysis by an aggregate of 155 gas sensors.  Sensor 
responses were combined into a single dataset, from which 
models were developed to predict the human panel’s odor 
evaluations based upon each instrument alone, and upon the 
instruments all acting together. The best performing sensors and 
instruments were identified.  The best performance overall was a 
hybrid instrument composed of five sensors from three different 
commercial devices. 

Index terms– Human panel, odor assessment, electronic 
nose 

1. INTRODUCTION & BACKGROUND 

In prior work [1], we showed that an electronic nose (e-nose) 
may be used to replace a human panel for the evaluation of odors 
from animal confinement facilities. In this project, we extend 
those concepts to automobile interior odors.  Odors in new 
vehicle interiors arise from the out-gassing of compounds from 
leather, plastic, carpet, vinyls, paint, and glues. Human panels 
and electronic instruments (including GC/MS, MOSFET and 
MOS sensors, and a MEMS sensor array) have been used 
previously in a limited number of studies to evaluate cabin air 
odors from automobiles with mixed results [2-5].  In this study, 
we evaluated four commercial instruments with a combined total 
of 155 gas sensors for their ability to complement or replace 
human odor assessments of automobile cabin air odor quality 
within HMG vehicles. 

2. METHODS 

2.1 Sample collection at HMG 
All data were collected in an environmental test chamber at 

HMG using company standards, under which the vehicle doors 
are open for 30 minutes (20±5oC, 60% RH), HVAC set to 
recirculate, doors are then closed and the inside temperature 
raised over an hour period to 80oC at passenger nose level and 
maintained at this temperature for two hours, and then forcedly 
cooled over one and one-half hours to 25±2oC. Human panelists 
(N=4) then entered the vehicles and recorded their ratings.  
Vacuum pumps were used to pull odor samples through Tenax 
absorbent material in glass tubes.  These concentrated samples 
were refrigerated and sent by express carrier to Univ. of Ill. 
Urbana Champaign (UIUC), Univ. of Warwick (UWAR), and 
NC State Univ. (NCSU) for analysis.  In parallel with the Tenax 
sample collection, solid-phase micro-extraction (SPME) fibers 
were also used to concentrate odorants; these samples were 
refrigerated and shipped by express carrier to Univ. Manchester 
(UMAN) for analysis.  

2.2 Sample processing 
UIUC. Forty eight Tenax samples were examined by a hand-
held iSense colorimetric e-nose system that exposes an array of 

sensing spots on a flat array.  The spots change colors in the 
presence of VOCs.  A camera scans the spots and creates a 
feature vector for data analysis.  An array of 108 sensor spots 
was exposed to a sample for 10 min during a test run.  
Hierarchical cluster analysis  was used to group data, and all the 
samples except one fell nicely into their respective clusters, 
which suggests a good degree of selectivity and repeatability. 

UWAR.  Odor samples were evaluated with an Alpha MOS 
Fox 4000 instrument with 17 MOS sensors. Twenty four Tenax 
samples were removed from the glass tubes and placed inside a 
10 ml sample vial. The vials were purged with nitrogen, sealed 
with a high temperature lid, heated, and maintained at 320oC for 
20 minutes.  An autosampler then injected 1.5 ml from the vial at 
100oC into the instrument. We were not able to provide enough 
samples to enable this instrument to differentiate vehicle 
samples.  

NCSU. Samples were evaluated with the Nordic Sensor 
Technology NST 3320 that employs an array of 12 MOS and 10 
MOSFET gas sensors. Sixteen Tenax samples were removed 
from the glass tubes and placed inside 30 ml sample vials. The 
vials were then sealed with a membrane lid, and heated and 
maintained at 60oC during analysis. Sensor readings were taken 
every second and both the sensor’s response and recovery 
waveforms were recorded.  The NST 3320 could clearly 
differentiate between hot and cool vehicles.  Clusters also 
differentiated for the hot vehicles, but not for the cool.  

UMAN. The Multisensor Systems unit has 8 MOS sensors.  
Concentrated samples on 12 SPME fibers were automatically 
inserted into the sensor head by a drive unit.  The system 
automatically recorded the baseline (without fiber) for 10 sec, 
and then drove the fibers into the sensor chamber for thermal 
desorption. The sensor signals were then recorded for three 
minutes followed by a cleaning cycle. Normalized patterns 
between 50-100 sec from each sample were used as input data 
into principal components analysis (PCA). The PCA plot easily 
differentiated between the different models of hot and cool 
vehicles under test. 

Data Integration.  The sensory data from UIUC, UWAR, 
NCSU, and UMAN were combined into a single database at 
Texas A&M University. A mathematical description of the 
problem for this feasibility study follows.  Represent the human 
panel olfactory ratings by matrix Y whose dimensions are 8×3. 
The first is the number of vehicle tests (four vehicles tested at 
two temperatures); the second, the number of rating scales (Odor 
Intensity, Irritation Intensity, and Pleasantness). Each entry in Y 
is the median of the ratings from the four human panelists. 
Represent the instrument data by matrix X whose dimensions are 
8×D.  Eight is the number of vehicle tests, and D is the number 
of sensors for the different instruments.  Each row in X is 
associated with one row in Y (many-to-one mappings).  Consider 
the following equations: 

!!

!!!Ŷ = XW !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(1)
W * = (XTX )−1XTY !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2)
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Equation (1) illustrates that we want to find a matrix W that 
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allows us to predict the human panel ratings matrix  (an 
estimate of Y) from instrument measurements collected in matrix 
X.  The optimal matrix W (denoted W*) is given in (2).  To 
compensate for co-linearity in X, we introduce a regularization 
term ε in (3), which is found through cross validation. 

3. RESULTS & DISCUSSION 

3.1 Correlation coefficients and signal to noise ratio (SNR) 
To evaluate the instruments, we used 70% of the data to 

determine the regression matrix W*, then tested on the remaining 
30% of the data. We then computed coefficients ρ as a measure 
of the correlation between the ground-truth olfactory ratings Y 
and their predictions !!Ŷ = XW * .  From these, we computed the 
signal-to-noise ratio (SNR) as:  

 

!!SNR = std(Y ) Y − Ŷ
2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!(4)  

 
3.2  Which sensors are best?  
To answer this question, we merged the four datasets and 

performed stepwise forward regression (SFR). First, we 
transformed the raw sensor data of each instrument according to 
its optimal preprocessing method: steady state !! for UIUC and 
UMAN, and !!"#/!!! for UWAR and NCSU. Then, we merged 
replicate 1 of all the instruments into one large feature vector. 
This created a sparse dataset (8 vehicle tests × 155 sensors).  To 
select sensor !!, we split the data 70/30 and built a regression 
model in a SFR fashion.  At each step, we repeated the split and 
regression model computation 56 times (with 8 vehicle tests 
there are approximately !!! = 8×7×6 /(3×2) = 56 possible 
70/30 splits) and selected !! as the best on average of the 56 
trials based on a single figure of merit: 

!!
ρ × SNR =

ρ1 + ρ2 + ρ3
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Running the SFR for 15 steps results in a subset with the best 
15 sensors.  We repeated this process 100 times for 15 sensors 
each (over 5,600 regression models were trained). Fig. 1 shows 
that the optimal subset of the 155 sensors tested has only five 
members, whereas adding more sensors reduces the 
performance.  Interestingly, a “hybrid” enose with the five best 
sensors outperforms than any individual instrument. 

3.3  Which instrument is best? 
To answer this question, we performed SFR on each system 

individually. Results are summarized in Fig. 2. The best 
performing systems were from UIUC and UMAN.  Note that the 
performance of the UIUC system is significantly improved (by a 
factor of 4) by reducing the number of sensors from 108 to 6.  In 
a similar manner, the UMAN unit is also significantly improved 
(by a factor of 3) by reducing the number of sensors from 8 to 2.  
In both cases however, a hybrid system of the best five sensors 
outperforms both by more than a factor of 2. 

4. CONCLUSIONS & FUTURE WORK 

In this work, we employed four commercial instruments with a 
history of sensor stability.  All four instruments were able to 
differentiate between cool and hot cars. Separation between 
leather and cloth interiors was also accomplished for most of the 
instruments. All the instruments showed some promise for 
replacing/augmenting the HMG human panel.  The best 
individual sensors for this application are shared between the 
commercially available iSense and MultiSensor Systems units. 
More extensive testing is needed to determine if one of these two 

machines, acting alone, can achieve acceptable human panel 
correlation performance goals.  The best performance was from a 
“hybrid” device using sensors from the iSense, NST, and 
MultiSensor Systems instruments. 

 

 
Figure 1.  The best sensors are identified. 

 

 
Figure 2.  The best instrument. 
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