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We describe movement patterns of hatchery-raised, juvenile, spring chinook 

salmon, Oncorhynchus tshawytscha, using a two-state Markov chain model. The 

existence of two states, moving and holding, is suggested by anecdotal 

information from a large radio telemetry study; yet, adequate observations of these 

small-scale fish behaviors are not available for estimating transition probabilities 

directly.  Instead, we estimate the transition probability matrix from travel times 

within each of 11 river segments using a method of moments approach. 

Bootstrapped confidence intervals are presented.  Results suggest that fish 

behavior in the region of the confluence between the Grande Ronde and Snake 

Rivers includes many transitions between moving and staying while fish behavior 

in the Snake River is more likely to include long periods of staying. 
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1. INTRODUCTION 

1.1 BACKGROUND 

Recent evidence indicates that substantial mortality of yearling, hatchery, chinook 

salmon, Oncorhynchus tshawytscha, from the Snake River system, located in 

Washington, Oregon, and Idaho, occurs in the free-flowing segments of the river above 

Lower Granite Dam (LGR); yet, there is little information about fish behavior in this area.  

Previous research has focused on the managed sections of the river below LGR for two 

reasons.  Historically, poor survival has been attributed to difficulties in passage through 

hydroelectric facilities (Raymond  1979; Raymond  1988) and data on fish passage at 

hydroelectric facilities is regularly collected and readily available.  However, current 

estimates for survival of hatchery-produced, yearling, chinook salmon to LGR, the first 

dam encountered during seaward migration, have been as low as 15-80% and are related 

to distance traveled (Smith et al. 1998).  These recent data suggest that an improved 

understanding of behavior during migration through the free-flowing segments  of the 

river might enable improved management strategies (Independent Scientific Group 1996). 

The data set presented here provides detailed information on fish behavior and velocity in 

the free-flowing segments of the river above LGR reservoir.  

In this paper, we develop a basic model to that uses observed patterns in fish 

movement to estimate unobservable small-scale behavior.  The model is not intended to 

describe actual fish movements but to provide a framework for understanding small-scale 

migratory behavior and for comparing this behavior between locations or over time.  We 
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incorporate mean river velocity into the basic model to approximate actual river 

conditions and we examine its effect on estimated parameter values and on the precision 

of parameter estimates.  Our aim is to develop a stochastic model which provides insights 

into small-scale fish behavior within the constraints of well-described, larger-scale 

models of migration processes. 

Extensions of the model introduced here might be applicable to a wide range of 

research efforts.  Advances in radio telemetry technology have induced a proliferation of 

radio telemetry data; however, methods for analyzing such information are not readily 

available in the fisheries literature.  Our model provides a simple framework for 

analyzing radio telemetry data that can be applied by statisticians and non-statisticians 

alike.  

1.2 DATA 

The fisheries data for this analysis are from a large radio telemetry study carried 

out by the National Marine Fisheries Service.  Combination radio transmitter/passive 

integrated transponder (PIT) tags were surgically implanted into 129 yearling chinook 

salmon at Lookingglass Hatchery in March 1997.  The fish were allowed to recover in the 

hatchery for approximately two weeks after which time they were released into 

Lookingglass Creek.  Their migration path included 132 km of the Grande Ronde River 

and 52 km of the Snake River.  Fish behavior at the confluence of these two rivers was of 

particular interest.   

Sample size was reduced by mortality both at the hatchery and during migration.  

During their migration from Lookingglass Creek to the LGR Reservoir, the fish migrated 
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past 12 fixed-site telemetry receiving stations.  Due to signal strength, antenna 

orientation, tag failures, and other difficulties with the electronic equipment, most fish 

were detected at only a subset of the 12 stations.  For further details on the radio telemetry 

experiment, see Hockersmith et al. (1998). 

In this paper, we describe a technique to model travel time between stations.  

Travel time was calculated for each of 11 river segments for each fish observed at both 

endpoints.  We define a river segment as the section of river between any contiguous pair 

of stations.  There are between 7 and 31 observations for any one segment.   

River velocity data was collected at 8 of the 12 observation stations during the 

period of out-migration.  For this paper, velocity (m/sec) is defined as the maximum 

observable surface velocity.  Velocity was estimated from the travel time of floating 

objects over a fixed distance and, where possible, from a boat using a Global Positioning 

System (GPS).  Velocity for a particular river segment was indexed by the average of 2 - 

10 measurements taken over the course of the study (April 5 - May 6 1997) at an 

accessible location near the telemetry receiving station.  We used a single value to 

describe velocity over the entire course of the study because adequate data was not 

available at finer temporal scales.  In reality, the velocity fluctuated from day to day; 

however, the relative velocities of the river segments should not be greatly affected by 

this simplification.  In most river systems, velocity increases as one moves downstream; 

however, the final stations on the Snake River were just upstream of LGR Reservoir and 

velocity decreases significantly in this area. 
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2. MARKOV CHAIN MODEL 

2.1 MODEL SUMMARY 

We use the two-state Markov chain model to describe fish behavior between 

observation opportunities (Guttorp  1995).  Our model describes a dependent, 

unidirectional, random walk.  We are interested in estimating the elements of the 

transition probability matrix.  The transition probability matrix describes the odds of a 

fish being in a particular state during the next time interval given its behavior in the 

previous time interval.  The two states included in the model are staying and moving.  In 

each time interval, a fish either holds in the same place or moves one unit of distance 

downstream.  The parameters of interest, p00 , the probability of staying given that the 

fish stayed in the previous time interval,  and p11 , the probability of moving given that the 

fish moved in the previous time interval, define the transition probability matrix.  

A two-state Markov chain model was selected to meet two criteria.  First, the 

selected model should converge to the inverse Gaussian distribution in the limit.  

Previous research on migrations of large cohorts of fish between dams has shown that the 

distribution of travel times follows the inverse Gaussian distribution extremely well 

(Zabel et al.  1998).  Second, the model should describe migration patterns observed in 

the field.  During the study, mobile tracking was used to pinpoint fish locations between 

the fixed-site monitoring stations.  Fish were often observed to stay in the same location 

for several days at a time before re-initiating downstream movement.  A two-state 
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Markov process is a simple model that both converges to the inverse Gaussian 

distribution and includes a parameter to describe periods of staying. 

At regular time intervals, we assume that the fish makes a “decision” to move.  If 

the fish makes a positive movement decision then it travels some unit of distance 

downstream.  If it makes a negative decision then it stays in the same location.  Travel 

time is the number of decisions a fish must wait in order to move one unit of distance 

downstream.  Travel time for an entire segment is estimated from the model as the time, 

or number of decisions, required to make enough positive decisions to travel the length of 

the river segment.  In the first model presented here, distance traveled per movement 

decision is independent of the river segment being traveled.  In the second model, 

velocity is incorporated by allowing fish to move a distance that is dependent on the 

relative mean velocity in each river segment.    

2.2 MODEL CALIBRATION 

The model must be calibrated with two values: the number of movement 

decisions per hour and the distance traveled per positive movement decision.  The 

number of movement decisions per hour translates the expected number of decisions 

required to make one positive decision into the expected wait time to move one unit of 

distance.  The distance traveled with one positive movement decision defines the number 

of positive movement decisions required to move a given distance downstream.  The 

combination of these two parameters defines the maximum travel speed that the model 

will allow.  This maximum would occur if the fish were to travel at every movement 

opportunity.  A fish may never actually travel at the maximum speed, but the value 
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should be set so that it does not constrain the model output.  We set the maximum travel 

speed, 32 km per hour, at just over twice the maximum observed surface velocity of the 

river to allow for pockets of high velocity water and bursts of directional swimming while 

maintaining model flexibility. 

There is a range of parameterizations by which one can achieve the appropriate 

maximum travel speed.  For example, a fish can make one movement decision every hour 

and travel 32 km with a decision to move or a fish can make 1000 decisions every hour 

and travel only 0.03 km with every positive movement decision.  Each possible scale 

defines a potential model which could be used to describe fish behavior.  The best scale 

for a particular data set is the one which provides the most information with the greatest 

precision.  Within these constraints, it should also make biological sense.   

We conducted a simulation study to assess the effect of scale on both parameter 

values and the width of the 95% confidence interval around that parameter.  As the 

number of decisions per hour increased, the width of the confidence interval around �p00   

decreased while the width of the confidence interval around �p11  increased.  At 40 

movement decisions per hour, confidence intervals around both estimates were small 

enough to provide information in both the basic and the velocity models.  As well, the 

most information from the data, the greatest differentiation between parameter estimates 

in different segments of the river, was achieved at 40 movement decisions per hour for 

both models.  At this scale, a fish travels 0.8 km with every positive decision to move.  

The use of this scale does not imply that 0.8 km per decision is a biologically meaningful 

constant with respect to individual-fish behavior.   
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2.3 NOTATION 

The following notation will be necessary for the calculations in the next section.  

Let 

pi,j =  probability of movement decision i during current time interval given    

      movement decision j at previous time interval, i, j = 0, 1 (0=stay, 1=move),  

w =  wait time, or number of decisions, to move one unit of distance,  

lk =  length (km) of river segment k, k = 1, 2, 3, … , 11, 

tk =  fish travel time (days) through river segment k, 

vk =  mean water velocity (km/day) in river segment k, 

v    =  mean of the water velocities, vk, over all k segments,  

mk = 
l v

v
kk

0 8.
�
�
�

�
�
�

�
�
�

�
�
� = number of movements required to complete river segment k, 

and 

nk =  number of fish for which travel time through segment k was observed. 

The parameter vk is equal to one for all k river segments in the basic model. 

2.4 ESTIMATION OF THE TRANSITION MATRIX  

The first step in applying the method of moments is to calculate the expected 

value and the variance of tk using the Markov model.  To begin, we calculate the 

expectation and variance of W.   We assume that each fish is initially in the move state, a 

reasonable assumption given that the fish must be moving to enter each study segment. 
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We are interested in the moments of Tk, fish travel time through segment k.  Fish 

travel time can be calculated as the sum of the individual wait times.  These times are 

independent given that the initial state for each interval must be 1; therefore,  

E(T ) = m E(W)k k  and Var (T ) = m Var (W)k k .   

Because the distribution of travel times are assumed to converge to the inverse 

Gaussian distribution, we use the inverse Gaussian distribution to calculate the mean and 

variance of the data.  The probability density function of a random variable, X, distributed 

as inverse Gaussian with parameters � and � is given by 

f x x x x( ; , ) ( / ) exp( ( ) / )� � � � � � �� � �2 23 1 2 2 2 ,  x>0, 

= 0, otherwise, 

where � and � are positive  (Folks and Chhikara  1978).  The mean and variance 

of X are given by E(X) = � and Var(X) = � �3 .  Uniform minimum variance unbiased 

estimates (UMVUE’s) for � and � are x  and (n )
x xii

n

� �
�

�
�

�

�
�

�

�3
1 1

1
 respectively.  Using 

UMVUEs for � and �, the mean of the data can be estimated by tk  and the variance by 

� �
1

3
1 13

(n )
t

t tk
k

k knk
�

� � �
�

�
�

�

�
�� , where  tk  is the mean travel time for all fish observed in 

segment k.   

The method of moments estimator of the transition probability matrix is 

calculated by setting the expected value and variance equal to their observed values and 

solving for �p00  and �p11 .  The estimates �p01  and �p10  can be calculated simply as 1 00� �p  

and 1 11� �p , respectively.    Although method of moments estimators are not necessarily 
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efficient or unbiased, they are reasonable and can be obtained with a minimum of 

mathematical difficulty (Larsen and Marx  1986). 

Confidence intervals for �p00  and �p11 were calculated using a non-parametric 

bootstrap.  The travel times for each river segment were sampled with replacement.  The 

number of randomly sampled observations was equal to the number of true observations 

in each segment.  The estimates �p00  and �p11 were then calculated for each of 1000 

iterations of the sampling procedure.  The 95% confidence intervals for �p00  and �p11 were 

calculated from the simulated distributions. 

3. RESULTS  

Tables 1 and 2 display the estimates and bootstrapped 95% confidence intervals 

for both p00 and p11 by river segment for the basic model (Table 1) and for the model 

incorporating relative velocity (Table 2).  Confidence intervals were constrained to [0,1].  

A lack of significant digits in the estimate identifies occasions where the simulated 

estimates were outside this range.  Table 1 also includes the number of observations in 

each river segment and the length of that segment (km).   

[Insert Tables 1 and 2] 

Velocity is incorporated into the model by dividing the reach length, lk, by the 

relative mean velocity, 
v
v

k .  The effect of incorporating velocity in the model is to reduce 

or increase the number of movements required to complete a given river segment.  We 

assume that, where the river is faster, a moving fish travels farther with each decision to 

move and vice versa.  Table 2 includes the relative velocity in each segment.  It contains 
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only nine of the original segments because velocity data were not available for two of the 

segments.  

Model fit was assessed by simulating travel times for particular river segments 

and comparing these simulated data to the observed travel times using a two sample 

Kolmogorov-Smirnov test.  There was a significant difference between the simulated and 

observed data when the estimates were used exactly.  However, if only the estimate for 

p00 was used and the estimate for p11 was modified slightly, there was no significant 

difference.  The required modifications of �p11  were well within the 95% confidence 

interval.  For example, for segment 8 the estimated value for p11 was 0.8756; simulations 

using a value of 0.8723 were not significantly different from the observed data. 

Differences in behavior between estimates of the two parameters exist because the 

parameters affect different parts of the travel time distribution.  The wait time, p00, has a 

strong influence on the length of the tail of the inverse Gaussian distribution which is 

determined by the travel times of the slowest fish.   With small sample sizes, the clearest 

information is in the tail of the distribution; therefore, we would expect the estimates of 

p00 to be more stable and to better differentiate fish behavior among the river segments 

than estimates of p11.  This pattern was reflected in the estimates for both models.  The 

addition of velocity had a stronger effect on �p11 than �p00  because the change had a greater 

effect on the apparent mean travel time than on the variance of travel time.  

In both models, estimates of p00 and p11 are substantially smaller for the river 

segments just upstream of the confluence of the Grande Ronde and Snake Rivers 

(segments 6 and 7) than estimates for any other river segments.  In both the basic model 
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and the velocity model, estimates for p00 in the Snake River were higher than estimated 

for the Grande Ronde River.   

4. DISCUSSION 

The two-state Markov model is a simple model to describe the process of 

migration in juvenile salmonids within the constraints of well-studied models of fish 

migration at larger scales.  The method described here is successful at estimating 

parameters of the transition probability matrix that yield information about behavior 

which would be difficult to observe directly.  Using this method of moments approach, 

estimates of the transition probability matrix can be calculated from travel time 

distributions, frequently observed in both radio telemetry studies and in the large PIT tag 

studies carried out by the National Marine Fisheries Service.   

The two-state Markov model is a probabilistic model to produce estimates of 

unobservable yet biologically meaningful parameters.  For example, p00 , the probability 

of staying given that the fish stayed in the previous time interval, gives managers and 

biologists an index of how long a fish might hold in a particular area.  The stationary 

probability of staying, independent of the fish action in the previous time interval, can be 

calculated as � �( )1 211 11 00� � �p p p  and provides an index of the likelihood that a fish 

will hold in a particular region.  As well, the average number of consecutive movement 

decisions a fish makes in the stay state or in the move state can be estimated as 

� �
1

1 00� p
 or � �

1
1 11� p

 respectively.  Because the estimates of exact parameter values 

can be influenced by model scale and are not intended to describe the actual physical 
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behavior of the fish, the model will be most useful for comparing fish behavior across 

situations, for example, comparing fish behavior between river segments, across years, 

between species, or between environments with differing conditions.  Differences in fish 

behavior between high and low flow years or between rivers with high and low juvenile 

survival rates are of particular interest to fisheries managers and might be described using 

this approach. 

Model results suggest that fish behavior differs among the different parts of the 

river.  Smaller values of �p00  in the region just above the confluence of the Grande Ronde 

and Snake Rivers for both models indicate that fish behavior may be more erratic in this 

area, perhaps having shorter runs of staying and holding.  The very high values of  �p00  in 

the Snake River indicate that there may be longer runs of staying in these segments, even 

after adjusting for mean river velocity.  Mobile-tracking of radio-tagged fish during the 

study period also documented long periods of delay for fish migrating through the Snake 

River (Hockersmith et al.  1998).   

In this case, the use of mean water velocity to adjust the distance traveled in a 

given movement did not alter the interpretation of the parameters.  Further refinements of 

this approach might better accommodate changes in flow by using water velocity during 

the exact time interval in which a fish passes through a particular river segment rather 

than mean water velocity.  The methodology described here provides an initial framework 

for estimating the effect of other environmental conditions, for example temperature and 

available light, on small-scale fish behavior during migration. 
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Table 1.  Estimates and Confidence Intervals for p00 and p11  from the basic model. 

Number of observations and segment length are included. GRR = Grande Ronde River, 

SR = Snake River. 

p00 River Data p11 
      

Lower 

Bound 

95% CI 

 

Estimate  

Upper 

Bound 

95% CI 

 

Segment  # 

 

nk 

 

Lk 

Lower 

Bound 

95% CI 

 

Estimate  

Upper 

Bound 

95% CI 

0.9773 0.9954 0.9983 GRR (2) 31 41 0.9281 0.9722 0.9834 

0.7813 0.9878 0.9967 GRR (3) 11 19 0 0.8636 0.9382 

0.5501 0.9970 0.9988 GRR (4) 7 11 0 0.9576 0.9701 

0.8602 0.9775 0.9900 GRR (5) 16 25 0.5166 0.8792 0.9270 

0.6266 0.9183 0.9714 GRR (6) 25 15 0 0.6204 0.8260 

0.6608 0.9343 0.9705 GRR (7) 25 23 0 0.7253 0.8426 

0.9777 0.9920 0.9955 GRR + SR (8) 21 6 0.7969 0.8756 0.9030 

0.9697 0.9937 0.9973 SR (9) 23 13 0.7750 0.9117 0.9424 

0.9991 0.9998 0.9999 SR (10) 20 25 0.9757 0.9893 0.9930 

0.9894 0.9999 1.0000 SR (11) 20 1 0.3638 0.9451 0.9714 

0.9990 1.0000 1.0000 SR (12) 20 7 0.9461 0.9914 0.9956 
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Table 2 - Estimates and Confidence Intervals for p00 and p11  incorporating river velocity. 

GRR = Grande Ronde River, SR = Snake River.  Relative velocity is calculated as  
v
v

k . 

p00 River Data p11 
      

Lower 

Bound 

95% CI 

 

Estimate  

Upper 

Bound 

95% CI 

 

Segment # 

Relative 

Velocity 

Lower 

Bound 

95% CI 

 

Estimate  

Upper 

Bound 

95% CI

0.9740 0.9953 0.9982 GRR (2) 1.10 0.8380 0.9684 0.9670 

0.8453 0.9878 0.9966 GRR (3) 0.90 0 0.8787 0.9076 

0.7885 0.9970 0.9988 GRR (4) 1.36 0 0.9407 0.9322 

0.8820 0.9773 0.9905 GRR (5) 1.08 0.1829 0.8666 0.8659 

0.8260 0.9355 0.9711 GRR (7) 1.44 0 0.5825 0.6083 

0.9777 0.9920 0.9955 GRR + SR (8) 0.92 0.6916 0.8860 0.8573 

0.9988 0.9998 0.9999 SR (10) 0.80 0.9661 0.9914 0.9911 

0.9930 0.9999 1.0000 SR (11) 0.69 0.4341 0.9616 0.9686 

0.9991 1.0000 1.0000 SR (12) 0.57 0.9514 0.9951 0.9961 

 


