About
6
Publications
815
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
47
Citations
Publications
Publications (6)
The primary clinical indicator of fracture risk among the elderly is low bone mass, yet it accounts for less than half of fractures in individuals over 50 years. Age is recognized to influence bone quality, affecting bone structure and properties. Previous research indicates that age diminishes tissue plasticity and toughness conferred by collagen,...
Understanding the biomechanical behavior of the intervertebral disc is crucial for studying disease mechanisms and developing tissue engineering strategies for managing low back pain. We used synchrotron small-angle x-ray scattering (SAXS) to investigate how changes in collagen behavior contribute to alterations in the disc’s ability to resist comp...
Age and diabetes have long been known to induce an oxidative reaction between glucose and collagen, leading to the accumulation of advanced glycation end-products (AGEs) cross-links in collagenous tissues. More recently, AGEs content has been related to loss of bone quality, independent of bone mass, and increased fracture risk with aging and diabe...
When studying bone fragility diseases, it is difficult to identify which factors reduce bone’s resistance to fracture because these diseases alter bone at many length scales. Here, we investigate the contribution of nanoscale collagen behavior on macroscale toughness and microscale toughening mechanisms using a bovine heat-treatment fragility model...
The fracture resistance of bone has been attributed to a competition of sub-micron lengthscale intrinsic mechanisms, including plasticity conferred by collagen stretching and intermolecular sliding and much larger lengthscale extrinsic mechanisms such as crack deflection and bridging. In this study, the contribution of intrinsic toughening mechanis...
Some natural materials, such as the dactyl club of the mantis shrimp, have impressive mechanical properties (e.g. strength) due to their microstructure that consists of periodic layers of high and low density material, which prevent crack propagation. Although such layered structures have the potential to increase the strength of engineered epoxy-c...