About
24
Publications
9,431
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,223
Citations
Introduction
Skills and Expertise
Publications
Publications (24)
Control of off-road vehicles is challenging due to the complex dynamic interactions with the terrain. Accurate modeling of these interactions is important to optimize driving performance, but the relevant physical phenomena are too complex to model from first principles. Therefore, we present an offline meta-learning algorithm to construct a rapidl...
Control of off-road vehicles is challenging due to the complex dynamic interactions with the terrain. Accurate modeling of these interactions is important to optimize driving performance, but the relevant physical phenomena, such as slip, are too complex to model from first principles. Therefore, we present an offline meta-learning algorithm to con...
Reinforcement learning (RL) has shown promise in creating robust policies for robotics tasks. However, contemporary RL algorithms are data-hungry, often requiring billions of environment transitions to train successful policies. This necessitates the use of fast and highly-parallelizable simulators. In addition to speed, such simulators need to mod...
We consider the problem of identifying material parameters of a deformable object, such as elastic moduli, by non-destructive robotic manipulation. We assume known geometry and mass, a reliable fixed grasp, and the ability to track the positions of a few points on the object surface. We collect a dataset of grasp pose sequences and corresponding po...
This paper considers online switching control with a finite candidate controller pool, an unknown dynamical system, and unknown cost functions. The candidate controllers can be unstabilizing policies. We only require at least one candidate controller to satisfy certain stability properties, but we do not know which one is stabilizing. We design an...
We address the problem of ensuring resource availability in a networked multi-robot system performing distributed target tracking. Specifically, we consider a multi-target tracking scenario where the targets are driven by exogenous inputs that are unknown to the robots performing the tracking task. Robots track the positions of targets using a form...
We study the problem of online controller selection in systems with time-varying costs and dynamics. We focus on settings where the closed-loop dynamics induced by the policy class satisfy a contractive perturbation property that generalizes an established property of disturbance-feedback controllers. When the policy class is continuously parameter...
We propose the {\alpha}-suboptimal covering number to characterize multi-task control problems where the set of dynamical systems and/or cost functions is infinite, analogous to the cardinality of finite task sets. This notion may help quantify the function class expressiveness needed to represent a good multi-task policy, which is important for le...
We study the variance of the REINFORCE policy gradient estimator in environments with continuous state and action spaces, linear dynamics, quadratic cost, and Gaussian noise. These simple environments allow us to derive bounds on the estimator variance in terms of the environment and noise parameters. We compare the predictions of our bounds to the...
We propose a method to maintain high resource in a networked heterogeneous multi-robot system to resource failures. In our model, resources such as and computation are available on robots. The robots engaged in a joint task using these pooled resources. In our model, a resource on a particular robot becomes unavailable e.g., a sensor ceases to func...
Quadrotor stabilizing controllers often require careful, model-specific tuning for safe operation. We use reinforcement learning to train policies in simulation that transfer remarkably well to multiple different physical quadrotors. Our policies are low-level, i.e., we map the rotorcrafts' state directly to the motor outputs. The trained control p...
We describe a trajectory optimization framework that maximizes observability of one or more user-chosen states in a nonlinear system. Our framework is based on a novel metric for quality of observability that is state-estimator agnostic and offers improved numerical stability over prior methods in some cases where the states of interest do not appe...
We describe a method for multirobot trajectory planning in known, obstacle-rich environments. We demonstrate our approach on a quadrotor swarm navigating in a warehouse setting. Our method consists of following three stages: 1) roadmap generation that generates sparse roadmaps annotated with possible interrobot collisions; 2) discrete planning that...
We describe a method for formation-change trajectory planning for large quadcopter teams in obstacle-rich environments. Our method decomposes the planning problem into two stages: a discrete planner operating on a graph representation of the workspace, and a continuous refinement that converts the non-smooth graph plan into a set of C^k-continuous...
We study the nonlinear observability of a systems states in view of how well they are observable and what control inputs would improve the convergence of their estimates. We use these insights to develop an observability-aware trajectory-optimization framework for nonlinear systems that produces trajectories well suited for self-calibration. Common...
We study the nonlinear observability of a systems states in view of how well they are observable and what control inputs would improve the convergence of their estimates. We use these insights to develop an observability-aware trajectory-optimization framework for nonlinear systems that produces trajectories well suited for self-calibration. Common...