James Orgill

James Orgill
  • Brigham Young University

About

8
Publications
717
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
172
Citations
Current institution
Brigham Young University

Publications

Publications (8)
Article
Syngas fermentation for producing biofuels and other products suffers from mass transfer limitations due to low CO and H2 solubility in liquid medium. Therefore, it is critical to characterize mass transfer rates of these gases to guide bioreactor design and optimization. This work presents a novel technique to measure the volumetric mass transfer...
Article
Methyl viologen (MV) is an electron mediator that has been shown to be beneficial for enhancing product formation in biofuel processes. For example, increased yields have been observed for ethanol and butanol production. MV has also been used in bioremediation processes such as removal of pollutants from groundwater. However, MV has also been shown...
Conference Paper
Biofuel production via fermentation is produced primarily by fermentation of simple sugars. Besides the sugar fermentation route, there exists a promising alternative process that uses syngas (CO, H2, CO2) produced from biomass as building blocks for biofuels. Although syngas fermentation has many benefits, there are several challenges that still n...
Article
Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H(2) to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. Th...
Conference Paper
Ethanol can be produced from biomass feedstocks or municipal solid wastes (MSW) using a hybrid thermochemical-biochemical conversion process called gasification-fermentation. In the gasification-fermentation process, biomass is gasified and converted to synthesis gas (syngas; primarily CO, CO2 and H2). The advantage of gasification-fermentation ove...
Conference Paper
Ethanol has emerged as a promising alternative to fossil fuels. Ethanol is produced primarily through two different processes. The first process produces ethanol by fermentation of simple sugars. The second process uses syngas (H2, CO, and CO2) produced from gasification of biomass. Many different reactors can be used for syngas fermentation. These...

Network

Cited By